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Following Mohapatra and Sakita, it is convenient to rewrite the algebra of2Nr-matrices in terms 
of N annihilation operators and N creation operators. We find them useful in representing weight 
vectors in the spinorial UN + UN C and the irreducible subcomponents of UN X UN and UN X UN C 

operators. Though their Dynkin labels are readily accessible, a natural basis for the enumeration 
of their complete set of weights is given by N positive weights of the vectorial representation. Their 
subgroup content under SU(N) C SO(2N) and SO(2m) ® SO(2N - 2m) C SO(2N) is made obvious 
by using a simple identity. Conjugation and Yukawa couplings are touched on briefly. 

PACS numbers: 02.10. + w 

1. INTRODUCTION 

It has become a part of the folklore to represent the 
(compact) generatorsofSO(2N )as.l'l'v =! [rl" r v] -!(rl' rv 
- r v r I' ) by introducing 2N Hermitian r-matrices satisfying 

the Clifford algebra 

Irl',rvl rl'rv +rvrl' = 2Dl'v' f..L,v= 1,2, ... ,2N. 
(Ll) 

The Cartan subalgebra is generated by .l'2i _ 1,2i 

(i = 1,2, ... ,N), which is diagonal in the basis !(r2i + irli_ 1) 
=b;. !(r2i - iY2i_ 1 )-b i for the 2N-dimensional vectorial 
representation rl' (p, = 1,2, ... ,2N). Following Mohapatra 
and Sakita 1, we consider the algebra satisfied by the N anni
hilation operators and N creation operators defined above. 

I bi' bj I = ! bi' b Jl - Mij = 0, i,j = 1,2, ... N. (1.2) 

They also introduce (SU(N)-invariant) vacuum 10) 

bi 10) = 0, i = 1,2, ... N. (1.3) 

In terms of all those objects, we represent the shift action for 
(complex extension ofthe algebra associated with) SO(2N) 
and the highest weights of the spinorial representation UN 

+ UN C as well as of <P J: I. Here <P J: 1 denotes the tensor oper-
ator representation corresponding to the k-fold-linear anti
symmetrized product of r's, e.g., <P JJ 1 is the vectorial and 
<p ]il is the adjoint. Given those weight-vector representa
tives (w.v.r.) for the highest weights, w.v.r. for the complete 
set of weights in UN + u"N and <P J: 1 may be generated by 
repeated shift action. Though the Dynkin labels for weights 
(in the Dynkin basis) are readily accessible from w.v.r., a 
more natural basis for weights associated with w. v.r. is the 
self-dual basis spanned by the N positive weights in the vec
torial representation. In the latter basis, the complete set of 
weights referred to above may be enumerated quite easily. In 
physical applications, knowledge ofw.v.r. is useful for visu
alizing reflection under group-theoretic conjugation and for 
computing Clebsch-Gordan coefficients in group-invariant 
couplings of the UN X UN or the UN X u"N operator with any 
one of the irreducible subcomponents contained in it. 

We start off in Sec. 2 with the definition of the self-dual 
basis for SO(2N), reviewing also the Dynkin basis and its 
dual. Section 3 is devoted to the decompositions of UN X UN 

and UN X oj. and the subgroup content of the irreducible 
representations contained in them. In Secs. 4 and 5 we come 

to the heart of our discussion. In Sec. 4, those SO(2N) shift 
operators whose shift action is either along or anti parallel to 
the simple roots, are represented as bilinears in bi and b;, 
i = 1,2, ... ,N. In Sec. 5, wegivew.v.r. for UN + oj. andirredu
cible subcomponents in UN X UN and UN X u"N' starting from 
their representatives with highest weights. Sections 6 and 7, 
where we only briefly discuss conjugation and Yukawa cou
plings, respectively, are potentially useful for physical appli
cations. 

2. THE SELF-DUAL BASIS FOR SO(2N) 

The Dynkin basis2 and its dual are reviewed. The self
dual basis for SO(2N) is defined and related to the Dynkin 
basis for SO(2N). 

Let a i (i = 1,2, ... ,n = rank) denote the simple roots. 
The real linear vector space (I.v.s.)l:7 = 1 0ia;. 0i real, defines 
the idempotent whose real dimension n equals the complex 
dimension n of the Cartan subalgebra, the minimall. v.s. gen
erated by the idempotent over the field of complex numbers. 
The complete set of weights of a linear representation is a 
finite system of vectors in the idempotent, whose most im
portant property is that the Cartan scalar product (x, y) de
fines a Euclidean metric on it. An arbitrary root, which is a 
nonzero weight in the adjoint representation, is expressible 
as a linear combination of the simple roots such that the 
nonzero coefficients are all positive (negative) integers, when 
the root is positive (negative). 

Let a;=2a;l(a;. a i ) denote the normalized simple root. 
An arbitrary vector X in the idempotent may be expanded as 

n 

x= I Xia;. (2.1) 
;=1 

The Xi are called covariant components of X. The basis! a; I 
is dual to the basis ! lli I defined by the reciprocity relation 

(ll;. aj) = Dij, i,j = 1,2, ... ,n. (2.2) 

! a; I may be regarded as the basis of a direct lattice; then 
I lli I is the basis for its reciprocal lattice. The latter, called 
the Dynkin basis, defines the contravariant components of X 
through 

n 

X= IXilli. (2.3) 
;= 1 
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An important result is that the contravariant components A i 

of the weight A of a representation, called its Dynkin labels, 
are all integral. Furthermore, Dynkin labels for the highest 
weight of an irreducible representation, denoted by AI' A2 , •.• , 

An' are all nonnegative integers. These n-tuples are in one-to
one correspondence with irreducible representations of a se
misimple algebra. 

From the definitions (2.1)-(2.3) a number of useful re
sults2 follow: 

n 

Xi=(X,a;)= L hij~, 
j~1 

n 

Xi = (X, IIi) = L hijXj, 
j~1 

(2.4) 

and hij denotes the inverse of the matrix h ij, both of which 
are symmetric n X n matrices. The scalar product of a pair of 
arbitrary vectors in the idempotent is2 

n n 

(X, Y)= L XiYj = LXjy
j
. (2.5) 

j= 1 ;=1 

From the reciprocity relation and the definition Aj = Oij 
(j = 1,2, ... ,n) for the ith fundamental representation, we may 
identify IIj as the highest weight of that representation. In 
other words, the Dynkin basis is spanned by the n highest 
weights of the n fundamental representations. 

Let us specialize to SO(2N). In the self-dual basis, an 
arbitrary vector X in the idempotent (in particular, an arbi
trary weight in a linear representation) is expressed as a lin
ear combination of the N positive weights of the vectorial 
representation, denoted by el ,e2, ••• ,eN and ordered as 
e l >e2 >···>eN _ I >eN , 

N 

X= L X(i)e j. (2.6) 
i= 1 

This basis I e j 1 is dual to itself since 

(2.7) 

For a pair of arbitrary vectors X and Y in the idempotent, 

N 

(X, Y) = L X(i)Y(i). (2.8) 
;= 1 

The basis vectors in the self-dual and Dynkin bases are relat
ed as follows: 

730 

N 

e j = L IIjA jj , 

j~ I 

N 

II j = L ej(A -I)ji> 

j~t 

-1 0 
o I - 1 
o 0 

A= 

o 
1 

o 
o 

o 

-1 0 
-1 

+1 
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(2.9) 

1 ! 1 
2 

1 1 
2 2 

1 1 2 2 . . . 
! 
! 1 2 o 

_1 I 2 2 

3. SUBGROUP CONTENT UNDER SU(N) AND 
SO(2m) ® SO(2n) C SO(2N) 

A simple identity may be used to find the subgroup 
content of the irreducible subcomponents contained in aN 
XaN and aN Xd',.. We consider the subgroups SU(N) and 
SO(2m) ® SO(2n). m + n = N. 

The lowest-dimensional spinorial representation of 
SO(2N) (dimension 2N) is reducible to the pair aN and d',. of 
irreducible representations (dimension 2N - I each). which 
are complex conjugates of each other for odd N but are real 
and inequivalent for even N. aN is reflected onto tTN under 
conjugation effected by an outer automorphism ofSO(2N). 
For odd N. 

aN(OO···OlO)XaN(OO···OlO) 
IN- 3)/2 

= .Iodd (00.··020) + L' f/l ~k + II. 

k~O 

IN-t)/2 

aN(OO···OlO) X tTN(OO···OOI) = L' f/l ~k'i. 
k' ~ I 

For even N. 

a N(OO···OlO) X a N (00 .. ·01 0) 
IN - 2)/2 

_ • ". 12k'l 
- .Ieven (00···020) + L.. f/lN • 

k' ~ I 

(N- 2)/2 

aN(OO···OlO) X tTN(OO· .. OOI) = L' f/lN I2k + II. 
k~O 

(3.1) 

(3.2) 

Let us explain our notation. The N nonnegative integers 
within parentheses denote the n-tuples (AI' A2 • ...• AN) char
acterizing the irreducible representation denoted by Greek 
letters. The simple roots are labelled 

.Iodd and .Ieven are highest components. in the indicated de
compositions. whose n-tuples are sums of those of the repre
sentations being multiplied. f/lN denotes the real 2N-dimen
sional vectorial representation with n-tuples (1.0.0 •...• 0). 
f/l !pl. thepth antisymmetrization of the linear representation 
f/l. is defined as the linear closure of the vectors 

171 X 172'" X 17p = Ej,i, ... i
p 

17i, X 17i, X ... X 17ip ' 

where 17 I X 172 X ... X 17 p denotes the vector to each system of 
vectors 171.172' ...• 17p from the l.v.s. on which f/l acts and E"i, ... i

p 

= ± 1 for even (odd) permutations of the indices 1.2 •... ,p. If 
d is the dimension of f/l. f/l !p I has dimension (; )=d !/ p!(d - p)!. 
In particular, for SO(2N), since f/lN has dimension 2N, f/l ~I 
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has dimension (~N). This is irreducible except when P = N, in 
which case it is reducible to ...!"odd +...!" ~d (...!"even +...!" ~ven) 
when N is odd (even) . ...!" ~dd is the complex conjugate of ...!"odd' 
but...!" ~ven and ...!"even are real and inequivalent representations 
of dimension !(1N

) each. Their n-tuples are shown in Eqs. 
(3.1) and (3.2). The n-tuples for the remaining irreducible 
¢> ~I (P=l=N) are as follows ('-' means 'is equivalent to') 

Ai = OiP' P = 1,2, ... N - 2, 

</1~N-II_</1~+1I Ai =ON-I.i +ON.i' 

</1 JJN 1 Ai = 0, i = 1,2, ... ,N. 

</1 ~I is the irreducible tensor representation of the (anti
symmetrized) product of P =l=N y's. ¢> JJN 1 corresponds sim

ply to YFIVE = n!~ I YI" 
Having explained the decompositions (3.1) and (3.2), we 

state a useful identity to get the subgroup content of ¢> ~I, 
P <N [which may be used, in turn, to find that of ...!"odd/...!"even 
by substituting for the subgroup content of (J' N from Eq. (5.1) 
or (5.2) into Eqs. (3.1) and (3.2)] 

(¢>I+¢>2)IPI = =¢>\pl+¢>lp-IIX¢>2+¢>lp-2IX¢>121 

+ ... +¢> 121 X¢>2 1P - 21 +</11 X¢> ip - Il +¢> ip, . 
(3.3) 

The identity (3.3) is useful for SO(2m) ® SO(2n)C 
SO(2N) because ¢>N = (¢>m' 1)+(1, ¢>n) under SO(2m) ® 

SO(2n) and therefore 

</1N ipl = (</1 ),;1,1)+(</1 ),;-1 1, ¢>n)+(</1 ),;-21, ¢> i21) 

+ ... +(¢>~I,¢>ip-II)+(l,¢>~I). (3.4) 

As stated above, ¢> ~ 1 is irreducible for P =1= Nand (</1 ),; - q I, 
¢> iq, ) is irreducible except when either p - q = m or q = n: 

(</1 ),;-ql, ¢> ~ql) = (...!" +...!"c, ¢> iq, ), m =p - q, 

(</1),;-q',¢>iq, ) = (¢>),;-ql,...!"+...!"c), n=q. (3.5) 

Hence further decomposition of the r.h.s. ofEq. (3.5) 
may be carried out easily and the subgroup content of ¢> ~I 
obtained. 

ForSU(N)CSO(2N), weuse¢>N = N + NunderSU(N). 
In order to be able to use Eq. (3.3) in this case, we must know 
how the products taken between fundamental representa
tions ofSU(N) decompose. The is facilitated by writing the 
products in the form ¢[PI X ¢[q I and using 

{

¢[P-ql 

.I,[pi X.I, - .I.[pl + .I,[P- II + + 1 
'f/ 'f/[ql - 'f/[ql 'f/[q-II ••• 

¢[q-pl 

ifp>q 

ifp = q. 
ifq>p 

(3.6) 

To explain the notation, ¢[:II is an irreducible SU(N) tensor 
with the property that it has p(q) totally antisymmetric upper 
(lower) indices. The condition of tracelessness reduces the 
number of independent components in ¢[:II to 

(
N + 1)(N + 1) N + 1 - P - q . 

p q N+ 1 

¢[;II is the complex conjugate of ¢[:IJ and ¢[;JJ transforms 
identically as ¢[Z = ~JJ' This information suffices to work out 
all the decompositions of products between the fundamental 
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representations of SU(N) (which correspond to antisymme
trizations of the N-dimensional defining representation). 
Hence the SU(N) content of </1 ~I follows from 

</1~1 =NIPI+NIP-IIXN +NIP-2IX NI2I+ ... +N 

XNiP-II+Nipl 

= ¢[pi +¢[p-IJ X¢[II+¢[P-21 X¢[21+ ... +¢[II 

X¢[p-II+¢[pl' (3.7) 

The decompositions and subgroup content, useful in phys
ical applications, are independent of the ensuing discussion. 

4. SHIFT ACTION OF SO(2N) AND W.V.R. 

Let Ey(E _ y = E;) denote the shift operator with its 
shift action or ladder operation along (antiparallel to) the 
root y. In this section, we use the anticommutation relations 
given by Eq. (1.2) and the w.v.r. 

Ea,=bTbi + I , i=I,2, ... N-l, 
(4.1) 

EaN = b 1b 1-1 

for the shift operators, that may well be called simple, to 
deduce the Cartan matrix (see also Eq. (2.4)) forSO(2N) given 
by 

2 - 1 0 

-1 2 -1 o 
0 - 1 2 

. . . 
2 - 1 - 1 

0 - 1 2 0 

-1 o 2 
(4.2) 

The labelling for the simple roots was given in Sec. 3. 
For this section and the next, the key result is the fol

lowing3
•
4 shift rule for the Dynkin labels A i of an arbitrary 

weight A: 

(4.3) 

Here the end points Pi and qi are defined by the condition 
that E + a,(E _ a,l may act on a weight vector SA with weight 
A without annihilating it for a maximum of qj(Pj) times in 
succession. R<f' the 1. v.s. in which ¢> acts, admits of the direct
sum weight-subspace decomposition, R<f = I.Ae,d~R~, 
where.:1 <f denotes the complete set of weights of ¢>. By defini
tion, SA ER~, the weight subspace with weight A, and 

(E + alSA =1=0, (E _ a,f'SA =1=0, 
(4.4) 

(E )q,+ It- = (E jI',+ It- = o. 
+aj ~A -ai}!1A 

Before being able to use Eq. (4.3), we must state how the 
simple shift operators and their adjoints, with their w.v.r. 
given by Eq. (4.1), act on a weight subspace represented suit
ably in terms of bi and b;. We may consider a pair ofl.v.s.: 
r" the (real) I.v.s. of vectors (dimension 2N

). 
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The space Y I is spanned by nf= IPj 10) where Pj is 
either I or b TIO) is defined by Eq. (1.3); Y 2 is the (real) l.v.s. 
of operators (dimension 22N

). 

The space Y 2 is the set of all linear transformations in 
Y I' Such a linear transformation (represented by a 2N X 2N 
matrix on choosing a suitable basis) consists of sum of pro
ducts of bj and b;' The reducibility of Y I and Y 2 under 
SO(2N) is the subject of the discussion in the next section. It 
suffices here to add that under the action of E ± a;' whose 
w.v.r. appears in Eq. (4.1), 

15 )EYc-+E ±ails )EYI , 

(4.5) 

nEY2-[E ±ai' n ]EY2• 

For a weight vector represented by 15 )EY I' the endpointspj 
and qj [see Eq. (4.4)] are determined by 

(E+a/'Is) 

= (E +ai(E +ai(E +ai (E +ails »)))#0, 
~----qi--~ 

but E qi + II f.-) = 0 +aj ~ , 

(E -af'lS> #0, but (E _afi+ liS> = o. (4.6) 

For a weight vector represented by nEY 2' the end points are 
determined by 

[ E + ai [ E + ai [ ... [ E + ai' n ] ] ] #0 
q,,--~ 

[ E _ ai [ E _ ai [ ... [ E _ ai' n 11 ] # 0 
Pi 

= [E _ ai [ E _ ai [ E _ ai [ ... [ E _ ai' n ]] ]] = O. (4.7) 
------P, + I---~ 

TABLE I. Complete set of weights expressed in the e-basis. 

Irreducible 
Subcomponent Weights 

Dynkin labels for the weight, with its end points, determined 
by Eq. (4.6) or (4.7), as the case may be, are gotten by substi
tuting them in Eq. (4.3). 

Let us now complete the derivation of the matrix given 
by Eq. (4.2). The weight subspace to which E + a, belongs is 
characterized by a nonzero weight (of the adjoint) whose 
Dynkin labels may be read off the ith row of Cartan matrix. 
Knowing the w. v.r. of E + ai' and the w. v.r. for E ± a) given by 
Eq. (4.1), we may determine the end pointspu andqu via Eq. 
(4.7), for the weight associated with E + ai' and verify h ij 
= Pu - qij' Q.E.D. 

Designating w. V.r. for E + ai against each simple root a i 

in the ordinary Dynkin diagram for SO(2N), we get ('a;' is 
labelled by 'i' in Dynkin diagram) 

b
t
N b~_1 

b~ b2 b~ b3 b;b4 
bt

N_3 bN-2 bt
N_2 bN_1 

N 
0 c 

2 3 N-3 N-2 N-I 

b~lbN 

Similarly, for the extended Dynkin diagram2 we have 

b~ b2 
t t bN bN_1 

b1 b3 b~b4 b
t
N_3 bN-2 bt

N_2 bN_
1 N 

8 
2 3 N-3 N-2 

N-1 
b, b2 b~_lbN 

where bl b2 is the w.v.r. for the E{j' {) being the shortest root 
with Dynkin labels (0 - 1 0 0 ... 0). The maximal regular 
embedding SU(N) C SO(2N )(SO(2m) ® SO(2N - 2m)) corre
sponds to our deleting the simple root labelled as N (m) in the 
first (second) ordinary (extended) Dynkin diagram. 

(TN !( ± e, ± e2 ± e3 ± ... ± eN _, ± eN) with an odd number of negative signs. 

~ 

¢J N 111 (vectorial) 

¢IN 121 (adjoint) 

¢JN J31 

¢IN ,41 

!( ± e, ± e2 ± e3 ± ... ± eN _, ± eN) with an even number (zero inclusive) of negative signs. 

±ei • (i= 1.2 •...• N). 

± (ei + ej ). i< j ; ei - ej (iJ = 1.2 ... N). 

±(ei +ej +ek ). i<j<k; ±(ei +ej -ed. i<j; liJ.k= 1.2 .. N). 

± (ei +ej + ek + el)' i<j<k<l; ± (e i +ej + ek - el)' i<j<k; 
± (e i + ej - ek - el). i < j and k < I; liJ.k,l = 1.2 ... N). 

k<N - I. quite similarly. 
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TABLE II. Weight vector representatives of highest weights. 

Subcomponent Representative of 
in 'Y.1'Y2 highest weight 

UN btbIbj ... b1_.IO) 

U',; btbIbj ... b110) 

tPN I k 1 bTbI···b! 

(l<k<N - 2) 

tP ',;'-.1 bibi···bLI 

~ b! b ; ... b L IbN 

I" b!bI···bL.b1 

tP ~N+ 11 b! b i···b L. (b ;,bN - bNb;,) 
N-k 

tP 12N - kl b!bi···b! II (b!+lbk+. -bk+1b!+.l 
;=1 

l<k<N-2 
N 

tP )iNJ II (b ibi - bib n 
1=1 

5. SO(2N) IRREDUCIBLE SUBCOMPONENTS IN r 1 AND 
r 2 AND W.V.R. 

In the notation of Sec. 3, r I and r 2 are completely 
reducible to UN +if,y and 

1 +rfJN +rfJ Jil +···+rfJ J:-1I + ~ + ~c 
+rfJ 1:+ 11 + .. ·+rfJ JiNI, 

respectively (we have suppressed the sUbscripts on ~ and ~ c 

which distinguish even N from odd N, since the distinction is 
irrelevant here). In Table I, we enumerate the complete set of 
weights of the SO(2N) irreducible subcomponents in r I and 
r 2' facilitated by working in the self-dual basis (Sec. 2). For 
these irreducible subcomponents, Table II gives the w.v.r. 
for their highest weights, which yield the w.v.r. for the re
maining weight vectors through repeated application of 
E ±ai [Eq. (4.1)] on the w.v.r. of the highest weight. For ex
ample, for the vectorial representation, the w. v.r. obtained in 
this manner are none other than b; and b ;, as was to be 
expected from the opening remarks of Sec. 1. Dynkin labels 
are readily accessible from a w.v.r. by substitution into Eq. 
(4.3) the end points determined via Eq. (4.6) [Eq. (4.7)] when 
the w.v.r. lies in r l [r2], respectively. Dynkin labels thus 
obtained for the highest weights are also shown in Table II. 
The following observation suggests that the self-dual basis is 
natural for working with w.v.r. When a w.v.r.lies in r 2 , the 
associated weight is given in the self-dual basis by replacing 
b ;(b;) by + e;( - e;) wherever this appears and adding up 
all. (For replacement, we may pick anyone of the terms, if 
the w.v.r. is the sum of more than one term.) When a w.v.r. 
lies in r I (see the discussion in the following paragraph), we 
replace P; by + eJ2( - eJ2) when it equals b ;(1) in the 
expression II;V~ I P; 10) and add up all to get the asssociated 
weight. The highest weights in the self-dual basis are also 
shown in Table II. 

Some further remarks on r I are worth adding. A 
w.v.r. in r l is of the form II;V~ IP; 10), P; being either 1 or 
b;. Under SO(2N), a 2N- I_ dimensional irreducible repre-
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Dynkin labels Highest weight 
of highest weight in e-basis 

(00···010) Me.+e2 +e3···+eN_ 1 -eN)' 

(00···001) !(e. + e2 + e3 + ... + eN)' 
k 

(00···010···0) e. + e2 + ... + ek' 

(00···011) e. + e2 + ... + eN_ •. 

(00···020) e.+e2 +e3 +···eN_. -eN' 

(00···002) e. +e2 +e3 + ... + eN_. +eN. 

(00···011) el +e2 +···+eN_.· 
k 

(00···010···0) e. + e2 + ... + ek' 

(000···00) O. 

sentation is generated by the w.v.r. 10) and the product of an 
even number (p to a maximum of [N]) of creation operators 
acting on 10). Let us agree to call this UN' The remaining 
w. V.r. in r 1 transform irreducibly under SO(2N) as if,y. The 
set of w. v .r., corresponding to a definite number k of creation 
operators acting on 10), transform irreducibly as X;.: I under 
SU(N), whose shift-action is represented by 

as stated at the end of Sec. 4. Here XN is an N-dimensional 
defining representation ofSU(N) with n-tuples (1,0,0, .",0). 
x;': I has dimension (f). X J: - k I is a complex conjugate of 
x;'; I. Hence the SU(N) content of the spinorial is 

UN = 1+xJiI+x141 + ... +x,VNII 

if,y =xN+x~l+xJJI+ ... +X,VN+II-II. (5.1) 

Similarly, the shift-action ofSO(2m) ® SO(2N - 2m) is rep
resented by (m# 1) 

8 

I 

bt
m_1 bm : 
--0 I 
m-l : 

I 

as stated at the end of Sec. 4. Under SO(2m) ® SO(2N - 2m), 

UN = (um, uN- m) + (ifm' if,y-m), 

(5.2) 

The dimension of U m (UN _ m), which equals that of 
cT", (ifN _ m)' is 2m - 1(2N - m - I). The subgroup content of the 
spinorial, given by Eq. (5.1) and (5.2), is useful for finding 
that of ~ and ~ C (see Sec. 3). 

6. PHYSICAL APPLICATIONS I: CONJUGATION 

In this section, we examine ~ /,v --+ T~ /,v T - I = ± ~ /,v 

under the conjugation induced by a product of k y-matrices, 
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(say) 
k 

T= Tk = II Y2;' 
i= 1 

~I'V denotes a compact generator ofSO(2N). The generators 
which commute with Tk span the symmetric subalgebra 
SO(k ) I8i SO(2N - k) except for k = 1 and k = 2, when the 
symmetric subalgebra is SO(2N - 1) and SO(2N - 2) I8i U (I) 
respectively. The remaining generators which anticommute 
with Tk belong to the orthogonal complementary coset 
space. The diagonal generators 

~12' ~34' ~56' ••• , ~2k - 1.2k 

reverse sign under the automorphism thus induced by Tk 
(the number k is the rank of the coset space). The maximum 
value (equal to n) of k corresponds to complex conjugation 
i.e., inversion through the origin of DN~SO(2N)-root-dia
gram. This automorphism is inner if and only if k is even. 
When k is even, Tk corresponds to the discrete rotation 

exp( 17' ~ 24)exp( 17' ~ 68)" ·exp( 17' ~2k _ 2,2k ). 

When k is odd, Tk may be expressed as a discrete rotation 
multiplied by the nontrivial element of the factor group,5 

group of outer automorphisms/group of inner automor
phisms (this factor group is of order 2 except for N = 4). A 
convenient choice for this element is TN ( TN _ .) when N is 
odd (even). (Here we do not have in mind the special case of 
N = 4.) For even N, TN induces an inner automorphism 
which also corresponds to complex conjugation. Hence we 
see that all the irreducible representations ofSO(4n) are real. 

Tk, which is represented as Tk = II7= 1 (b; + b j), acts 
on a w.v.r. as follows. 

Is )E'}/'I-Tk Is )E'}/'I 

flE'}/'z-TkflT k- 1E '}/'2' 

In the self-dual basis, Tk acts so as to let e;- - e; for i<.k, 
and e;- + e; for N;,t;,k + 1. This may also be described by 
a diagonal matrix, the conjugation matrix, 

_-k-~_-N-k--

Ceven = diag ( - I - 1... - 1 + I + 1... + 1) , 

whose square is obviously unity. On transforming to Oynkin 
basis the form for the conjugation matrix now reads 

Cs =ACeA -I, 

where A is given by Eq. (2.9). The subscript S on Cs is for 
Slansky, whose choice6 for the charge conjugation matrix in 
the Oynkin basis corresponds to Ce = diag ( - 1 - 1 - 1 
+ I - 1) in the self-dual basis, for N = 5. Reflection under 

an automorphism is thus easy to visualize in the latter basis. 
Under an outer automorphism, ~ and ~r~ c, whereas 
each of the remaining irreducible subcomponents in aXa 
and a X if is reflected onto itself. 

7. PHYSICAL APPLICATIONS II: YUKAWA COUPLINGS 

The Clebsch-Gordan (CG) coefficients for the coupling 
of the operator a X a or a X if with anyone of the irreducible 
subcomponents in that operator, in particular those for 
Yukawa couplings, may be systematically computed as dis
cussed below. 
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For the purpose of illustration, let Nbe odd. For defi
niteness, we imagine a theory based on the gauge group 
SO(2N) in which (left-handed) fermions are assigned to aN' 
Let the set of their w.v.r. be collected in ILr) wherein to each 
w.v.r. we associate a fermion field. Here r is a family index. 
Let IRr) be the set ofw.v.r. obtained from those in ILr) by 
the action of (CP )group = Ilf= 1 (b; + b j). Furthermore, the 
fermion fields associated with W.V.r. in IRr) are the (right
handed) antiparticles of the corresponding fermion fields in 
ILr). The group-invariant Yukawa couplings assume the 
form 

2" Yukawa = ~r.shrs(RrIYo<1>(aXa)ILs) 

+ Hermitian conjugate. 

Here Yo is required to ensure Lorentz invariance. <1> (aXa) is 
the representative of a set of scalar fields, contained in the 
decomposition of aX a, which transform irreducibly under 
SO(2N). The w.v.r. of those fields are obtained from the 
W.V.r. of the highest weight by repeated action of shift opera
tors (Secs. 3 and 4). The above expression may be regarded as 
the analog of the conventional expression involving y-matri
ces sandwiched between a bilinear of the chiral projections of 
the spinorial representation. Similarly, for the coupling of 
the representative <1> (aX if) contained in the decomposition 
of a X if, we sandwich <1> (aXif) between ILr) and (Lsi, 
with appropriate change in Lorentz structure. 

8. CONCLUSIONS 

It is quite convenient to rewrite Clifford algebra in 
terms of N annihilation operators (and their adjoints) and to 
work in the self-dual basis (Sec. 2), so long as we are con
cerned with the group theory of the spinor space aN + ifN 
and linear transformations in it. Our straightforward con
clusions are: 

(A) Shift action for SO(2N) may be represented as (Sec. 
4) 

bT
N b

t
N_

1 

b~ b2 b~b3 b;b4 
bt

N_3 bN-2 
bt

N_
2 

bN_
1 

N 

0 0 

2 3 N-3 N-2 N-1 

b~'lbN • 

Here we have given the w.v.r. of E +a, (i = 1,2, ... ,N); E -a, 

= E~,. It is sufficient to give w. V.r. of only those shift opera
tors, since w.v.r. for the rest may be derived from them. 

(B) The complete set of weights in a N' ~ and in irredu
cible subcomponents of aN X aN and aN X ~ is shown in 
Table I. 

(C) For those representations, w.v.r. for their highest 
weights appear in Table II. For the remaining weights, w. v.r. 
may be developed systematically by repeated application of 
the shift operators given under (A). 

(0) For those representations, a simple method is given 
in Sec. 3 for finding subgroup content under all maximal 
regular embeddings ofSO(2N), namely SO(2m) I8i 

SO(2N - 2m) and SU(N), where mi= 1. 
(E) For those representations, reflection under an auto

morphism is easy to understand in terms of a diagonal conju-
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gation matrix in the self-dual basis (Sec. 5). 
(F) For couplings of the UN X UN and UN X ~ opera

tors, a systematic way to track all the CG coefficients is al
luded to in Sec. 7. 

An application to SO(lO) based on (E) and (F) is dis
cussed elsewhere. 
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A Cartesian poly tensor is defined as a set of Cartesian tensors in a sequence of increasing rank. A 
matrix formulation of poly tensors is given to express arrays of direct tensor products and series of 
tensor contractions in concise form. The transformation of a poly tensor under rotation of 
coordinate axes is shown to be accomplished by means of an orthogonal matrix. The special 
properties of compressed poly tensors, composed of totally symmetric tensors with redundant 
components deleted, are demonstrated. The use of poly tensors is illustrated by an application to 
the problem of interactions among polarizable electric charge distributions. 

PACS numbers: 02.1O.Sp 

I. INTRODUCTION 

Many physical problems involving Cartesian tensors 
make use of series expressions whose terms are products of 
tensors of increasing rank. Examples are the multi pole ex
pansions of electric, I magnetic,2 and gravitational3 poten
tials. Similar expansions may arise whenever a Taylor series 
is used to express a function of tensor variables. In a study of 
interactions of electric multipole systems, I have found it 
advantageous to treat a set of Cartesian tensors of increasing 
rank as a single entity, which I will call here a Cartesian 
poly tensor. Poly tensors, like tensors, are subject to the oper
ations of addition and scalar multiplication, and these opera
tions obey the usual associative, distributive, and commuta
tive laws. The utility of poly tensors depends further on the 
concise manner in which they permit treatment of direct 
tensor products, tensor contractions, and transformations of 
tensors under rotation of coordinate axes. The purpose of 
this paper is to develop these elementary properties of poly
tensors. In the last section the use of poly tensors is illustrated 
by an application to the multipole treatment of interactions 
among polarizable electric charge distributions. 

II. CARTESIAN TENSORS-DEFINITIONS 

1. An nth rank Cartesian tensor will be denoted by a 
boldface symbol Aln) or the corresponding component nota
tionA ~; ... a., where each a i takes the values 1,2, or 3, corre
sponding to the Cartesian axes. A Cartesian tensor is defined 
in the usual fashion4 by the manner in which it transforms 
under a rotation of coordinate axes. The components of the 
tensor comprise a column matrix, each element of which is 
identified by the set of indices a I ... a n' The array 0/ index sets 
is the array of sets al···an in some defined order. The order 
will be called canonical if, on proceeding through the array, 
a l varies through the values 1,2,3 more rapidly than a 2, 

which varies more rapidly than a 3 , etc. The order will be 
called anticanonical if an varies more rapidly than an _ I' 
etc. The canonical order is the order in which array elements 
are usually stored in a computer memory. For example, the 
following are arrays of index sets for n = 3: 

canonical: 111,211,311,121,221,321, ... ,333, 

anticanonical: 111,112,113,121,122,123, ... ,333. 

2. A Cartesian tensor of rank m + n may be represented 
as a tensor of subdivided rank (m,n), in which m and n are the 
rank indices. For example Blm.n) is of rank m + n, and its 
components are written B ~~:'~~m /3 .... /3 •• The array of compon
ents comprise a rectangular matrix whose rows are indexed 
by the set al···am and whose columns are indexed by the set 
/31 .. ·/3n' The rank of a tensor may be subdivided into any 
convenient number of rank indices. Tensors BIO,n) and Bln,O) 
are nth rank tensors represented as row and column matri
ces, respectively. 

3. The tensor Aln) is said to be totally symmetric if A ~; ... an 

is unchanged on any permutation of a I· .. a n' The matrix 
form of such a tensor is identical in canonical and anticanon
ical order. A tensor Blm,n) is said to be totally symmetric in the 
component indices o/rank index m ifit is invariant on any 
permutation of the index set al· .. a m corresponding to that 
rank index. 

4. The direct product of two tensors such as All) and 
Blm,n) is a tensor of rank I + m + n, and may be represented 
in subdivided form by 

( 1) 

or 

(2) 

5. An n-fold contraction is denoted by the symbol·n·, as 
ill 

B1m,n)·n·A1n) , (3) 

which is equivalent to the form 

L B~~:·~L/3I .. ·/3.A ~: .. ·/31 ' (4) 
(/3] 

where the sum over [/3] denotes a sum over the complete 
array of sets /31· .. /3n' (In the present development, the com
mon convention ofimplied summation over repeated indices 
will not be used, as it is important to indicate explicitly 
whether summation is over a complete array of index sets or 
over a "compressed" array, as will be seen below.) The con
traction is equivalent to a matrix product if the column in
dices /31 ... /3 n of the first factor are in canonical order and the 
row indices /3n .. ·/31 of the second factor are in anticanonical 
order. If both tensors are totally symmetric in the compo
nent indices of rank index n, then the same order may be 
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used in both factors. 
6. The compressed/orm of Aln), denoted Aln), consists of 

the subset of components of the tensor in which no index set 
ac··an is a permutation of another set. If Aln) is totally sym
metric, the compressed form contains all of the information 
of the complete tensor in (n + l)(n + 2)/2 components, as 
opposed to 3n components in the complete tensor. Clearly, 
compression has significance only ifn>2. The canonical ar
ray of index sets of the compressed tensor is derived from 
that of the complete tensor by deleting any index set which 
does not satisfy the condition a l>a2> .. ·>an ; e.g., for n = 3 
the compressed array in canonical order is 111,211,311, 
221,321,331,222,322,332,333. The compressed form ofa 
tensor of subdivided rank, e.g., 8Im.n), consists of the subset of 
components of the tensor in which no index set al···am is a 
permutation of another set corresponding to rank index m 
and no index set/3I .. ·/3n is a permutation of another set corre
sponding to rank index n. (We will not consider here tensors 
which are compressed in some subdivisions of their indices 
but not in others.) 

III. CARTESIAN POL YTENSOR5-0EFINITIONS 

7. A Cartesian poly tensor is a set of Cartesian tensors in 
a sequence of increasing rank. A poly tensor ofjirst degree is 
represented by the column matrix 

A~[~:T (5) 

A; will denote the element of the ith row of A. One may 
choose to begin the sequence at a rank higher than the scalar 
AIO) in special cases. The sequence of tensors is of indefinite 
length, though for practical purposes it will be desirable to 
truncate the sequence at some specified rank. 

8. A poly tensor of second degree is represented by a 
rectangular matrix whose blocks are tensors whose rank is 
subdivided into two indices; e.g., 

[

BIO'O) BIO.I) BIO.2) ... ] 

B = 711 •0 ) BI I.I) BI I.2)... . (6) 

Bij will denote the element of the ith row andjth column of 
B. 

9. A poly tensor of Nth degree is a sequence of tensors 
whose rank is subdivided into N rank indices. If C is a poly
tensor of Nth degree, its general element is Cijk ... ' where i 
spans the component indices of the first-rank index,j spans 
the component indices of the second-rank index, and so on. 

10. The direct product of two poly tensors A and B is 
denoted AB, and is a poly tensor composed of all of the possi
ble direct products of one tensor from A and one tensor from 
B. It is convenient, but not essential, to define the degree of 
AB as the sum of the degrees of A and B. For example, if A is 
of first degree and B is of the second degree, then AB is of 
third degree, and the general element of the latter may be 
denoted by (AB)ijk = A;Bjk . If A and B are both of first de
gree, then the matrix product ABT (where T denotes trans
pose) represents the direct product as a square matrix, a po-
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lytensor of second degree. 
11. Contractions of poly tensors are defined by analogy 

with ordinary tensor contractions. Let A, B, and C be poly
tensors of degree 1,2, and 3, respectively. The following 
represent single contractions: 

(A.B); = L AjBj; , 
j 

(B,C);kl = LBijCjkl , 
j 

(7) 

(8) 

We adopt the following convention: The tensor components 
corresponding to a repeated index [j in Eqs. (7) and (8)] are in 
canonical order in the first factor and anticanonical order in 
the second factor. Thus the contraction in Eq. (7), for exam
ple, is the poly tensor composed of the tensors Aln)·n·Bln.m). A 
double contraction is represented by 

(9) 
i j 

Higher multiple contractions are defined in a corresponding 
manner. Only single contractions involving poly tensors of 
first or second degree can be equated to ordinary matrix 
products. 

12. A compressed poly tensor is a sequence of com
pressed tensors, and is denoted by a bar over the symbol; e.g., 

[

A
IO

)] -II) 

A~ ~'" ' 
(to) 

[

8 10,0) 810.1) 810.2) ••• ] 

B = ~(l.O) 811 •1) 811 •2)... • (II) 

If a uniform convention for ordering index arrays is fol
lowed, then B is obtained by deleting certain rows and co
lumns of B, and is thus a minor of B. 

13. The use of poly tensor expressions will be illustrated 
by some examples. A scalar C may occur as a series of tensor 
contractions, 

00 

C = L Bln).n.Aln), 
n=O 

or, more simply, 

C=B·A, 

(12) 

(13) 

where A and B are first degree poly tensors. Similarly, a ten
sor elm) may occur as a series, 

00 

elm) = L Blm.n)·n·Aln), m = 0,1,2 .. ·, (14) 
n=O 

or, more simply, 

(15) 

where A and C are first degree poly tensors and B is a second 
degree poly tensor. elm) might have a more complex series 
form, e.g., 

00 00 

Om) = L L Blm·;J).(i + j).AIJW') , m = 0,1,2, .. ·, (16) 
;=OJ=O 

which is more easily written 
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c= B:AA, (17) 

where B is a third degree poly tensor. 

IV. TRANSFORMATION OF POLYTENSORS 

14. It will be shown that a first degree poly tensor trans
forms under a rotation of coordinate axes in a manner analo
gous to that of a Cartesian vector. A vector v in coordinate 
system S becomes a vector v' in a rotated system S', where 

v' =AV, (18) 

and A is an orthogonal matrix whose elementsA.a {3 are direc
tion cosines of axes a in system S' with respect to axes /3 in 
system S.4 

Theorem: A first degree poly tensor A in coordinate sys
tem S is transformed into poly tensor A' in rotated system S ' 
according to 

A'=AA, ( 19) 

where A is an orthogonal matrix. (A matrix product is im
plied on the right side. Since A is not a poly tensor, there 
should be no confusion with a direct product.) 

Proof The individual tensors in A transform according 

(20) 

where 

A In) - A. A. ... ..1 
u,"'uni3,"'/3n- al{3, a2f32 u n 13n " (21) 

We regard Aln) as square matrix whose rows are indexed by 
a I···a n in canonical order and whose columns are indexed by 
/31···/3 n in canonical order. We define the block diagonal ma
trix 

(22) 

where the superscript D indicates that the matrix contains 
the indicated blocks along the principal diagonal and zeros 
elsewhere. It is evident from the form of A in Eq. (5) that A so 
defined satisfies Eq. (19). It remains to show that A is ortho
gonal. The scalar product of any two columns of a particular 
block Aln) is 

= '" (A. A. ) ... (..1 A. ) L u 1 /3, alY' Un f3" anYn 
[a] 

= 0{3tYt "'0{3nYn ' (23) 

where o{3y is the Kronecker delta and the last equality holds 
by virtue of the orthogonality of A. Hence A(n) obeys the 
orthogonality relation 

(24) 

where I is the identity matrix. From Eqs. (22) and (24) one 
obtains the orthogonality relation 

ATA=1. (25) 
15. The following theorem illustrates the fact that high

er degree poly tensors transform under rotation of coordi
nate axes in a manner analogous to the transformation of 
higher rank tensors. 
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Theorem: A second degree poly tensor B in coordinate 
system S is transformed into poly tensor B' in rotated system 
S' according to 

B'=ABAT. (26) 

Proof A tensor Blm,n) transforms in the same manner as 
a direct product Alm)Cln), by definition of Cartesian tensors; 
i.e., 

B Im.n), - '" '" A 1m) A In) 
u,,··am (Jr,·8n - £." £.,; u,'''UmY,'''Ym f3\,··{3n8 " .. h n 

[y] [8] 

XBlm.n) 
Y}"'·YmD,,··8n • 

(27) 

Equation (26) follows from Eqs. (6), (22), and (27). 

V. TOTALLY SYMMETRIC TENSORS 

16. Let Aln) and Blm,n) be totally symmetric in the com
ponent indices of each of their rank indices. Let Clm) be the 
totally symmetric tensor 

(28) 

Let 

(29) 

where n, is the number of times i appears in the set /31· .. /3n' 
Define a diagonal matrix of order (n + l)(n + 2)/2, 

gin) = [g(II ... I)g(21 ... 1) "'g(33 ... 3)]0, (30) 

where indices span the compressed canonical array. For ex
ample, 

g(l)=(lll)° , 

g(2) = (1 2 2 1 2 1)° , (31) 

g(3) = (1 3 3 3 6 3 1 3 3 1)° . 

Then we have the following: 
Theorem: The compressed form of the contraction de

fined by Eq. (28) is given by the matrix product 

(32) 

Proof Each component ofCim) is represented in the con
traction on the right side of Eq. (28) by a sum of 3n terms 
corresponding to the complete array of index sets /31···/3 n • 

Because of the given symmetry, each term is repeated 
g(f3I···/3n) times in the sum. The matrix product in Eq. (32) 
accomplishes the same result by expressing each component 
ofClm)asasumof(n + l)(n + 2)12 terms, each multiplied by 
the appropriate g( /31···/3 n ). 

17. Let A, B, and C be poly tensors composed of the 
corresponding totally symmetric tensors in item 16; i.e., 

Let g be the diagonal matrix 

g = (1 gill g(2) ... f . 

(33) 

(34) 

Theorem: The compressed form of the poly tensor con
traction defined by Eq. (33) is given by the matrix product 

(35) 

Proof The theorem follows directly from Eq. (32). 
The importance of this theorem will be appreciated 

from the fact that a first degree poly tensor truncated at rank 
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t contains (3' + 1 - 1)12 components in complete form and 
(t + l)(t + 2)(t + 3)/6 components in compressed form. 
Thus Eq. (35) represents an operation with substantially 
smaller matrices than Eq. (33), and the matrix size increases 
much less rapidly with t. 

18. It is worth summarizing some important properties 
of the second degree poly tensor 8 defined in item 17. If 8 is 
truncated at rank t, it is a square matrix of order 
(3' + 1 - 1 )12. The matrix is symmetric if and only if Bln.ml 

= Blm.nIT, a condition which is not implied by the given per
mutation symmetry. The matrix rank of 8 is limited by the 
following theorem. 

Theorem: If 8 is truncated at tensor rank t, its matrix 
rank is less than or equal to (t + l)(t + 2)(t + 3)16. 

Proof the theorem is trivial for t = 0 or 1. For t > 1, 8 is 
the largest minor of 8 which does not, in general, contain 
repeated rows or columns and which may therefore be non
singular. Thus the upper limit on t~ rank of 8 is 
(t + l)(t + 2)(t + 3)/6, the order of8. 

The main consequence of the theorem is that 8 - I does 
not exist for t> 1, while B has an inverse except in special 
cases where its rank is less than its order. 

VI. TRANSFORMATION OF COMPRESSED TENSORS 

19 . We will require the following: 
Lemma: If Xa,,,.a n is any function of the indices al···an , 

then 

I Xa,,,.a n = I I Xa,."an ' (36) 
[a] lal Nlal 

where the sum over (a) denotes the sum over the compressed 
array of index sets, and the sum over N [ a} denotes the sum 
over all distinguishable permutations of al· .. a n when nu
merical values are assigned. 

Proof The sum over N [ a} generates from each member 
al· .. a n of the compressed array the deleted members of the 
complete array. Thus both sides ofEq. (36) are sums over the 
complete array of index sets. 

20. We define a transformation matrix r lnl : 

r ~:".an (3, ,,·(3n = I A ~;".an (3,."(3,, ' (37) 
N[(3[ 

where a1 .. ·an andf31· .. f3n span only the compressed arr~s. 
Theorem: A compressed totally symmetric tensor Alnl 

in coordinate system S is transformed into compressed ten
sor Aln), in system S' according to 

(38) 

Proof The transformation of the complete tensor is, in 
consequence of Eqs. (20) and (36), 

A Inl' -" " A Inl A Inl . 
U\'''U n - L L Ut,··u,,131,··!3n. !31"'{3" 

(39) 
1(3)NI(3[ 

Equation (38) follows by insertion ofEq. (37) into Eq. (39). 
21. An example will suffice to show that a compressed 

tensor of subdivided rank transforms in the same manner as 
a direct product of compressed tensors of appropriate rank. 
Let Blm.n) be totally symmetric in the component indices of 
both rank indices. From Eqs. (27), (36), and (37) the trans
form of the compressed form is 
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-B Im.nl' - " " r lml r lnl 
Ut"'U m !3t,··{311 - L L UI"'UmYI"'Ym f3 I ",P"{jt"'{),, 

Irl 161 

XJj~~:'~~m6, ... 6n ' (40) 

which proves the assertion for this case. 
22. The inverse transformation of a compressed tensor, 

accomplished by means of the matrix ~n) - I, is less easily 
obtained than that of the complete tensor, since ~nl is not an 
orthogonal matrix. However, a simple form for the inverse 
matrix can be obtained, as will be demonstrated with the 
help of certain lemmas to be proven in this section. In what 
follows, a sum over S [ a} will denote a sum over all permuta
tions ofthe symbols al· .. a n , regardless of their numerical 
values. 

Lemma: If Xa,,,.an is any function of the indices al· .. a n , 

then 

g(aC .. an ) I Xa,,,.a n = n! I Xa,."an · (41) 
Sial Nlal 

Proof Let the set al· .. an contain n; i's (i = 1,2,3). Each 
term in the sum on the right side is repeated n I !n2!n3! times in 
the sum on the left side. Thus Eq. (41) follows from Eq. (29). 

For the following lemmas we define the quantity Y:~~,rl 
in terms of the transformation matrix Alnl: 

(42) 

Lemma: The transformation matrix defined by Eq. (21) 
obeys the relation 

I I Y:~,(3.rl = I ') Y:~~P,rl' 
Sial SIP) slPlslr1 

(43) 

Proof From Eqs. (21) and (42), 

ylnl -A, ... ,,1, A, .•. ,,1, 
(a.p.y) - a, /31 u"fJn alrl anY,,' (44) 

Let P; (a) be the ith permutation of the set a I···a n' with 
i = 1, ... ,n!; and let [p;(a),pj(f3)} denote the set of pairs 
(a l,[3I), ... ,(an,[3n) from the two permuted sets. From Eq. (44) 
it is seen that each term on the left side ofEq. (43) depends 
only on the sets [ Pita), Pj( f3)} and [ p;(a),PI(r)}, where PI 
denotes the unpermuted set. Likewise, each term on the 
right side ofEq. (43) depends only on the sets [ PI(a),Pk( f3)} 
and [PI(a),Pm(r)}. For the two sides ofEq. (43) to be equal, it 
is sufficient that, there be a one-to-one correspondence 
between pairs (iJ) and (k,m) such that [ P;(a),pj ( f3)} 
= [PI(a),pdf3)} and [p;(a),PI(r)} = [PI(a),Pm(r)}. That 

this condition is satisfied follows from the definition of the 
sets. 

Lemma: The transformation matrix defined by Eq. (21) 
obeys the relation 

g(rl"'rn) I I y:~).(3.rl =g(al .. ·an ) ') I y:~P.rl· 
Nlal NI (3) NIP I Nlrl 

(45) 

Proof Eq. (45) follows from Eq. (43) by application of 
Eq. (41) to each of the sums over S [a J, S [ f3}, and S [r}. 

We now arrive at the major theorem of this section. 
Theorem: The inverse of the transformation matrix de

fined by Eq. (37) is given by 

rlnl- 1 = glnl- l~nlT gin) . (46) 

Proof Define the matrix zlnl by 
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zln) = gin) - IJ'ln)T gn)J'ln) • (47) 

The elements of gin) are of the form 

..In) {J (J = 0 ···0 g(a ···a ) 5al···a" I·" " a] PI GnP" 1 n' (48) 

where ac··an andPc .. Pn each span the compressed arrays. 
Inserting Eqs. (37) and (48) into (47), one obtains 

Z~~ ... anEI'''En = Ig(al···an)-lg(OI···On) ) Yl~~a'E) .(49) 
Iii) NIaJ N~J 

Equation (49) is transformed as follows by applying Eqs. (45), 
(36), and (23) in turn: 

(50) 

(51) 

(52) 

Since the index sets span only the compressed arrays, only 
the unpermuted set E j'''E n can be identical to a j· .. a n • Hence 
the only surviving term in Eq. (52) is 

(53) 

That is, zlnl is the identity matrix. Thus Eq. (46) follows from 
Eq. (47). 

VII. TRANSFORMATION OF COMPRESSED 
POLYTENSORS 

23. The preceding results on compressed tensors lead 
directly to a number of theorems on the transformation of 
the corresponding compressed poly tensors. For this purpose 
we define a transformation matrix r in the block diagonal 
form 

r = (1 r(J) r l21 ••• )0 . (54) 

24. Theorem: A compressed first degree poly tensor A in 
coordinate system S is transformed into poly tensor A' in 
rotated system S I according to 

(55) 

Proof The theorem follows from Eq. (38). 
25. Theorem: A compressed second degree poly tensor 

B in coordinate system S is transformed into poly tensor B' in 
rotated system S I according to 

B' = rBrT. (56) 

Proof The theorem follows from Eq. (40). 
26. Theorem: The inverse of the transformation matrix 

defined by Eqs. (37) and (54) is given by 

(57) 

where g is defined by Eq. (34). 
Proof The theorem follows from Eq. (46). 
27. Let A and B be compressed poly tensors of first and 

second degree, respectively. Let C be their contraction as in 
Eq. (35). 

Theorem: The transform C' of the contraction C is 
equal to the contraction of the transforms A' and B'; i.e., 
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C' = BlgA' . (58) 
Proof The right side ofEq. (58) becomes, on substitu

tion of Eqs. (55), (56), and (57), in turn, 

B'gA' = rBrTgrA = rBgA = C' . (59) 

VIII. PHYSICAL DIMENSIONS OF POL YTENSORS 

28. The physical dimensions of tensor components gen
erally depend on the tensor rank. Thus the components of a 
poly tensor do not all have the same dimensions, and the 
units associated with numerical values of poly tensors cannot 
be treated by means of scalar factors containing the appro
priate units, as is usually the case in matrix problems. In
stead, the dimensions of a first degree poly tensor A may be 
expressed by 

A=DAA, (60) 

where A is the dimensionless form of the poly tensor and D A 

is a diagonal matrix whose diagonal elements are the units of 
the corresponding poly tensor components. In consequence, 
we have the following theorems. 

29. Theorem: If B is the direct product of first degree 
poly tensors A and C, then B is related to its dimensionless 
form B by 

B = DABDe . (61) 
Proof The direct product may be expressed as the ma

trix product 
T """'AT A 

B = AC = DAAC Dc = DABDe . (62) 

30. Theorem: If a first degree poly tensor C is the con
traction B·A, where A and B are first and second degree 
poly tensors, respectively, then B is related to its dimension
less form by 

B=DeBD.i 1. (63) 

Proof By definition, 
A A 

DeC= BDAA, (64) 

or 
A A 

C= DC1BDAA. (65) 

The prefactor of A in Eq. (65) must be a dimensionless square 
matrix whose elements are numerically equal to those of B; 
the prefactor thus defines B, and the theorem follows from 
this definition. 

31. A special case of the problem in item 30 is that in 
which A is an eigenvector of B, i.e., 

C=B·A=kA, (66) 

where k is what is usually regarded as the scalar eigenvalue 
associated with the eigenvector. The following theorem 
shows that k is actually the product of a scalar and a matrix 
of units. 

Theorem: If A is an eigenvector defined by Eq. (66) and 
k is the associated eigenvalue, then 

(67) 

where k is the dimensionless eigenvalue. 
Proof It follows from Eq. (66) that Band k have the 
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same dimensions. If we take k I as the dimensionless form of 
k, then the theorem follows from Eq. (63). 

IX. ELECTRIC MUL TIPOLE INTERACTIONS 

32. The application of poly tensor formalism to a phys
ical problem will be illustrated by the case of an electric 
charge distribution and its interaction with an external elec
trostatic field or with other charge distributions. Let p(r) be 
the charge density at position r in the region of space con
taining the system of interest. The nth-order multiple mo
ment of the charge distribution about a point R is the nth
rank tensor 

~Inl = (n!)-I i (r - R)np(r) dv, (68) 

where the integration is over the volume containing the 
charge distribution. Let Elk I be the k th -order gradient of the 
potential ¢ due to external charges: 

(69) 

where the gradient is evaluated at r = R. The expansion of 
multi pole moments in powers of the field gradients can be 
written in the form5

.
6 

00 

~Inl = ~bnl + L pln.kl.k.Elkl 
k~O 

+ ~ i i pln.k·/).(k + l)-EI/IElkl + ... , (70) , 
k~O I~O 

where ~I is the multi pole moment in the absence of an ex
ternal field and the p's are generalized polarizabilities. Let M 
be a first degree poly tensor composed of the tensors ~Inl and 
E be a first degree poly tensor composed of the tensors Elkl. 
These poly tensors are thus single entities which characterize 
the charge distribution and the external field, respectively. 
Equation (70) can be recast in the more concise form 

M = Mo + poE + !Q:EE + '" , (71) 

where P and Q are second and third degree polarizability 
poly tensors, respectively. 

Now consider a system composed of N nonoverlapping 
charge distributions which interact by way of the fields of 
their multipole moments. For simplicity, we will assume 
that the permanent multipole moments Mo vanish and that 
the field is small enough to neglect terms in Eq. (70) higher 
than the linear term in E. Let the multipole moments of 
charge distribution Ibe defined with respect to a local origin 
R I • The multipole poly tensor MI of the Ith charge distribu
tion is then 

MI = Plo(EI - i TIJoMJ ) , 1= 1, ... ,N, (72) 
J~I 

J~I 

where EI is the external field gradient poly tensor evaluated 
at RI and TIJ is the second degree poly tensor composed of 
the multipole field tensors, I 

(73) 

where VI = J IJRI and RJ[ = RI - RJ • Thus Eq. (72) ex
presses the response of charge distribution I to the external 
field and the superimposed fields of the induced multipole 
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moments of all other charge distributions in the system. The 
system of equations represented by Eq. (72) can be rewritten 
in the convenient matrix form 

dvll = If , (74) 
where the matrices are composed of blocks of poly tensors in 
the manner 

TI2 ••• 

P
2
- 1 ... 

(75) 

(76) 

(77) 

Equation (74) may be solved for the multipole moments in 
the form 

vii = d-Ilf . (78) 

Equation (78) expresses the response of the system of inter
acting charge distributions to an arbitrary external field. 
This has important applications in the calculation of proper
ties of molecular systems. The elaboration of this result will 
be given in future publications, but for the present, a few 
points are worth noting: (i) Poly tensors MI , E[> PI' and TIJ 
are composed of tensors which are totally symmetric in the 
component indices of each rank index; hence, the methods of 
the compressed poly tensors can be used to reduce the matrix 
size. (ii) The formalism of Eqs. (72)-(78) reduces the multi
pole interaction problem to the same form as the dipole in
teraction problem which has been applied to the calculation 
of various molecular properties.? (iii) Even if one is interest
ed, say, only in the dipole response of the system, which is 
expressed by appropriate elements of the d - I matrix, that 
response is influenced by all orders of multipole response by 
virtue of the dependence of each element of d - I on all ele
ments of d. (iv) The theorems proven here concerning trans
formation of poly tensors are important in this application 
because the poly tensors in Eqs. (74)-(78) must be specified in 
a single coordinate system, while certain of these, especially 
PI' are likely to be given in a local coordinate system for the 
particular charge distribution. 
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Elementary group concepts are recast into a form applicable to finite magnetic groups oflinear 
and antilinear operators. Analogs of useful definitions for linear groups such as the Frobenius
Schur invariant, commutator subgroups, and ambivalent classes are considered. These are 
applied to the 180 magnetic single and double point groups and it is shown that only seven 
require independent treatment of characters. 

PACS numbers: 02.20. + b 

1. INTRODUCTION 

The use of group theory in certain areas of physics and 
chemistry is now well established. This generally proceeds 
through some form of representation theory (vector repre
sentations, ray representations, vector corepresentations, or 
ray corepresentations) of a group of operators on a Hilbert 
space. 1.2 The form used depends critically on the nature of 
the operators, as to whether they are linear or antilinear 
(Wigne~ has shown that only these two types of operator 
need be considered in quantum mechanics). For vector re
presentations of groups oflinear operators an extensive liter
ature exists, with contributions from mathematicians, physi
cists and chemists. Qualitative applications of vector 
representations (such as selection rules) are based on charac
ter theory4.5 whereas semiquantitative calculations through 
the Wigner-Eckart theorem use both basis dependent infor
mation in the n-jm symbols6

•
7 and character theory in the n-j 

symbols and isoscalars.8
•
9 Characters, of course, need not be 

considered as any information obtainable from them can 
also be obtained from any realization of the vector represen
tation, but their use enormously simplifies many calcula
tions and justifies their detailed considerations. 

Surprisingly, the character theory for the other types of 
representation is extremely ill-developed. Backhouse lO has 
shown that a character table exists for ray representations of 
finite groups and Newmarch and Golding 1 1 (henceforth de
noted as N-G) for the vector corepresentations of finite mag
netic groups of linear and antilinear operators, while even 
this is missing for ray corepresentations. Standard vector 
representation concepts such as the Frobenius-Schur invar
iant do not appear to have been considered. In part the pur
pose of this paper is to fill in some of these gaps for the vector 
corepresentations of finite magnetic groups by considering 
one-dimensional irreducible corepresentations (ICRs), faith
ful ICRs, and complex conjugates of ICRs (Secs. 6 and 8). 

During the course of this investigation an even more 
important gap became apparent. Magnetic groups are rather 
special groups in that they possess a certain subgroup of in
dex two. This subgroup corresponds to the linear operators 
and its coset to the antilinear operators. The subgroup is 
obviously fixed by physical considerations and linear opera
tors cannot be changed into antilinear ones without chang-

-, Present address: School of Electrical Engineering and Computer Science, 
University of New South Wales, P. O. Box 1, Kensington, NSW 2033, 
Australia. 

ing their physical applicability. This is reflected in the math
ematics of corepresentations, and shows that a magnetic 
group must be considered as a pair of groups. The following 
three sections are devoted to the elementary group theory of 
this situation where isomorphism, homomorphism, etc., are 
discussed. Our own opinion is that much of the material of 
these sections should be self-evident. However, inappropri
ate statements-particularly in regard to isomorphism
have appeared sufficiently often to prompt us to spell them 
out. This vein is followed in Sec. 5, where it is shown that 
direct products of magnetic groups can be usefully defined. 

The third aim of this paper is to reduce the number of 
magnetic single and double point groups (180 in all) requir
ing separate treatment of characters. Assuming known char
acter theory oflinear groups, by isomorphism (Sec. 2), factor 
groups (Sec. 3), direct products (Sec. 5), and an examination 
of the intertwining numbers (Sec. 7), it is shown that only 
seven groups need be considered. 

Examples are drawn from the finite magnetic point 
groups. The theory is applicable by finite approximations to 
the magnetic space groups, 1 the spin groups, 12.13 and the line 
groups of stereo-regular polymers. 14 Much is readily trans
ferable to compact groups, where it should find applications 
due to the PCT theorem for elementary particles. 15 

In general the notation is that ofN-G. Magnetic point 
groups are labelled as in Bradley and Cracknell,1 with an 
asterisk to denote the double groups. The ICRs of these 
groups are also labelled as in Bradley and Cracknell,1 save 
for the typographical omission of the prefix D when there is 
no increase in degeneracy in inducing ICRs from the linear 
subgroup. E or e denotes the identity of the group, or the unit 
matrix. A prefix M denotes the magnetic group analog of a 
linear group concept. Proofs are usually omitted whenever 
they are simple modifications of those for linear groups. 

2. ISOMORPHISMS AND HOMOMORPHISMS 

It is only the physical importance of the time reversal 
operator which leads to the study of magnetic groups. Such a 
group contains a subgroup oflinear operators and a coset of 
antilinear operators and clearly, to maintain their applicabil
ity, we cannot arbitrarily change linear operators into anti
linear ones or vice versa. The subgroup oflinear operators is 
just as important as the group itself. An abstract definition 
which indicates this is 

Definition 2.1: A magnetic group M is an ordered pair of 
groups M = (G,H) where H has index two in G. 
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Classifications of groups into families are made accord
ing to various criteria. For example, there is the equivalence 
family of D2, consisting of all point groups mapped onto one 
another by automorphisms of 0 (3). Such an equivalence con
cept gives 90 families of grey and nongrey magnetic single 
point groups and a further 90 families of double groups. 1 In 
addition the fundamental group concept of isomorphism 
may be applied to linear groups to reduce, say, the 32 fam
ilies of crystallographically distinct point groups down to 11 
nonisomorphic families. However, all statements sighted on 
"isomorphic magnetic groups" have been rather misleading 
[M, = (G I , Hd is isomorphic to M z = (Gz, Hz) if G I g;;Gz] 
as the position of the linear subgroup need not be preserved. 
For example, 6'22' and 62'2' have ICRs of different dimen
sion so degeneracies cannot be transferred despite G1 g;; Gz' 
An appropriate definition is 

Definition 2.2: Two magnetic groupsMI = (G"H,) and 
M z = (Gz,Hz) areM-isomorphic iff there is a group isomor
phism ¢:Gc-+Gz for which ¢ (HI) = Hz. 

This is a very stringent condition and generally requires 
explicit construction of the isomorphism. It cannot, for ex
ample, be weakened to an isomorphism ¢:Gr-Gz and an
other from HI to Hz. To see this, consider the group 16r zc of 
order 16 with presentation (x,ylx4 = y4 = e,xy = yx3 

) from 
the tables of Hall and Senior. 16 This group contains 
(21) = Z4 ® Z2 once characteristically (Le., invariant under 
all automorphisms of 16r2c2 ) and twice noncharacteristical
ly. Setting GI = G2 = 16rzc2 , HI the characteristic sub
group and Hz one of the noncharacteristic ones, then there is 
no M-isomorphism of M, onto M z (which here would be an 
automorphism) despite G I and Gz,H, and H2 being pairwise 
isomorphic. The two magnetic groups are essentially differ
ent. (In fact, the first has seven ICRs and the second has 
eight.) A calculation for the 180 single and double magnetic 
point groups yields 64 nonisomorphic families which are col
lected in Table I. 

We have dwelt on the concept of isomorphism at length 
primarily to show that a magnetic group must be considered 
as a pair of groups. These should now be obvious: 

Definition 2.3: An M-homomorphism ¢ of 
M, = (G"H,)intoMz = (G2,Hz) is a homomorphism ¢ ofG1 
into Gz such that ¢ (Hd c;,Hz and ¢ (G1 - Hd c;, Gz - Hz· 

This ensures that linear elements are mapped onto lin
ear elements and antilinear onto antilinear. This definition 
has been used by Janssen in discussing projective 
corepresentations. '7 

Definition 2.4: An M-normal subgroup of M = (G,H) is 
a subgroup of H (and hence of G) which is normal in G (and 
hence normal in H). 

The subgroups of G for the magnetic single point 
groups have been listed by Ascher and Janner,18 and of 
course only a few are M-normal. Later it is shown that they 
may be obtained from the character table. For the moment, 

Theorem 2.S (First Isomorphism Theorem): Let 
M = (G,H) be a magnetic group and ¢ anM-homomorphism 
of M. Then the kernel of ¢ is an M-normal subgroup Land 
the image of M is naturally M-isomorphic to (G /L,H /L). 
Conversely, eachM-normal subgroupL defines anM-homo
morphism of M onto (G /L,H /L). 
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The other isomorphism theorems can be similarly 
adapted. However, this is all we need for now. 

3. COREPRESENTATIONS 

Definition 3.1: A corepresentation D is an M-homomor
phism of a magnetic group into a magnetic group of opera
tors (G,H) over a complex vector space, where the operators 
of H are linear and of G-H are antilinear. 

Herbut et al. 19 have given a similar definition for their 
unitary/antiunitary representations of magnetic groups and 
introduced the term "antimatrix" for the matrix of an anti
linear operator. Whilst we support their viewpoint in which 
sense we have interpreted corepresentations, we consider 
that the tensor notation from spinor calculus used by New
march and Golding20 handles antilinear operators in the 
most effective manner. We regard both the common nota
tion used here and that of Herbut et al. 19 to be "approxima
tions" to the tensor notation, and use the common notation 
on the grounds offamiliarity and a mild preference for seeing 
complex conjugates explicitly. 

Matrices oflinear and antilinear operators of a corepre
sentation and irreducible corepresentations (ICRs) are de
fined in the normal way. From these we have 

Lemma 3.2: Let D be a corepresentation of M = (G,H) 
with character X and let UEH. If n is the order of U and/the 
degree of D [f = x(e)] then 

(a) D (u) is similar to diag. (EI,Ez, ... ,Ej ), 

(b) €'/ = 1 for all i, 

(c)x(u) = ± E;, 
1= I 

(d) Ix(u)l<x(e) =/ 
Lemma 3.3: If D is a corepresentation of M, then the 

kernel of D (ker D ) is an M-normal subgroup of M, and UE ker 
D iffX(u) = X (e). 

Lemma 3.4: Let D = I.n;D; be a corepresentation of M 
and D; be ICRs. Then ker D = nl ker D; :n; > O} and 
nlkerD;:all ICRs} = Ie}. 

These are all proved in exactly the same manner as for 
representations (e.g., Isaacs21 ). The regular corepresentation 
and its properties are given in N-G. 

Every M-normal subgroup of a magnetic group may be 
found from the character table by taking irreducible charac
ters and sums of characters and finding those elements u for 
whichX(u) = X (e). For example, thegroup4'/mmm hasM
normal subgroups I E,J} from Eg, I E,C2z ,uz } from 
Blg,IE,C2x'CZy,C2z} fromA u , IE,uz } from 
Eu,IE,C2z ,ux'uy } fromB ,u , and IE,C2z } from Big eAu' 
(The character table is given in N-G). 

One of the major features which distinguishes corepre
sentation theory from representation theory is the different 
form of Schur's lemmas for the two theories. For linear 
groups any matrix commuting with an IR is a constant diag
onal matrix (quantitatively, the set of all such matrices form 
an algebra of dimension one over q. In N-G it was shown 
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TABLE I. The M-isomorphic families of magnetic point groups. The families are listed by ascending orders of the groups. The notation for groups and group 
elements is that of Bradley and Cracknell' with an asterisk to distinguish double groups. Elements isomorphic to each other in each family are listed in the 
same order in rows of the "Isomorphism" column. A point group label is given for G under "Popular name for G " although for double groups, 0 2 = if and Gis 
not in fact the point group. A "dash" here indicates a grey group. The comments are illustrative, not exhaustive. 

Magnetic Popular name 
Family Order group for G H Isomorphism Comments 

2 11' C' , C, 0 Character 
l' c, C, 01 table as 
2' C2 C, OC2z H 
m' C'h C, OO'h 

2 4 22'2' D2 C2 C2z ,BC2y Character 
21m' C2h C2 C2z ,Ol table as 
21' C' 2 Cl C2Z'B H 
2'lm' C2h C, I.BC2z 
2'lm C2h C'h O'z.Bl 
11' C: c, I.B 
*m' Crh c· , E,BO'z 
*2' C· 2 cr E,BC2z 
2m'm' C2, C2 C2z .BO'y 
2'm'm C2, C'h O'y.BC2x 
ml' C;h C'h f7z,() 

3 4 4' C. C2 BC.~ Homomorphic 
4' S4 C2 BS.-; image of 
*11' c·' , C· , B family 8 
*1' q c· , BI 

4 6 32' D, C3 C,+.BC;, Character table 
3m' D'd So C ,+ . BUd , asH 

5 6 6' C. C, OC.+ Homomorphic 

6' C3h C, BS
3
- image of, 

3' S. C, BS .+ e.g .• family 13 
31' C' J C3 

BC
3
+ 

6 8 41m' C'h C. C.~ .BI Homomorphic 
4'lm' C4h S. S.-;.BI image of. 
*m1' C·' 'h Crh O'z.B e.g .• family 23 

*2'lm CTh Crh O'z.Bl 
*21' C·' 2 C· 2 C2z .B 
41' C' • C. C.;.B 
41' S' • S • S.~.B 

*2/m' Crh C· 2 C2z .Bl 

7 8 4'22' D. D2 C2x.BC.~ Homomorphic 

4'2m' D2d D2 C2x .BS .-; image of 

4'mm' C4v C2, f7x ,()C 4: family 19 

4'2'm D2d C2, O'x .BS.-; 
*11' er' C~ I.B 

8 8 *4' C· 4 C· 2 BC.~ 

*4' St c· 2 BStz-

9 8 42'2' D. C. C.~ ,BC,x Character 

4m'm' C., C. C4~ ,(}ux table as H 

42'm' D2d S. S.-; .BC2x 
*2'2'2 D· 2 q C2z .OC2y 
*m'm'2 q, C· 2 C2z .OO'y 
*m'm2' q, Cr. O'y,Bux 

10 8 2221' D' 2 D2 C2x .C2y .B Character 

m'm'm' D2h D2 C2x ,C2y .Bl table as H 

mm21' C;v C2, Cfx,oy,B 

mmm' D2h C2, O'x,O'y.Bl 
m'm'm D2h C2h C2z .I,BC2y 
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TABLE I. (Continued) 

Magnetic Popular name 
Family Order group forG H Isomorphism Comments 

-2'/m' cth q I,E,8C2z 

2/ml' Cih C2h C2z ,I,8 

11 8 4'/m C4h C2h Direct product 
of 11' with 4' 
(family 3) 

12 12 -31' q' q Ct,8 
*3' S: q C t ,81 

13 12 -6' c: q C 3+ ,8C2 Direct product 
·6' Crh q C t ,8uh ofll' with 6' 
6/m' C.h C. Ct8uh (family 5) 
6'/m C.h C3h S 3- ,8Uh 
6'/m' CM S. S.- ,8uh 

14 12 -3m' q, q C t ,8udl Character table 
-32' D3 q C 3+ ,8Ci, asH 

15 12 3m' D3d S. Character table 
asH 

16 12 6'22' D. D3 Ct ,Ci,,8C2 Character table 
6'mm' C., C3, C t 'Ud 1,8C2 asH 
6'm'2 D3h D3 C 3+ ,C i, ,8uh 
6'm2' D3h C3, C t ,U,I ,8uh 
3'm D3d D3 C t ,Ci,,8I 
3'm D3d C3, C 3+ ,Udl ,8] 
321' D; D3 C 3+,Ci,,8 
3ml' Cj, C3, C 3+,Udl ,8 

17 12 62'2' D. C. Ct,8C 21 Character table 
6m'm' C., C. Ct,8udl asH 
6m'2' D3h C3h S 3- ,8C 21 

18 12 31' S~ S. S.- ,8 Homomorphic image 
61' C' C. C.+ ,8 of, e.g., • 
61' Cjh C3h S 3- ,8 family 29 

19 16 ·4'22' D: D* C2x ,C2y ,8C 4~ 2 

·4'2m' D!d D· C2x ,C2y ,8S O~ 2 

*4'mm' ct, ct, UX,uy,(JC 4~ 
-4'm2' D!d ct, UX,uy,(JS.-; 

20 16 *4m'm' ct, ct C o~ ,8ux Character table 
·42'2' D· 0 C* 0 C.~ ,8C2x asH 
·42'm' D!d S: S o~ ,8C2x 

21 16 -2221' Dr D! C2x ,C2y ,8 Character table 
-mm21' C*' 2, ct, Ux,CTy,(J asH 
*m'm'm' D!h D! C2x ,C2y ,8] 
*mmm' D!h ct, ux,uy,8] 

22 16 4/m'm'm' DOh D. C.~ ,C2x ,8] Character table 
4/m'mm DOh Co, C.~ ,ux,8] asH 
4'/m'm'm DOh D2d S.~ ,C2x ,8] 
4221' D' D. C o~ ,C2x ,8 4 

42ml' Did D2d S o~ ,Clx,(J 
4mml' C~v Co, C4~ ,ux ,8 

23 16 ·4/m' C:h C* 0 C o~ ,8] 
·41' C·' 0 ct C o~ ,8 
·4'/m' C:h S· 0 S o~ ,8] 
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TABLE I. (Continued) 

Magnetic Popular name 
Family Order group for G H Isomorphism Comments 

*41' S"" 4 S· 4 S 4;,f) 

24 16 *4'/m Cth C!h Direct product 
of 11' with *4' 
(family 8) 

25 16 *m'm'm D!h C!h C",/,f)C2x Character table 
4/mm'm' D4h C'h C 4; ,/,f)C2x asH 

26 16 *21m1' C·' 2h C!h C2,,],f) Direct product 
4/ml' C~h C4h C 4; ,/, f)C 4: of 11 ' with 41' 

(family 6) 

27 16 4'/mmm D4h D2h Homomorphic image 
of family 42 

28 16 mmml' D;h D2h Character table 
asH 

29 24 *61' C*' 6 C* 0 C o+,f) 

*6/m' Cth C* 0 Co' ,f)] 
*6'/m C~h C'h S,-,f)] 

*61' c*' 'h Cth S,- ,f) 

30 24 *3ml' Crl.~ q. C,+ ,f)d"f) 
*3'm Dtd Ct, C,' ,ad' ,f)] 
*321' D*' , D* , C:,+,C;I'O 
·3'm' Dtd D* , C,+ ,C;"f)] 

31 24 *62'2' D* 0 C* 0 C.+ ,f)C;, Character table 
*6m'm' Ctl' C* 6 C,+ ,f)ad, asH 
*6m'2' Dth Cth S, ,f)C;, 

32 24 *3m' Did S"' 6 Character table 
asH 

33 24 *6'2'2 D* 0 D* , C,+ ,C;"f)C2 Character table 
*6'm'm Ctl' et- C " ,ad' ,BC, asH 

*6'm'2 Dth D· 1 C ,+ ,C;, ,f)ah 
*6'm2' Dih Ct, C/ ,alli ,8ah 

34 24 *6'/m' Cth St Direct product 
ofT l' with ·6' 
(family 13) 

35 24 "'31' s·' 6 S* 0 Direct product 
ofTl' with "'31' 
(family 12) 

36 24 6/ml' C~h COh Direct product 
of 11' with 61' 
(family 12) 

37 24 6'/m'm'm D6h D'd S 6-,C;1 ,BC2 Character table 

6'/mm'm DOh Dlh SJ- ,C;I,f)] asH 

6/m'mm DOh Co,. C 6+ ,ad 1 ,B] 

6221' D' 0 Do C 6+ ,C;"B 

6mml' C~t' Co .. C 6+ ,CTdl ,e 
62ml' D'h D'h C ,-- ,C;I,f) 

3m1' D'd D'd S';-,C ;"B 

38 24 6/mm'm' DOh COh Character table 
asH 
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TABLE I. (Continued) 

39 24 231' T' T C 31 ,C2x /J Homomorphic image 

m'3 T. T C 3I'C2x '()/ of family 53 

40 24 4'3m' Td T C 31 ,C2x ,()ada Character table 
4'32' 0 T C 31,C2x ,()C2a asH 

41 32 4/mmml' D~. D •• Character table 
asH 

42 32 *4'/mmm' Dt. D!. Direct product 
ofl I' with *4'22' 
(family 19) 

43 32 *4/mm'm' Dt. Ct. Character table 
asH 

44 32 *4/m'm'm' Dt. D* • C 4~ ,C'x,()/ Character table 
*4/m'mm D:. C:u C 4~ ,a.,()/ asH 
*4'/m'm'm Dt. D!d S 4~ ,C2x ,()/ 
*4221' Dt' D* 4 C4~ ,C,X>() 
*4mml' C*' 4v G:, c 4~ ,ax,e 
*42ml' D*' 2d D!d S 4~ ,C2x ,() 

45 32 *mmml' D*' 2. D!. Character table 
asH 

46 32 *4/ml' C*' 4. Ct. Direct product 
ofl1' with *41' 
(family 23) 

47 48 *6'/m'm'm Dt. Drd Character table 
asH 

48 48 *6/mm'm' Dt. Ct. Character table 
asH 

49 48 *6'/mmm' Dt. Dr. s 3- ,C;I'()/ Character table 
*6/m'm'm' Dt. D* 6 C .+ ,C;I ,()/ asH 
*6/m'mm Dt. q, C 6+ ,adl ,()/ 
*6221' D*' • D* 6 C / ,C;,,() 
*6mml' C*' 6v qv C.+ ,ad ,,() 
*62ml' D*' 3. Dr. s 3- ,C;,,() 

50 48 6/mmml' D~. DOh Character table 
asH 

51 48 *m'3 T· • T* C 3I'C2x ,C2y ,()/ 
*231' T*' T* C 3I'C2x ,C,y,() 

52 48 *4'3m' T· d T* C 3I,C,x,C,y,()ada Character 
*4'32' 0* T* C 3I,C2x ,C,y,()C2a table as H 

53 48 *3ml' D·' 3d Drd Direct product 
ofll' with *321' 
(family 30) 

54 48 *6/ml' C·' •• Ct. Direct product 
of 11' with *61' 
(family 29) 

55 48 m'3m' 0. 0 C 4~ ,C i; ,C2b ,()/ Character table 
4321' 0' 0 C .:,C 3;,C'b'() asH 
m'3m 0. Td S 4~ ,C 31 .adb'()! 
43ml' T' d Td S4~,C31,adb,e 

56 48 m31' T' • T. Homomorphic 
image of 
family 62 
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TABLE I. (Continued) 

57 48 m3m' Oh 

58 64 *4/mmml' D*' .h 

59 96 *m'3m' 0'" h 
*m'3m 0: 
*4321' 0*' 
*43ml' T'"' d 

60 96 *m31' T'"' h 

61 96 *m3m' 0'" h 

62 96 m3ml' 0' h 

63 96 *6/mmml' D'"' 6h 

64 192 *m3ml' 0'"' h 

that the algebra of such matrices is of dimension one, four or 
two over R (i.e., is isomorphic to R,Q, or C). Labelling the 
ICRs as types (a), (b), and (c), respectively, in concordance 
with standard usage, the intertwining number / was intro
duced: for an ICR of type (a), / = 1, for an ICR of type (b), 
/ = 4, and for an ICR of type (c), / = 2. The row orthogona
lity relation for ICRs was then shown to be 

LXi(U)Xj(U)* = oij/ilH I· 
• 

These next results all follow as for representation the
ory (e.g., Isaacs21

). 

Theorem 3.5: LetDbe a corepresentation of M = JP,H) 
and L ~ k~r D an M-normal subgroup of M. Define D on 
M / L by D IgL ) = Dig) for all gEG. Then 

(a) D is a corepresentation of M /L, 
"'-

(b) D is irreducible iff D is irreducible, "'-
(c) if D is irreducible with in~rtwi~ng number / and D 

has intertwining number /, / = 1. 
Conversely, 
Theorem 3.6: Let L be an M-normal subgroup of 

M = (G,H) andDacorepresentation ofM /L. DefineDonM 
"'-

by D Ig) = D IgL ) for all gEG. Then 
(a) D is a corepresenta!i0n of M with L ~ ker D, 
(b) D is irreducible iff D is irreducible, "'-
(c) the intertwining numbers of D and D are equal. 
In terms of characters: 
Corollary 3. 7: Let X be a function on M, i a function on 

M / L, and X (gL ) = jig). Then 

748 

(a) X is a character iff i is a character, 
(b) X is irreducible iff i is irreducible, and then they have 

the same intertwining number. 
These three results can be used in exactly the same man-
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Th Character table 
asH 

Dth Character table 
asH 

0* C .~,C 31 ,C2b ,8! Character table 
T' d S.-:;' ,C31 'O'db.8! asH 
0* C,~,C31,C2b.8 
T'" d S 4~ ,e]] ,Odb,8 

T'" h Direct product 
ofT I' with 231 ' 
(family 53) 

T'" h Character table 
asH 

Oh Character table 
asH 

Dth Direct product 
ofTI' with 
*6221' (family 51) 

0: Character table 
asH 

ner as they are in representation theory. In particular, every 
magnetic single point group is an M-homomorphic image of 
a magnetic double point group and hence the single group 
does not require separate treatment. While this result has 
been implicitly assumed by many authors we feel a proof is 
important as many other equally "obvious" transfers from 
representation theory are known to be false. In this case we 
may eliminate the 31 isomorphism families containing single 
groups from any separate calculations, to leave 33 noniso
morphic families of magnetic double point groups. 

4. MAGNETIC CLASSES 

An M-class C of M = (G,H) was defined in N -G to be an 
equivalence class of elements of H: U I,U 2EC if there exists 
either UE Hwith U UI u- I = U2 ora E G-H with a UI 
a-I = U2 -I (or both). (The term C class was used in N-G for 
what we here call an M-class. The prefix M is more appropri
ate as it is a group concept rather than a core presentation 
one.) The character X of a corepresentation is an M-class 
function and from this follows the column orthogonality re
lation for ICRs 

~ Xi(Ut!Xi(U2)* = o(C C ) ~ 
~ / u 1 ' U 2 ' 

I j nUl 

where n. = IC. I (N-G, Theorem 16). 
It is well known that for ordinary groups the order of a 

class equals the order of the group divided by the order of the 
centralizer of any element of the class. A similar result holds 
for magnetic groups~nce the centralizer is defined. 

Definition 4.1: The M-centralizer C (L ) of a set of linear 
operators L in M is 

C(L) = lu,aEM: ul = IU,al = I-Ia V/EL J. 
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Lemma 4.2: quI is a subgroup of M. 
quI may consist oflinear elements only or of both linear and 
antilinear elements. 

Theorem 4.3: If U is an element of an M-class C of M 
then 

IClxlqu)1 = IMI· 

This may be shown by adapting the ordinary group 
proof of, say, Jansen and Boon.22 This means considering. 
linear and antilinear elements separately and consequently IS 

a little tedious. Similar adaptations are required in dealing 
with the class multiplication constants: 

Definition 4.4: Let Ci and Cj be twoM-classes. The class 
multiplication constant h ~ is the number of pairs UiECi and 
U·EC. whose product is any fixed element UkECk. 

J J 

Lemma 4.5: h ~ is independent of the element UkECk. 
Proof We prove this simple result only to demonstrate 

the alterations necessary for magnetic groups. Let Uk ,U k EC k 

h ., -I C U·U· = Uk corresponds anot er pair Ui = U UiUE i I J _ 

U;U j = Uk corresponds another pair 

, -I -I C ' (-I ) -I( -I )-IEC Ui = a U; aE i> uj = a Ui uj a U; j 

with 

U;U; = Uk' 

Hence the number of pairs u;u; = Uk equals the num
berofpairsu;uj =Uk · 

749 

Similarly, 

Theorem 4.6: With C I = {e} and C _ i = (Ci )-1 

(a) h~ = ICilo- iJ , 

(b) h~ =ht =hi-=-~' 

(c) if D is irreducible and Su = L D (u') then 
u'eCu 

ICu IX(u)I 
S = , 

u / 

where I is the intertwining number of D and / the 
degree of D (This follows from Theorem 12 ofN-G.), 
(d) with S as in (c) 

Su;Suj = L h ~SUk' 
all classes 

(e) ICuJICujlx(Ui)X(Uj) =/ L h ~ICu.lX(Uk)' 
all classes 

1 IC I'IC~ 
(I) h ~ = -- L u, J Xp(U;)Xp(Uj)XP(Uk)*' 

IH I allleRs /pIp 
p 

(g) (van Zanten and de Vries23
) 
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5. DIRECT PRODUCT GROUPS 

On the face of it, direct product groups are not particu
larly useful. For example, Cracknell24 considers m'3 as the 
direct product 32 X I' and concludes that this is not profit
able as the three ICRs of m'3 are not direct products of the 
four IRs of32 and the one ICR orT'. However, if we return to 
the group idea of direct products being formed of ordered 
pairs, then 32 X I' is a very odd group indeed as it contains 
the element (E, (JI), for example, which acts linearly in one 
space and antilinearly in another. Whilst it is possible that 
such mixed magneticllinear groups may yet find applica
tions, we investigate in this section a direct product which is 
conceptually simpler. 

Definition 5.1: Let MI and M2 be magnetic groups and 
set the magnetic group 

M 

M=Ml xM2 

to be their M-direct (outer) product if 
(a) the linear subgroup of M is the direct product of the 

linear subgroups of MI and M2. 
(b) the antilinear coset of M is the direct product of 

antilinear cosets of MI and M2. 
Symbolically, if MI = (GI , HI) and M2 = (G2, H2) then 

M 

MI XM2 = ((GI - Hd X (G2 - H 2) u(HI XH2), HI XH2)· 

Some standard result for ordinary direct products do 
not transfer to magnetic direct products: 

M 

(a) IMIXM2 1 = IMI I·IM2 112. This follows from the or-

ders of the linear subgroups. 
(b) Neither MI nor M2 need be M-isomorphic to a sub

group of 

as neither! M I , e I nor! e, M21 are subgroups. For example 
M 

4'X21' = {(E, E), (E, C2), (C2, E), (C2, C2), 

((J C / , (J), ((JC 4+, (JC2 ), ((JC 4-' (J), ((JC 4- (JC2 ) I 

and 21' is not a subgroup. 
(c) If Ci and Cj are M-classes of MI and M 2, respective-

ly, 
then C; X Cj need not be an M-class of 

Again this is because of the absence of elements (a I' e) and 
(e, a2 ) from 

M 

M I XM2 • 
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However, each direct product of M-classes splits into at most 
two M-classes of 

For example, in 
M 

31'X31' 
the product {C 3+ , C 3- J X { C 3+ , C 3- J gives the two M
classes {(C 3+' C t), (C 3-' C 3-)J and 
{ (C 3+ , C 3- ), (C 3- , C 3+ ) J. On the other hand, many results 
are transferable: 

(d) The M-direct product is commutative, 
M M 

MI XM2e!oM2XM1, 

and associative, 
M M M M 

(MI XM2)XM3 = MI X (M2XM3)' 

(e) MI is naturally M-isomorphic to 
M 

(M1 XM2)IH2· 

(f) M is naturally M-isomorphic to the diagonal sub
group of 

M M M 

MXMX···XM. 

So as for ordinary groups the inner direct product may, if 
desired, be treated by descent in symmetry from the outer 
direct product. 

(g) If d l and d2 are corepresentations of MI and M2, 
respectively, then d = d l Xd2 is a corepresentation of 

M 

M=M1 XM2· 

From (c), irreducibility of d l and d2 does not necessarily 
imply irreducibility of d = d l Xd2 as the number of M
classes may increase. The ICRs of 

M 

M 1 XM2 

are, however, easily obtained: 
Theorem 5.2: Let d l and d2 be ICRs of MI and M 2, 

respectively, and d = d I X d2 be a corepresentation of 
M 

M=M\XMz· 

(a) If d\ is of type (a), then d is irreducible and of the 
same type as dz. 

(b) If d l and d2 are both of type (b) thend is reducible to 
four equivalent ICRs of type (a). 

(c) If d\ is of type (b) andd2 of type (c) then dis reducible 
to two equivalent ICRs of type (c). 

(d) If d\ andd2 are both of type (c) thend is reducible to 
two inequivalent ICRs D\ and D2 which have the same de
gree and are both of type (c). Further, let Cij be the product of 
M-classes Cj X Cj of MI and M2, respectively. If Cij is an M
class of M, then D\ and D z have equal characters on Cij' If, 
however, C ij reduces to two classes C and C " the character of 
D1(D2) on C equals the character of D2(D\) on C'. 

Proof A character based proof is possible but not par-
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ticularly useful for finding the ICRs for 
M 

M 1 XM2, 

as in general a transformation is required to reduce d. Conse
quently we give a constructive proof based on the definite 
matrix forms given in the Appendix of N-G. Most of the 
I CRs so far given in the literature are of this form or differing 
by a simple transformation. 
(a) This is irreducible so no transformation is required. 

(
:.1 j (U j ) 0) 

(b) Letdj(u;) = 0 ~j(Uj) and 

:) 
with ~ j an IR of Hi' Then d is equivalent to d' = 4D, where 
D is the ICR of type (a), 

D ((u\, U2)) = ~ \(U\)X~2(U2) 

and 

D ((ab,a;)) = p\ XP2. 

(~\(Utl 0) 
(c) Let d\(utl = 0 ~ \(u\) , 

and 

~). 

and 

(:.1\(U\)X~2(U2) 0 ) 
Dz((u\,u z))= 0 ~;(u\)X~;(U2) , 

( 
0 P I XP2) 

D2((ab, ab)) = P; X P ; 0 . 

The second part of (d) follows by the equality of the traces of 
Dt!(u l , u2)) and Dz((u\, au2- la-I)). 

We still have to show that this gives all ICRs of 
M 

M l xM2 • 

Firstly, if an ICRD is contained in bothd l Xd2 andd3 xd4 
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then d I = d3 and d2 = d4 by nonequivalence of characters in 
MI and M 2• Secondly, Theorem 14 of N-G related the de
grees and intertwining numbers of all ICRs of a magnetic 
group to its order, and by calculating degrees and intertwin
ing numbers of the ICRs of 

M 

M I XM2 

obtained from those of M I and M 2' 

Theorem 5.3: Each ICR of 

is a component ofd l Xd2 for some ICRs d l andd2 of MI and 
M 2, respectively. 

Restating all this in terms of characters 
Corollary 5.4: Let ifJI and ifJ2 be irreducible characters of 

MI and M2 with intertwining numbers II and 12, respective
ly, and let X = ifJlifJ2 be a character of 

M 

M=MI XM2 · 

(a)1f II = 1 then X is irreducible with intertwining num
ber I = 12, (Of course, the SUbscripts "one" and 
"two" may be interchanged throughout). 

(b)IfII = 12 = 4thenx' = X /4 is irreducible with inter
twining number one. 

(c)IfII = 4 and 12 = 2 thenx' = X /2 is irreducible with 
intertwining number two. 

(d)IfII = 12 = 2thenx = X' + X ",wherex 'andx" are 
both irreducible of the same degree with intertwining 
number two. Further, 
X '((u l , u2)) = X"((u l , au2-

la- I)). 

Example: *4' has three ICRsA, DE, and DB with inter
twining numbers one, two, and four, respectively (the char
acter table appears in Table II). The M-classes of 

M 

*4'X*4' 

are CI = I(E, E)I, C2 = 1 (C2z , E), (C2z , E)I, 
C3 = I(E, C2z ), (E, C2z )I, C4 = I(E, E)I, C5 = I(E, E)I, 
C6 = 1 (C2z ' E), (C2z , E)J, C7 = UE, C2z )' (E, C2Z ) I. 
Cs = 1 (C2z ' C2z )l, C9 = UC2z , C2z ), (C2z , C2z ll, and 
Cw = 1 (E, E) I. Only one direct product of M- classes splits, 
toCs $ C9• A xA,A XDE,A XDB,DE XA,andDB XAare 
all irreducible. (DB XDB )/4 is irreducible with I = 1, and 
(DE XDB )/2 and (DB XDE)/2 are both irreducible with 
1= 2. DE XDE = DI $ D 2, both irreducible with I = 2. 
They have characters Xl and X2 (respectively) equal on CI 
through C7 , and CW ' Xl(CS) = X2(C9 ) = a and 
XI(C9 ) = X2(CS ) = b. Since the character of DE on C2z is 
zero, a = - b. Row or column orthogonality fixes lal = 2. 
To determine the argument of a, additional information ap
pears to be necessary. For example, Cs and C9 are ambivalent 
and so a is real (see next section). Alternatively, a2 = 4 fol
lows by the class multiplication rule [Theorem 4.6, part (e)]. 

The major problem with direct product groups is that of 
identifying when a group is a direct product. One case is 
always easy to spot, though: a group containing the inversion 
group T = IE, IJ. 
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Corollary 5.5: Let M contain the linear subgroup I. 
Then 

M 

M~M'xTl' , 

whereM' = (G', H') =M /1. To each ICRD of M' corre
sponds exactly two ICRs Dg and Du of M with equal matri
ces on (H', E) and opposite matrices (in sign) on (H', I). 

As in representation theory, such "inversion" magnetic 
groups may now be dealt with trivially from the "noninver
sion" groups. In Sec. 3 the number of families of magnetic 
point groups requiring separate calculations was reduced to 
33. Eliminating now the inversion groups leaves only 16. 

6. SPECIAL GROUPS AND ICRs 

Groups with only one-dimensional ICRs have, of 
course, a particularly simple character theory (inner direct 
products, for example, are trivial). If the degree of an ICR is 
only one, the intertwining algebra can only be R and so the 
intertwining number must be one. If all ICRs have degree 
one, from Theorem 14 ofN-G the number ofICRs, which is 
also the number of M-classes, equals the order of the linear 
subgroup. Every M-class consequently has only one element 
and the group must satisfy the relations 

UIU2 = U2UI' 'ilU I,U2EH 

and 

au=u-Io, 'iluEH,oEG-H. 

Conversely, this guarantees that ICRs have degree one. 
While H is abelian, G is in general nonabelian [for example, 
M = (Dn ,Cn) for all n> 1 satisfies the relations]. Abelian G 
may have two-dimensional ICRs (for example, 4'). 

To calculate the number of one-dimensional ICRs for 
general M we need the commutator subgroup. 

Definition 6.1: The M-commutator subgroup M . is the 
subgroup of M generated by 

lul-Iu2-lulu2,a-lulaul:ul,u2EH,aEG - H I. 

Lemma 6.2: M' is an M-normal subgroup of M. 
Proof 
(a) U(UI-IU2-IUIU2)U-IEM', 

(b) u(a-Iulau.)u- I = [(au-I)-Iul(au-I)u.l 

'[UI-IUUIU- 1 ]EM', 

(c) a-l(ul-Iu2-lulu2)a = [(ula)-lu2-I(ula)u2-1] 

. [(au2- 1)-l u2(au2- I)U2] EM' , 

(d) a-I(al-Iualu)a = [(ala)-Iu(ala)u-IJ 

·[(au-I)-Iu(au-I)u JE M'. 

The proof then follows that for ordinary groups. 
Theorem 6.3: M' is the minimal normal subgroup L 

such that M /L possesses only one-dimensional ICRs. 
Corollary 6.4: The number of one-dimensional ICRs is 

HM:M'] = IHI/IM'I· 
Recently Butler et al. S,9.25-28 have developed and used a 

recursive method for generating 6j and 3jm tensors for 
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TABLE II. Selected character tables of the magnetic point groups. The group appears on the upper left with the ICR labels beneath. In the middle, the classes 
are listed along the top with the characters beneath. To the right are successively the intertwining number I, the Frobenius-Schur invarant c, and n, the 
minimal power for the occurence of each ICR in an (arbitrarily chosen) faithful ICR. 

(a) 
*4' 

A 
DB 
DE 
(b) 
*4'22' 

A 
DE 
B, 
E 
(c) 
*41' 

A 
B 
DE 
D~ 
DE, 
(d) 
*31' 

A 
DE 
DA 
DE 
(e) 
*61' 

A 
B 
DE, 
DE2 
DEI 
DE2 
DE, 
(t) 
*321' 

A, 
A2 
E 
E, 
DE 
(g) 
*231' 

A 
DE 
T 
E 
DF 

E 

2 
2 
2 
2 
2 

E 

2 
2 
2 

E 

1 
1 
2 
2 
2 

E 

1 
2 
3 
2 
4 

E 

1 
2 
1 
2 

E 

1 
2 
2 
2 

E 

1 
2 
2 

2 
2 

-2 
-2 
-2 

2 
-2 
-2 

1 
2 

-2 
-2 

1 
2 
3 

-2 
-4 

1 
2 
I 

-2 

1 
2 

-2 
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-1 
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1 
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groups oflinear operators. When certain problems regarding 
the 6j tensor for grey groups have been resolved29 it is likely 
that the method can be adapted to magnetic groups. It is one 
of the few which involve properties of faithful representa
tions and in anticipation of future use. 

Theorem 6.5 [Burnside-Brauer (Ref. 21)]: Let X be a 
faithful character of a magnetic group M = (G,H) and sup
pose X(u) takes on exactly m different values for ueH. Then 
every irreducible character of M occurs in the nth inner 
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Kronecker power X n for O<n < m. 

c 

1 
1 
o 
o 
o 
o 
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n 

o 
2 

n 

o 
2 
2 

n 

o 
2 
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n 

o 
4 
2 
1 
3 

n 

o 
2 
2 
1 
3 

n 

o 
4 
2 
1 
3 

n 

o 
6 
4 
2 
3 
1 
5 

In the accompanying character tables a faithful ICR is 
given wherever possible and the minimum value of n. A 
faithful ICR has kernel [eJ and hence X (u)#x(e) for u#e. 

Finally, in this section, we consider real-valued 
characters. 

Definition 6.6: An M-class C is ambivalent if for each 
UEC its inverse is also in C. Alternatively, if u is any arbitrary 
element ofC, then there exists U.E Hwith u.uu.-· = u- 1 or 
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aEG - H with au = ua. 
Every grey group (i.e., containing the commuting oper

ator B) has every M-class ambivalent. 
Theorem 6.7: The number of ICRs of a magnetic group 

with real character equals the number of ambivalent M
classes. 

Thus the grey groups have only real characters. 

7. THE INTERTWINING NUMBERS 

The intertwining numbers have been seen to playa cru
cial role in the character theory of magnetic groups. It we 
already know the character table then of course the inter
twining numbers are already known. However, as in the last 
section it is of interest to see if information can be obtained 
purely from group or class properties, particularly if the 
character table has not been determined. Here is a simple 
result. 

Theorem 7.1: The number ofICRs with intertwining 
numbers one or four equals the number of M-classes Ci with 
the following property: for any UECi there exists aEG - H 
such that au = u-Ia. 

Proof Let U I ,U2 be arbitrary elements ofCi and 
alEG - Hwith alu l = u-Ia l. Then UI and U2 are equivalent 
by a linear element. To see this, suppose they are equivalent 
by a nonlinear element a2: 

u I = a
2
u

2
- la

2
- I 

By substitution, 

(a
l
a

2
)u

2
- la

2
- 1= u l- la l 

or 

so they are equivalent by a linear element. It is readily 
checked that au = u - I a is a class property independent of 
the choice of u. Hence any such M-class remains irreducible 
on restriction to ordinary classes of H. Conversely, if an M
class does not possess this property then it branches into two 
ordinary classes of H. But from the relations between IRs of 
Hand ICRsofM(N-G, Appendix) thenumberoflCRs with 
intertwining number two equals the number of M-classes 
which split on H, and hence the number with intertwining 
number one or four is the number ofirreducibleM-classes on 
H as required. 

This theorem completely determines the number of 
ICRs with I = 2 by M-class properties. The problem of de
ciding between the number with I = 1 and the number with 
1= 4 is much more complex. For example, for a grey group 
it becomes the calculation of the number of IRs of the first 
and second kinds, respectively. van Zanten and de Vries30 

and GOW31 have given various lower bounds for these, but 
only in certain cases are there presently exact solutions. 

For the remainder of this section we aim at a special 
case, namely when all ICRs have 1= 1. In this case the char
acter theory of the magnetic group reduces to that of the 
linear subgroup and, especially for magnetic point groups, 
this may be very well known. Extensions along the lines of 
van Zanten and de Vries30 will be obvious. 

Definition 7.2: Let {; (2)(U) be the number of square roots 
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ofu in G-H. 
Lemma 7.3: {; (2) is an M-class function. 
Lemma 7.4: {;(2) = l:iCiXi' where ci = 1 if Ii = 1, 

ci = -! if Ii = 4, and ci = 0 if Ii = 2. 
Proof From N-G, row orthogonality gives 

1 
Ci = Ii IH I ~ {;(2)(U)Xi(U)·. 

But 

(;(2)(U)Xi(U)· = I Xi(a2), 
aeG- H:a l = u 

so 

Ci = Iil~1 ~Xi(a2). 
Substituting by Eqs. (20), (24), and (28) ofN-G the result 
follows. 

Theorem 7.5: All ICRs of a magnetic group have inter
twining number one iff 

(;(2)(e) = IXi(e). 
i 

Proof Immediate from the possible values of ci . 
Corollary 7.6: Let the set of irreducible characters of M 

be ICR(M) and the set oflinear irreducible characters of Hbe 
Irr(H). Then ICR(M) = Irr(H )iff 

(;(2)(e) = I 'Pi (e) for 'PiElrr(H). 
i 

ProoflfICR(M) = Irr(H) then all ICRs ofMmust have 
intertwining numbers of one to avoid branching, and hence 
the previous theorem applies with 'PElrr(H ) replacing 
¢'EICR(M). 

Conversely, suppose 

(;(2)(e) = I 'Pi (e). 
i 

Break this up into a sum overj[IRs inducing ICRs of type 
(a)], k [IRs inducing ICRs of type (b)], and 1 [IRs inducing 
ICRs of type (c)]: , 

(;(2)(e) = I 'Pj(e) + I 'Pde) + I 'P/(e). 
j k / 

By the relations between IRs and ICRs this is 

(;(2)(e) = IXj(e) +! Ixde) +! Ix/(e). 
j k / 

But we know from Lemma 7.4 that 

(;(2)(e) = IXj(e) -! Ixde). 
j k 

and as the sums over k and I are nonnegative they must 
vanish. Hence all intertwining numbers are one and 
ICR(M) = Irr(H). 

Example:The group ·6'2'2 has antilinear elements 
I BC l ,Be 6± ,BC2,Be2,BC ;1,2,3 ,Be ;I,2,3l and eight of these 
square to the identity. The linear subgroup ·32 has six IRs 
and the sum of their degrees is also eight. Hence ·6'2'2 has 
the same character table as ·32. 

The character theory of this type of group follows from 
the linear group and may be found in many places. 1,5,9 Elimi-
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nating these from the remaining 16 families of magnetic 
groups leaves only seven families-a very manageable num
ber! Their character tables are given in Table II. 

8. COMPLEX CONJUGATES OF ICRs WITH REAL 
CHARACTER 

As with representations, a corepresentation is equiv
alent to its complex conjugate iff it has real character. The 
row orthogonality relations of N-G give an immediate 
character test 

For linear groups the well-known Frobenius-Schur in
variant2 I divides IRs with real characters into orthogonal 
IRs (c = I) and symplectic IRs (c = - 1). This division is of 
great importance for Racah algebra methods of linear 
groups as it completely determines the 1 - j phase which is 
required for, amongst other things, permutation properties 
of the 6j tensor. 6

.
7 (For complex IRs the phase is undeter

mined. However, the concept of quasiambivalence32 has 
proved useful for a partial determination of the phase. 7

•
33

) 

Newmarch and Golding29 have similarly found the 1 - j 
phase important for the Racah algebra of grey groups but 
have noted that for ICRs of types (b) or (c) of these groups the 
phase is not uniquely determined.34 Thus the relations be
tween complex conjugates and to the I - j phase deserves 
further investigation. 

For the remainder of this section, D will be a unitary 
ICR with real character, D * the ICR with matrices complex 
conjugate to D (that D * is an ICR is easily shown) and p the 
set of matrices giving equivalence of D to D *: 

p = [ P: PD(u) = D(u)*P,PD(a) = D(a)*P*Vu,aEM j. 

m is the commutator algebra of D, i.e., the set of all matrices 
commuting with D. 

These are all simple generalizations of results on 
representations: 

Lemma8.I: 
(a) If Pis any element ofp andM any element ofm then 

both PM and M * P are elements of p. 
(b) If P, Q are two elements ofp, there exist M,M'E m 

such that P= QM' = M*Q. 
(c) If PE p, P*PE m. 
While not affecting his conclusions, Rudra35 makes an 

error in stating P * P = }'E, as can be shown by example (a 
similar error is made by Kotzev and A roy036 in connection 
with isoscalars). Consider the two-dimensional ICR of 4' 
generated by 

D (ee 4~) = (~l ~). 
From the reality of D, p = m and the most general form of 
PE p is 

P= (ZI Z~). 
-z~ Zl 

Trivially, P *p =IE except for special cases. The meat of this 
section is that such special cases must occur. 
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Theorem 8.2: Let D be a unitary ICR with intertwining 
number 1. Then there exist PO,P!, ... ,PI _! E P such that 

(a) Pj = Po M j, where the M j form a group of 

m[ ±E, ±MI' ±M2,· .. J, 
(b) P~Pj = cjE with c; = 1, i = 0,1, ... ,1- 1, 

(c) if 1= 4, COC IC2C3 = - 1. 
Proof It is sufficient to take D of type (b) with intertwin

ing number four as the other two types follow as special 
cases. Choose any unitary PEP and set M = P * P. M is also 
unitary and may be written 

M=x 1E+x2M 1 

withxl,x2real,xi +x~ = l,andMIEm' =m- [}'E:}.ERj 
with Mi = - E. Suppose X 2 =10. Then M possesses an in
verse square root 

M-1/2=fuE_bM. 
y2 y2 I 

FromP*P=MandPP* =M*,PM=M*Pandso 
PMI =MTP. Hence 

PM- 1/2 =M-(li2)*P. 

If now we set 

Po=PM-1/2andPI =PM- 1I2M I 

it follows that 

PtPo=E andPTP1 = -E. 

Continuing with this case of X 2 =I 0, by a suitable 4 - D 
rotation in m MI can be taken as an element of the group of 
m: { ± E, ± M I, ± M 2, ± M IM 2 j withM2 arbitrarily lying 
in a plane orthogonal toEandMI. SetP2 = Po M2 and define 
M'Emby 

M'=P~P2' 

A simple equation relates M' and MI' Consider 

(POMIM2)* (PoMIM 2) = (PtMTPo) (PtM~PO)MIM2 

as PoPt =E 

= -MI-IM'M2-IMIM2 

as PTPI =PtMTPoMI = -E 

and PtM~Po = P~P2M 2-
1 = M'M 2- 1 

= -MIM'M1 asMIM2 = -M2MlandM~ = -E. 

But this also equals 

(Po M2Ml )*(Po M2Md = M' 

in a similar manner. Writing M' as a linear combination of 
MpM2' and MIM2 and equating these gives 

M'=y 1E+Y2M l' 

By unitarity of all matrices, yi + y~ = 1. If in this equation 
Y2 = a withYI = ± 1, set 

P3 =PoM IM 2· 

Then P~P2 = P!P3 = YIE and indeed, for all real linear 
combinations P' = Z IP2 + Z2P3 with zi + ~ = 1, 

p'*p' =yIE. 
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If, however, Y2 :to, a contradiction rapidly follows. For then 
taking the inverse square root of M' as with M, a real linear 
combination P ~ of P2 and P3 exists with P ~ * P ~ = yE and 
this P ~ may be used in place of P2 • From this it follows that 
Y2 must have been zero after all. 

The case excluded so far was of X 2 = O. However, either 
for allP'e p thecorrespondingx~ is zero, in which case there 
is nothing to show, or there is at least one for which x~:tO 
and this P , may be used in place of P in the above analysis. 

For an ICR of type (a), mg,;R and there is nothing to 
show. For an ICRoftype (b) m g,;C and either allP e psatisfy 
P * P = cE or Po and p) can be constructed as above. 

Part (c) follows from the equation 

coPtP3 = -p~Mrpop~M!PoM2M) 

to complete the proof. 
Character tests may be established in a fairly straight

forward manner from the orthogonality relations for ICRs 
given in N-G Sec. 3. 

Theorem 8.3: Let D be a unitary I CR equivalent to D *, 
and let Pj' C j be as in the preceding theorem. Then 

In conjunction with c; = 1 and cOC)C2C3 = - 1 for 
ICRs of type (h), this shows that the Cj are essentially deter
mined by character theory alone, independent of any specific 
choice of P j or of the basis for D. As usual, C j = 1 meansPj is 
symmetric, Cj = - 1 means Pj is antisymmetric. Setting the 
Frobenius-Schur invariant to be 

C=I,C j 

gives 
Corollary 8.4: LetDbea unitary ICRequivalent toD *. 
(a) If D is of type (a), C = Co = ± 1. 
(b)If Dis of type (b), then C = ± 2. If C = 2, three of the 

Cj are positive and one negative, whereas if C = - 2, 

three of the C j are negative, one positive. 

(c)IfDis of type (c), C = 2,0, - 2. Ifc = 2, Co = c) = 1, if 
C = - 2, Co = C I = - 1, and if C = 0, Co and C I are of 
opposite sign. 

It can be seen that for all type (b) and some type (c) ICRs 
there is a freedom in the choice of 1 - j phase which does not 
exist for linear groups. For quasiambivalent linear groups a 
useful simplification for Racah methods is that the product 
of three 1 - j phases is one whenever the triple product of 
IRs contains the identity IR. 7

•8 ,32,33 By considering, for ex
ample, *31' and *4' it can be verified that the product of 
phases is not unity for all choices in magnetic groups even 
when the character is real. Whilst we do not wish to pursue 
this here in any depth, we do note a special case of particular 
relevance to grey groups: if 0 is some antilinear element of a 
magnetic group M which commutes with all elements of the 
group and for which D (0 2) = ± Eforall ICRs ofM, then as 
in Newmarch and Golding,2° D (O)e p for each ICR. As 
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D(02) =D(O)D(O)*, 

(D](O) ® D2(0 ))*(DI(O) ® D2(O)) 

=D)(02)* ® D2(02)*= ±E. 

Hence for any D3 in this direct product, C)C2C3 = 1. 
Another well-known property of the Frobenius-Schur 

invariant is its relation to the multiplicity of the identity IR 
in the symmetrized and antisymmetrized Kronecker squares 
D [2J andD [I'J ofanIR. FromEq. (20),(23), and (27) and Sec. 
5 of N-G the Frobenius-Schur invariant for magnetic 
groups similarly characterizes these multiplicities for ICRs 
with real character. The results are summarized in Table III, 
from which it may be observed that the occurrence of the 
identity ICR in the symmetrized (antisymmetrized) Kron
ecker square equals the number of Cj with value one (minus 
one). 

Finally, a word about matrix forms. If Pep with 
P * P = E is symmetric then exactly as for linear groups, D is 
equivalent to a real ICR.3 Similarly, if Pe p with 
P * P = - E is antisymmetric, then D is equivalent to a sym
plectic ICR.4

,34.37 Any type (b) and some type (c) ICRs (with 
C = 0) with real character are equivalent to both real and 
symplectic ICRs. For example, consider the ICR of type (c) 
with C = 0, DE of 41', Constructing the ICR in the usual way 
from the linear subgroup gives 

D(C4:)=(~ ~J and D(O) = (~ 1) ° . 
A symmetric PEP is 

1) = (11"\12 ° 11"\/2 

X (l!Y 2 
l!y2 

l!y2 ) (1 
- l!y2 0 

l!Y2) _I 
_ I/y2 = r wr. 

Transforming D by wlr, where wT = w, gives 

D '(C 4-;) = ( ~ 1 ~) and D '(0) = G ~), 
which is real. On the other hand, transforming D by J..E with 
J.. 2 = i gives 

D "( C 4: ) = (Oi 0) d D" (0 ) (0 i) -i an = i 0' 

which is in symplectic form. These provide alternative 

TABLE III. The multiplicity of the identity ICR I in symmetrized and 
antisymmetrized Kronecker squares ofICRs with real character. 

Type of 
ICR 

(a) 

(b) 

(c) 

Frobenius-Schur Multiplicity of Multiplicity of 
invariant I in D(2) I in D[I') 

I 0 
-\ 0 I 

2 3 \ 
-2 I 3 

2 2 0 
0 I 

-2 0 2 
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"standard" forms to the one obtained by induction from the 
linear subgroup. 

9. CONCLUSION 

In a single paper it is, of course, impossible to consider 
all aspects of character theory used for linear groups and we 
have singled out a few of general interest. They should be 
sufficient, however, to show that character theory is a viable 
tool for the examination of magnetic groups. 
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The symmetry properties of the 3jm tensor for any finite or compact linear group are discussed 
using a wreath product construction. This is shown to provide a complete group theoretic 
explanation for all symmetry properties whether "essential" or "arbitrary." The link with the 
similar-but distinct-method of inner plethysms is considered. 

PACS numbers: 02.20.Hj 

1. INTRODUCTION 

Many aspects of the so-called Wigner-Racah algebra of 
angular momentum have been generalized to arbitrary 
groups, with the most complete generalizations being to 
compact and finite groups. While the Clebsch-Gordan se
ries, coupling coefficients, and the Wigner-Eckart theorem 
now form standard components of applied group theory, not 
as much work has appeared on the 3jm tensor based on the 
various 3j, V, V symbols ofWigner, Racah, Fano, and Racah, 
etc. This is largely due to the complexities in dealing both 
with the permutational properties of the tensor and with its 
relation to the coupling coefficient. The permutation proper
ties are the reason for dealing with the 3jm tensor as they 
allow condensed tabulation and easier manipulation in equa
tions, whereas the relation to the coupling coefficient allows 
the tensor to be actually used, mainly through the Wigner
Eckart theorem. 

These problems were essentially solved by Derome and 
Sharpl.2 in 1965 and 1966, with the first paper detailing 
(amongst other things) the relation between the 3jm and cou
pling coefficient tensors and the second, the symmetry prop
erties. Their results have formed the basis for further work of 
both a theoretical and a computational nature. 3-16 However, 
jUdging by the number of papers appearing on coupling coef
ficients either without any mention of permutation proper
ties or with some complex convention, their results are not 
sufficiently widely known. To improve this and also to make 
exact the connection with Littlewood's algebra of plethysms 
used by some authors, 11.18 we give in this paper an alterna
tive derivation of the symmetries of the 3jm tensor. The ma
terial details a conceptual approach to the problem rather 
than a more efficient calculation method. Thus while a 
method is stated for producing symmetrized 3jm tensors it is 
unlikely that it will be used except for special classes of 
groups (most promising candidate: the symmetric group 
Sn ?). 

First, some background. The coupling coefficient is de
fined to be the tensor which reduces an inner direct product 
of two irreducible representations (irreps)j 1 ® j2 of a group G 
to a third irrep of G. The 3jm tensor may be defined in a 
number of ways, but the cleanest is probably the one used by 

a) Present address: School of Electrical Engineering and Computer Science, 
University of New South Wales, P.O. Box I, Kensington, NSW 2033, 
Australia. 

Fano and Racah19 for SU(2) which is to reduce the triple 
productjl ®j2 ®j3 to the trivial irrep 1G • The invariance of 
the modulus of the 3jm tensor under permutations follows 
very easily from this for G finite or compact (in addition, it 
forms the only really workable definition for groups contain
ing antilinear operators 10). The problem of relating the two 
tensors may be tackled in two ways: juggle the double prod
uct reduction until it becomes a triple product which intro
duces the 1jm or Wigner tensor relatingj3 toff, or expand 
the triple product into two double products which intro
duces the 2jm tensor reducingj! ®j3 to 1G • Whatever, we 
take this problem as solved3 and merely note three points: (a) 
The double product leads to the coupling coefficient and is 
not particularly appropriate for discussing 3jm permuta
tions. (b) Relating the two tensors is not trivial as it involves 
the use ofa third tensor. (c) The 3jm tensor possesses a (weak) 
orthogonality property through reducing the triple product, 
whereas the coupling coefficient possesses a stronger one by 
reducing only the double product. This strong orthogonality 
may be transferred to the 3jm tensor through (b). 

In the Derome and Sharp approach to the 3jm symme
tries, all possible 3jm tensors for the various permutations of 
irreps are taken and then relations sought between them. 
This gives a set of permutation matrices called 3j tensors [not 
to be confused with Wigner's 3j symbol ~hich is a 3jm tensor 
for SU(2). In SU(2) the 3) tensors are just phase factors. A 
complete list of and explanations for this nomenclature is 
given in the Appendix]. By counting up the number of inde
pendent matrices and exploring their properties, Derome 
and Sharp were able to detail those symmetry properties 
which are essential and those which are arbitrary. To some 
extent this matrix work can be given a group interpretation 
by noting that the 3j matrices generate representations of S3' 
S2' or SI' but for the last two cases when not all irreps are 
equivalent this is not sufficient to explain group theoretically 
all the permutuation properties. 

In this paper a complete derivation for all cases is given 
by transferring the permutations of the 3jm tensor to where 
they act equally naturally but without regard to equivalence 
or inequivalence of irreps of G, namely, to the direct product 
group G X G X G. The permutation action of S3 on elements 
of the triple product group defines a semidirect or wreath 
productgroupF = (G X G X G) ex S3 = G I S3' This group is 
discussed in the next section and its irreps are dealt with 
there and in the following section. These irreps are labelled 
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quite naturally by irreps of G and of S., S2' or S3' with the 
correspondence being the same as for the 3j permutation 
matrices. However, this correspondence arises at an earlier 
stage. 

The 3jm tensor is obtained by reducing irrepsj. Xj2 Xj3 
of G X G X G to 1 G' in the diagonal subgroup 
G / = diag G X G X G; in a similar manner we obtain the 
[A. ] r - 3jm tensor by reducing irreps of r to 1 r' in the sub
group r / = G / (x S3 (Sec. 4). Section 5 deals with the permu
tation properties of the tensor by further descent to S3 and 
the relation to the symmetrized 3jm tensor by subduction to 
G / instead. 

The method discussed here is not that of the plethysm 
algebra, although for certain cases there is a strong link. This 
is discussed in Sec. 6. The paper closes with a possible 
(though probably trivial) generalization of the symmetrized 
3jm tensor. 

Only linear groups are dealt with; as for linear/antilin
ear groups the direct productj. Xj2 of two irreducible core
presentations is not generally irreducible in the direct prod
uct group.20 The consequences of this will be discussed 
elsewhere. 

A tensor notation is used with implied summation over 
repeated indices. An inner index (m) in a tensor T m 

n corre
sponds to the row index for the matrix T, while an outer 
index(n) corresponds to the column index of the matrix. 
While the "niceties" of this notation are not generally used, 
the Hermitian adjoint of a unitary tensor U m m' is written 
U m'm when there is no risk of confusion. The notation is used 
because quite generally in this area some tricky points get 
obscured in the simple 3j or V notations. 

2. THE GROUP G I $3 

Consider a finite or compact group G of elements U with 
irreducible representations (irreps)j. In order to form inner 
direct products j. ® j2 ® '" ® j n of G, one way is to first find 
the irrepsj. X j2 X ... X jn of the outer direct product group 
G X G X ... X G and then restrict this group to the diagonal 
subgroup diag G X G X ... X G. In discussing the 3jm tensorit 
is possible to use the double product G X G, but this leads 
directly to the coupling coefficient rather than the 3jm, and 
cleaner results are obtained by considering the triple product 
G XG X G.TheirrepsofG XG XGarejustj.Xj2xj3,andon 
restriction to G / = diag G X G X G are generally reducible. 
The 3jm tensor is nothing more than that part of the unitary 
matrix which reduces these representations to 1 G' , the trivial 
representation of G '. 

The permutation properties of the 3jm tensor were de
rived by Derome and Sharp by considering S3 permutations 
directly on the tensor, but we observe that S3 acts quite natu
rallyonG XG X Gbypermuting elements (U.U2U3)' [Strictly, 
elements of G X G X G should be written (u .,U2,U3 ) but no 
confusion should arise by omitting the commas.] This action 
is sufficient to produce the semidirect product group 
r = (G X G X G) Q< S3' Definitions of the semidirect product 
vary in the literature, so we state explicitly the conventions 
used here. A permutation 1T is given in the cycle notation, 
with usual product [e.g., (12)(123) = (23)]. Each 7TES3 acts 
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automorphically on G X G X G by permuting positions (not 
indices). Thus (123) (uaubuc) = (ubucua), The combination 
law for the permutations is then 1T.(1T2(Ua ubuc)) = (1T21T.l 
X(uaubu c )' This gives 

r = I (1T,U.U 2U3 ): 1TE S3' uiEG l 
as a semi direct or wreath product group 
r = (G X G X G) Q< S3 = G I S3 with multiplication 

(1T .,U .U2UJ )(1T 2'V. v2vJ ) 

= (1T.1T2,1T2(U .U2U3)-(V.VZV3))· 

To use this group for deriving the 3jm symmetries, we 
next need its irreps. One of the quickest ways of finding them 
is to start with irrepsj. Xj2 Xj3 of G X G X G and lift them to 
r by a two-stage process. For the first stage, consider the 
little group LU. XjzXj3) ofj. Xj2Xj3 in r. This is also a 
semidirectproduct(G XG XG)(xSn, whereSn isasubgroup 
of S3' and Jansen and Boon (Ref. 21, pp. 157-160) have de
scribed the process whereby j. XjZXj3 and the irreps of Sn 
yield directly the irreps of the little group. These may then be 
induced to rby the usual process and these are irreducible in 
r. Further, all irreps of r may be obtained by this process. 
The details are not particularly exciting and we give the re
sults only. Some notational aspects of the following theorem 
require explanation: in component form the matrix of 
(u.U Zu3) iSj.(u.lm'n/Z(uzt'n, j3(u3)m'n,. This may be abbrevi
ated to 

j. j2j3(U. U2U3)m,m,m'n,n,n, 
or to 

jjj(l23) (u .U2U3)m,m,m'n,n,n, 

without confusion. Secondly, given an irrep [A. ] of a (sym
metric) group with matrices A. (1T( s' induction to a larger 
group gives a representation with matrices Dp. [(1T)"rs's' 

where the indices rand s label coset representatives of the 
group. 

Theorem: Letj. XjZXj3 be an irrep ofG XG XGwith 
little group LU. Xjz Xj3) in r = (G X G X G )Q<S3' and Sn 
= LU. Xjz Xj3)1(G X G X G). Let I mrE S3l be coset repre

sentativesofSn inSJ , [A.] an irrepofSn , andD[A J = [A. ] t S3' 
Then DJA )j,j,j, is an irrep of r, where 

D (1T U U U )r'rm,m,m, 
[A jj,I2j, 'I 2 3 s'snln~n\ 

= D]A )(1T(rss jjj1T,-'{(23) (U\U2U3r· 'm.m,m,m,)", '(n,n,n,)' 

Furthermore, all irreps of r are of this form. 
An alternative method of constructing these irreps is 

given by Kerber2z in connection with the plethysm algebra. 
However, the emphasis in this is different and will be exam
ined in Sec. 6. 

3. EQUIVALENT IRREPS IN r 
It must be admitted that while the theorem is given in a 

form eminently suitable for generalization, it does not dis
play its salient features at a glance. We take the opportunity 
in this section to take a more graphic look, and also to give 
the equivalence transformations we shall allow. 

Being heavily dependent on the little group, it is not 
surprising that the theorem breaks down into a number of 
cases when examined closer. We deal with each in turn. 
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A. it, i2, and i3 all equivalent 

The little group here is equal to r itself, so the coset 
representatives are trivial and the indices r,s may be sup
pressed. [,.t] is an irrep of S3 and can be [3], [21], or W]. 
Generators of this irrep are 

(3.1) 

B. Exactly two of it, i2' and i3 equivalent 

and 

=,.t ((123))"sj)i)i)(u)u2u3)m,m,m'n,n,n,. (3.2) 

Any equivalence transformation applied to this has the 
consequence of transforming [,.t ],i), or both. However, for 
present purposes we are not interested in such transforma
tions and conclude that no nontrivial transformations are 
allowed. 

Withoutlossofgeneralitywemaytakei) = i2#i3' The little group is the L{}) Xi) Xi3) = (G X G X G )<1«S2XS))SOSn = S2 
with [,.t] = [2] or [12] (as these irreps are one-dimensional, the indices r',s' are suppressed) and coset representatives e, 
(123),(132). Generators are then 

and 

D,). I),),), (( 123),u .U2U3rm,m,m'sn,n,n, 

~ A lei ~,j, j,1 u, U'U~I.'.'.' ',.,', 
o 
o 

o )r 
• • • m,m 3m 2 hhh(U)U2U~) . n,n,n, 

s 

(3.3) 

(3.4) 

Again, transformations are restricted by the requirement that they do not alter bases in S2 and G. In addition we impose 
the requirement that they do not alter D').I),),), (e,u)u2u3). This restriction is imposed in order that the particularly simple 
structure of this irrep is not lost. [It is the diagonal matrix diag. (})i)i3,i3i)i),i)i3i))(u)U2U3rm,m,m'sn,n,n,·] 

Schur's lemma in G X G X G then shows that only diagonal transformations are allowed: 

o 
exp(i~2)I 

o 

c. None of it, i2, or i3 equivalent 

(3.5) 

For this last case the little group is trivial with Sn = S), and r', s'may again be suppressed. Using the coset representatives 
e, (12), (13), (23), (123), and (132), the generators are 

(3.6) 

(3.7) 
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Applying the same restrictions as in the last case, the only transformations allowed are those by diagonal matrices 

exp(icPdI 0 
exp(icP2)I 

(3.8) 

exp(icPsll 
o 

Before leaving this section we note that for each case we have been able to ignore a pair of indices as their range was trivial, 
although it did depend on which case was considered. Nevertheless, we seize the chance to discard them as in this type of work 
indices tend to proliferate. In the sequel such indices will be omitted wherever possible. 

4. DESCENT TO G'(x$3 

We have constructed the irreps of r = G 3&S3 and 
shown that they may be labelled as [A ]j J-i3' where [A ] is an 
irrep of St, S2' or S3' andjl,j2 J3 are irreps ofG. We now 
restrict ourselves to r' = G , (xS3 and consider the reduction 
of each irrep of r to the trivial irrep 1 r' of r '. First we deal 
with the multiplicity which we label by 

I" m[A Jj,j,j,' 

To calculate this multiplicity the character alone is needed, 
and the specific matrix forms of the last section may be used. 
Each case is considered in tum. 

When none ofjl,j2,j3 are equivalent, the trace of 
D[lij,j,j, (1T,U IU2U3) is only nonzero for 1T = e when it is 

X[IJj,j,j,(e,uuu) = 6XI(U)X2(u)X3(U), (4.1) 

where X; is the character ofj;. The multiplicity of l r , is 

I" 1 i I ( )d m, .. , = -- x' , , 1T uuu U 
[A i),12]' Ir"1 (11),12],' 

G 1TeS~ 

= 1;'1 LXI(U)X2(U)X3(U) du, (4.2) 

But Ir' I = 61 G I, and so the right-hand side is the multiplic
ity of I G , in jl ®j2 ®j3' i.e., 

(4.3) 

When exactly two are equivalent (say jl = j2 =lj3)' the 
character is non vanishing for more elements of r': 

XIA Jj,j,j, (e,uuu) = 3XIA i(e)( XI(u)fx3(U), (4.4) 

X[A Jj,j,j, ((12),uuu) = X[A 1((12)) XI(U2) X3(U), (4.5) 

with the same trace for 1T = (13) and (23). This gives for the 
multiplicity of 1 r'> 

m~,\qJj,j,j, = 21~ I L [XIA l(e)(xI(u))2X3(u) 

+ XIA 1((12))XI(u2)X3(u)J duo (4.6) 

Now [A ] can only be [2] or [1 2
], and the right-hand side may 

be recognized as the multiplicity of I G , in UI0[A]) ® j3 (or 
ofj! in the symmetric or antisymmetric square ofjl)' Thus 

(4.7) 
The third case, when allj-values are equivalent, may be 

evaluated in the same way. Here [A] may be [3], [1 3
], or [21] 

and the multiplicity of 1 T' is the same as the multiplicity of 
I G , in the symmetric, anti symmetric, and mixed symmetry 
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I 
cubes ofj, i.e., 

(4.8) 

We now define the [A] r-3jm tensor to be the part of the 
unitary tensor which reduces D[A Jj,j,j, to 1 T'. In addition to 
the G irrep labelsj and component labels m, it also contains 
an S n irrep label [A ] and component label r. It may be defined 
by the eigenvector equation 

D (1T uuu)r'rm,m,m, ([A 1 J' J' J' )s'sn,n,n, 
(). }j.j2j, ' ",'s".".,n 1 I 2 3 t 

(4.9) 

for all1TES3,uEG, where t is a "multiplicity label" with values 

from one to m ~,\'I j, j,j, . 
The unitary condition is 

([A 1 jlj2j3)"rm,m,m", ([A 1 jlj2j3)",rm,m,m, = D\ (4.10) 

which is a "weak orthogonality" property. In the next sec
tion we shall show that this can be tightened in each case. 

5. THE SYMMETRIZED 3jm TENSOR 

For the last stage in the derivation of the symmetrized 
3jm tensor, consider the descentsr ' ~G' andr' !S3' This sec
tion divides into three cases according to the previous 
section. 

When all threej-values are equal, the coset representa
tives are trivial and the label r may be omitted from the [A ]r-
3jm tensor. Restriction toS3 with u = e makes Eq. (4.9) read 

A (1T)"s' ([A Vljl jd"n1m,m,m,1, = ([A ]jljljl)"m,m,m", (5.1) 

or, in more detail, 

,1((12)(,,([,1 ]jljljtls'm,m,m" = ([A ]jljljtlr'm,m,m" (5.2) 

and 

,1((123)(,,([,1 ]jliljl)"m,m,m" = ([A ]jljljtlr'm,m,m". (5.3) 

Thus if[A ] = [3], the value of the tensor is unchanged under 
permutation of m-values; if [A] = [1 3

] it changes sign under 
tranpositions but not under cyclic permutations; if 
[A ] = [21] there are two tensors for each t corresponding to r' 
equals 1 or 2. These two tensors transform as a basis for [21] 
and hence their transformation properties are much more 
complex. Many examples of such "nonsimple phase" cases 
are now known to occur in both the finite23-25 and compact 
Lie l8 groups, although few numerical cases have appeared. 
Schindler and Mirman26 have given some for the symmetric 
groups but apparently without complete recognition. 
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On descent to G', Eq. (4.9) becomes 

il(U)m'n.JI(U)m, n, }1(U)m'n, ([A ] il }1}Il"n,n,n" 

= ([A ]ilil}l(m,m,m". (5.4) 

However, this is just one of the ways of defining the ordinary 
3}m tensor: its columns are a complete set of independent 
solutions satisfying a certain orthogonality condition. The 
strongest orthogonality condition is that derived from the 
coupling coefficient, 

( . , . )m,m,m, (. , . " _I . 1- 10" om, 
JIJIJI ,; hJIid m,m,m; - JI ,; mi' (5.5) 

where I) II is the dimension of} I' (This equation holds for a 
sum over any pair of m-values, not just m I and m2') The 
columns of the 3}m tensor form a basis for a vector space 
called the multiplicity space, and any column of the [A ]r-3}m 
tensor must therefore be expressible in terms of the 3}m 
tensor 

( [ , ] J' J' J' )"m,m,m, - A ,'I' (J' J' J' )m,m,m, 
/I. I I I ,- [A] , I I I ," (5.6) 

From the unitary condition (4.10) we already have one 
orthogonality property. The last two equations allow this to 
be tightened. Form the inner product (Hermitian adjoint) 

([AI]}I}I}I)';m,m,m'" ([A 2 lil}IiI)\m,m,m; 

=A[A, /;""A[A, ]".",IJII-lom'm;o"" 

(5.7) 

h r;t2 TIl i I}. • • 

were D ',I, = A [A, ] "A [A,] ',',' ThiS may be Improved 
further by equating m 3 and m~, summing, and then utilizing 
Eq. (5.1): 

(5.8) 

i.e., 

(5.9) 

For each pair t l,t2, the matrix D intertwines AI and ,12 and 
hence by Schur's lemma is zero for A I ¥=A. 2 and diagonal for 
AI = ,12' Hence 

D';\" = IA I I-
10",;C "1,0(A I.A.2)' (5.10) 

Substituting this into Eq. (5.7), equating r; and ri, m3 and 
mi, and summing invokes the orthogonality of the [A ]r-3}m 
tensor so that C is also a delta tensor, Hence 

([AI] il}IiI),;m,m,m", ([,12] }1}1}1)\m,m,m; 

= lAd -II }11-IO(A I.A.2W',;0\ Om'm;' (5.11) 

Counting dimensions, this shows that the columns of the 
[A ]r-3}m tensors for [A] = [3], [21], and [13] form an orthog
onal basis for the 3}m multiplicity space. Further, if the [A ]r-
3}m tensor is divided by 1,1 1112, this basis satisfies the same 
orthogonality property as any 3}m tensor and hence defines a 
particular 3}m tensor-the "symmetrized" 3}m tensor. That 
is, if the columns of the [A ]r-3}m tensor are divided by 1,1 1

1/2
, 

they form columns (or pairs of columns when [A] = [21)) of 
the 3}m tensor, and these columns transform as basis vectors 
for [A. ] when the m-values are permuted, Any other 3im ten
sor derived by any method is related to this one by a unitary 
transformation in the mUltiplicity space. This completes the 
discussion for all irreps equal. 

When exactly two are equal, say} I = }2¥=}3' the primed labels may be omitted as [A ] = [2] or [12] is one-dimensional. On 
descent to G', Eq, (4.9) gives 

(

' ) } (UUU)m,m,m, 
1 t 3 nln2n.~ 

o 
o 

o 

o 

This breaks into three equations, and each equation defines 
subspaces of 3}m multiplicity spaces. For r equals 1, 2, and 3, 
these are subspaces of the 3}m tensors Udd3)' U3idIl, and 
Ud3iI)' respectively. As for the last case, orthogonality of 
the 3im tensors produces 

( [A ] . . .) I m m m ([']. • ')' 
I Jlili3 "'I, /1.2 Jllti3 'Im,m,m; (5.13) 

= D II, IJ'I- Iom, 
It. 3 mj 

with similar conditions for r = 2,3. Under the e and (12) per
mutations applied to this, Schur's lemma in S2 gives 8 (A I.A.2) 
on the right, whereas applying (13) and (23) permutations 
shows 

D II, =0 2/, =0 3" 
II. 21z 3t,· 
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(5.12) 

I 

Orthogonality of the [A ]r-3}m tensor in addition gives 

D'" = 0" rt l I, 

so that lIv3 ([A ]jIiI}3) for [A] = [2],W] defines three par
ticular 3}m tensors Udl}3),U3}lil)' and Uli3il)' 

The permutation properties of these symmetrized 3}m 
tensors follow by descent r ' !S3' A (12) permutation is com
pletely defined for the Vlil}3) tensor: 

,1(12)([,1 lil}I}3)lm,m,m" = ([A lil}I}3)lm,m,m" 

so that this tensor changes sign if [A ] = [12] but is left invar
iant if[A] = [2]. Identical properties hold for U3iliIl under 
(23) transpositions, and for U d3i I) under (13) transpositions. 

The effect of permutations can also be calculated for the 
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off-diagonal elements, but it must be noted that the allowed 
equivalence transformations in r produce an arbitrariness in 
this. For the off-diagonal (12) elements, 

A ((12))([A H.j.j3)3m,m2 m" 

= exp i(tP3 - tP2)([A H.jlj3)2m,m,m" 

and for (123), 

([A Hlj!j3fm,m,m" = exp i(tP3 - tP!)([A Hljlj])!m,m,m", 

([A lj.j.jim,m,m" = exp i(tPl - tP2)([A lj.jlj3fm,m,m,,, 

etc. The choices of tPl' tP2' and tP3 are entirely upto the user, 
and are determined by choosing an irrep in r from its equiv
alence class. 

The final case of all irreps inequivalent follows this last 
case very closely. When divided by V 6, the [A ]r-3jm defines 
six symmetrized 3jm tensors corresponding to the six order
ings of (j. j2j3)' Permutations in S3 map these tensors onto 
each other with at most a change of phase. These phase fac
tors are completely arbitrary (to within consistency imposed 
by multiplications) and are determined by the choice of irrep 
in r. For the irreps given explicitly in Sec. 3 all phase factors 
are 1 so that these symmetrized 3jm tensors are invariant 
under any permutation ofj and m-values. 

Particular 3jm tensors have thus been shown to arise 
naturally on reducing irrepsof(G X G X G ) (xS3 to the trivial 
irrep of the subgroup (diag G X G X G ) <2<S3' These 3jm ten
sors are "symmetrized" in that their transformation proper
ties under permutations are as simple as possible. Any other 
3jm tensors are related to these by unitary transformations in 
the multiplicity space. While there are arbitrary phase fac
tors in some of these permutation properties, they are ex
plained as arising from equivalence transformations in 
G I S3' 

6. THE METHOD OF PLETHYSMS 

It was mentioned in the introduction that some authors 
have used Littlewood's algebra of plethysms to obtain results 
about 3j symmetries, mainly as to the existence or nonexis-

tence of nonsimple phase irreps. As we have not used pleth
ysms but something quite closely related, it is worth detail
ing this link. There are in fact two plethysm algebras, the 
"inner" and the "outer." However, as the outer plethysm 
algebra is really just the inner plethysm algebra for the gen
erallinear group transferred to the symmetric group via the 
duality between the two groups, we need only talk about 
inner plethysms to cover all cases. 

The inner plethysm construction, as detailed for exam
ple by Kerber,22 is quite heavily dependent on the irreps and 
carrier spaces of a group. Given an irrep j of G with carrier 
space V, the action of Sn on V X V X ... X V (n times) is de
fined by permutations of the basis vectors. This gives a repre
sentation of Sn over this direct product space which may be 
combined with the irrepjto give an irrep ofG-Sn of dimen
sion I jl n. For the case n equals 3, this is in fact the irrep of r 
we have called D[3Wi' The other irreps with [A] = [21] and 
[1 3

] may be obtained quite readily, but this is a "second
stage" calculation and they do not appear quite so naturally. 
For our other irreps when not allj-values are equivalent, the 
plethysm method works best in a subgroup of Sn [for exam
ple G I (S2 X S.) for exactly twoj-values equal] and this is not 
sufficient to give all 3j symmetries for these cases. The irreps 
in this subgroup may, however, be induced to G-Sn as we 
have done. 

The subgroup r' is isomorphic to G I S3 and the pleth
ysm method reduces representations of r' to j X [A ] of 
G XS}. In the context of 3j symmetries the reduction is to 
IG X [A ]. In our notation, this is reduction to D[A Jlr;Ir;I" 

with [A] = [3], [21], and [1 3
]. A complete list of the multi

plicities of these irreps in all irreps of r' is given in Table I. 
From there it may be seen that the multiplicity of D[A J 1,,1,,1,. 

in D[3Wi is the same as the multiplicity of I r · in D[A Wi but 
that many other entries on this table (in particular when not 
allj-values are equivalent) are rather strange. We dispose of 
these cases first. 

When only two j-values are equal, the natural group for 
inner plethysms is G I (S2XSI) and its irreps are reduced in 

TABLE I. Multiplicity ofirreps [p]x 1(; in representations Dv.]}, u. of (diag G X G X G )<?<S" 

[3]X IG [1 3]x IG (21) X IG 

[3]i,i,i, 6~ llx,(uH' _I i Ix,(u)I' 
6G G 

_I_I, Ix,(u)I'-x,(u')du 
3G G 

+ 3X,(u')X,(u) + 2X,(u') du - 3X,(u 2)X,(u) + 2X'(u') du 

[\'1J,i,i, 6~ llx,(ul!' 6~ 1 Ix'!u)i' _I_I, Ix,(u)I'-x,(u')du 
3G G 

- 3X,(u')X,(u) + 2X,(u') du + 3X,(u')X,(u) + 2X,(u') du 

[21]J,J,i, _I_I, [X,(uW-X,(u3)du 
3G G 

_1_ i Ix ,(uJl-' - X ,(u') du 
3G G 

_1_ I, 2Ix,(uJ!' + X,(u') du 
3G G 

[2IJt],J, 2~ llxt(uWX3(U) 2~ lIXt(uWX,IU) ~ I, Ix,luWx,lu) du 
G G 

+ Xt(U2)X3(U) du - X,(U2)X3(U) du 

[I'liti,i2 2~ IIX,(UWX3(U) 2~ IIX,(UWX3(U) ~ i Ix,luWx,(u)du 
G (J 

- X,(U2)X3Iu) du + X,(u')x3Iu) du 

[I]],J']3 ~ i X,lu)XZ(U)X3(U) du 
G G 

~ lX,IU)X,IU)X,IU) du ~ L x,lu)x,(u)x,lu) du 
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G '<2«S2XSI)~G XS2. The reduction is then to IG X [2] and 
1 G X [ 12] which only deals with the (12) permutations of 
(Jljlj3)' the (13) permutations of (Jlj3jtl, or the (23) permu
tations of (J3jljl)' A (123) permutation cannot be used to 
relate the three tensors for it is simply not in the group. On 
the other hand, using r' is not correct either for it is not clear 
as to whether reductions should be to 1 G X [3], 1 G X [21 ], 
or 1 G X [ 13]. Inner plethysms are just not appropriate for 
discussing the 3j symmetries of this case. Similar consider
ations hold for none of the irreps equivalent. 

When all threej-values are equal though, the multiplic
ities certainly tally and inner plethysms can be used for char
acterlike calculations. A closer investigation reveals that the 
plethysm reduction is something like a coupling coefficient 
to the [A ]r-3jm tensor. We define this plethysm reduction by 
a 3jm-[,u]r tensor: 

jjj(uuu)1l1m,m,m.) n,n,n, 

I (jjj)[p. (,m,m'rt'Il(1T)'s(jjjhp. (n,n,n, (6.1) 
[p.IElrr(S,) 

Gl other irreps of G X S 3' 

If this equation is mUltiplied by A (1Tl's' and integrated over 
r' divided by its volume, the left-hand side becomes 

([A] jjjl'm,m,m',([A ] jjj)'s'n,n,n, (6.2) 

as this is the only component transforming as l r ·. On the 
right the only non vanishing component is that which trans
forms as 1 G X [3] of G X S3 which can only occur for the [3] 
component of[A] ® [Il]. Thus [Il] must equal [A] and the 
direct product must be reduced by a 2jm tensor in S3: 

([A] jjjl'm,m,m" ([A] jjj)'s'n,n,n, 

= (JJJ"') m,m,m" ([A ][A ] )r,.,( [A ][A ]) . 
[A I r' ss 

X(jjjhAt"n,n,n,. (6.3) 

By the orthogonality properties of all the tensors this may be 
recast into 

([A ]jjjl'm,m,m" = U", (jjj)[A Im,m,m'rt' ([A] [A ])"', (6.4) 

where U is a unitary tensor relating bases in the multiplicity 
spaces. By transforming one of the [A ] r-3jm or 3jm-[,u] r 
tensors this may be taken as diagonal so that one tensor may 
be found directly from the other. 

The 2jm tensor in Eq. (6.4) is, in general, not trivial. 
However, if the irreps of S3 are chosen to be orthogonal it 
reduces to a tensor which merely changes columns into 
rows. (This is because the Ijm tensor is diagonal.) For this 
special case, which is nevertheless the most common one, we 
may write 

([A ]jjj(m,m,m" = IA 1-1/28rr'(jjj)[,.\ (,m,m'rt 

to give one tensor from the other. 

7. A POSSIBLE GENERALIZATION 

It has been shown that the permutation properties of 
the 3jm tensor may be found by reducing irreps of 
r = G I S3 to the trivial irrep l r . in the subgroup r', or 
when allj-values are equal by reducing certain irreps of r to 
certain others in r'. In Table I this means we have used the 
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first row and the first column only. A quite natural question 
is to ask what tensors correspond to the other entries. A 
formal answer is to define a tensor which reduces D[A lj,j,j, 

to D[p.]lalaIG which for consistent terminology must go un
der the title of a [A ]r-3jm-[,u]r tensor. Such a tensor must 
always exist for any group even if trivially by setting 
[A] = [Il],jl = j2 = j3 = IG · It is unlikely that this tensor 
will prove of much im portance as it can be expressed in terms 
of 3jm tensors for G and S3' but if any sufficiently interesting 
results are discovered they will be reported. 

APPENDIX 

In this appendix we state the terminology which ap
pears to be most appropriate in discussing the Wigner-Ra
cah algebra. For more details the reader is referred to Der
ome and Sharp l.2 or better the article by Butler.3 

The ljm tensor or Wigner tensor. For any calculations 
with irreps of a group, it is assumed that the matrices of each 
irrep are fixed. To each irrepj there is a conjugate irrepj* 
(which may of course equalj). If the complex conjugate of the 
matrices ofj is taken then this matrix irrep will be equivalent 
to the matrices of j*. The Ijm tensor is the matrix of equiv
alence. The U m" in the notation signifies that it is basis 
dependent. 

The Ij phase. By Schur's lemma, the product of the ljm 
tensors for j-j* andj*-j is a scalar matrix A I. A is the Ij 
phase. It is independent of basis so no U m" labels are 
included. 

The 2jm tensor is the tensor which reduces the inner 
productj ®j* to IG , the trivial irrep. 

The 2j phase is the phase factor arising on permuting the 
j- and m-values in the 2jm tensor. 

The coupling coefficient is the tensor which reduces the 
inner product of two irrepsjl ® j2' 

The 3jm tensor is the tensor which reduces the inner 
product of three irrepsjl ®j2 ®j3 to IG • 

The 3j tensor is the permutation tensor in the multiplic
ity labels relating one 3jm tensor to another (permuted) one. 
It is independent of basis labels m but does depend on the 
three irrep labels. 

The Clebsch-Gordan series gives the mUltiplicity of 
each irrep in the inner productjl ®j2' This is based on the 
original series for SO(3), and is not the coupling coefficient. 
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We present a comprehensive constructive proof of a theorem characterizing the tangent space to a 
stratum (orbit structure) of the Euclidean space Rn, seat of an orthogonal representation of a 
compact group G. The characterization is made in terms of gradients of a complete set (integrity 
basis) ofG-invariant polynomials. In a recent paper [M. Abud and G. Sartori, Phys. Lett. B 104, 
147 (1981)], the theorem, which may be considered a generalization ofa theorem by Michel [C. R. 
Acad. Sci. Ser. A 272, 433 (1971)], has been shown to be effective in the determination of the 
equations of the strata and in the determination of natural extrema of G-invariant functions. 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

After the pioneer papers by Michel and Radicati 1 it be
came evident that some information on the geometry of 
group representations may help2 in determining the location 
of extrema (stationary points) of scalar functions, a basic 
problem in many physical problems. 

In a recent letter by M. Abud and the present author3 a 
new theorem on this subject was stated (without proof), and 
exploited essentially in order to characterize possible direc
tions of spontaneous symmetry breaking and phase transi
tions. The purpose of the present paper is to give a compre
hensive proof of that theorem, whose content will be recalled 
in this Introduction, after a few definitions. 

Let G be a compact r-dimensional Lie group of ortho
gonal transformations in the Euclidean space Rn. We shall 
denote by Rn /G the orbit space associated to the G-space 
(Rn, G). As is well known the collection of isotropy sub
groups of G (little groups), at points lying on the same orbit 
n (rP ) as rP, constitutes a class of subgroups conjugated in G to· 
the stability subgroup G", at </J. This class is called a G-orbit 
type and will be denoted equivalently by ! G", J and [n (rP I]. 

Following Michel, I we shall call "stratum" of Rn 
through rP [ofRn /G through n (rP )] the union [the set] of all 
G-orbits ofRn [ofRn/G] that are of type [n (rP)]' 

The results we shall prove in this paper have been 
shown3 to be quite effective in the characterization of strata. 

As is well known,4 the tangent space to a stratum ofRn 
at one of its points rP is the direct sum of the tangent space to 
the G-orbit n (</J ) at rP and the vector space N~) formed by all 
the G", -invariant vectors that are orthogonal to n (rP ) at rP. It 
is also well known that the gradient at rP of any differentiable 
G-invariant function F(rP ) belongs to N~). 

Our final result in Sec. III will prove that, conversely, 5 

every vector of N~) can be expressed as a linear combination 
of gradients at </J of a fixed finite set of G-invariant polyno
mial functions of </J (integrity basis for the ring ofofG-invar
iant polynomials of </J ). In particular, when N ~I is one dimen
sional, n (</J ) turns out to bean isolated point in its orbit-space 
stratum and, according to our theorem, the gradients at </J of 
all differentiable G-invariant functions of </J must be (null or) 
parallel vectors and vice versa. Thus our result may also be 
considered a generalization of Michel's theorem I for linear 
G-actions. 

The plan of the paper is the following. In Sec. II we shall 
collect some relevant definitions and, in an elementary way, 
prove some results concerning the geometry of group repre
sentations which we shall need in Sec. III. These results are 
already known in mathematical literature. In Sec. III, after 
recalling a few fundamental results in the theory of G-invar
iant functions, we shall restate and prove the theorem which 
is the main result of this paper. 

In three appendices we have confined elementary 
proofs of some known results used in the paper. In Appendix 
A a convenient local parametrization of a G-orbit is defined. 
It will be exploited in Appendix B in order to derive some 
properties of the Hessian of the function I( g) = D( g'S,rP ). 

The results of Appendix B are needed in Appendix C, 
which is devoted to a proof of Proposition 1, stated in Sec. II. 

II. SOME GEOMETRY OF GROUP REPRESENTATIONS 

In this section we shall complete the necessary collec
tion of definitions and results concerning the geometry of 
compact group representations. 

An open square D will denote the end of a proof. 
</JERn will be identified, in a standard way, as an n-di

mensional vector and a point of an n-dimensional manifold. 
We shall use the module notations g.</J and t·</J for the 

linear action on the vector ¢ERn of gEG and tEf1 , the Lie 
algebra of G. 

The scalar product in Rn will be denoted by ( , ), and the 
squared Euclidean distance by 15 (</J,S ) = (S - </J.S - </J ). 
Both are G-invariant quantities, since 

( g.</J, g·S) = (</J,S) V</J,SERn, gEG. 

The compact Coo-manifold structure of G induces an 
analogous structure on each G-orbit n. Thus, at every rPEil a 
tangent space T", (n ) and a normal space to n can be defined. 
As a vector space T", (n ) is isomorphic4 to the space T", of 
tangent displacements to nat </J, we have: 

Definition 1: T", = ! t.</J; all tEf1 J. 
The orthogonal complement N", to T", in Rn can be 

identified with the normal space to n at </J. 
Definition 2: The subspace N~I formed by all the G",

invariant vectors of N", = ! SERn; ( s,t.</J ) = 0, all tEf1 J will 
be called the invariant normal space at </J. 

Clearly </JEN~I, since every tEf1 is skew symmetric with 
respect to ( • ). 
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The squared distance of a point r/J from an orbit fJ will be 
defined as the following G-invariant function of r/J: 

Definition 3: 8(r/J,fJ ) = minsen8(r/J,s). 
Analogously the squared distance 8 (fJ,fJ ') between two 

orbits fJ and fJ ' will be defined by 
Definition 4: 

8(fJ,fJ ') = min<,&en8(r/J,fJ ') = min¢'en ' 8(fJ,r/J '). 
The minima involved in Defs. 3 and 4 certainly exist 

since G-orbits are compact sets, 
Definition 5: If the point on an orbit fJ at minimal dis

tance from a given point r/J is unique, it will be called6 the 
retraction of r/J on fJ and denoted by Pn(r/J). 

The function Pn (r/J ) will play an essential role in the 
proof of our main result. In the following Lemmas 1-3 and 
Proposition 1 we shall state some of the its fundamental pro
perties. 

Lemma J: Points on an orbit fJ at minimal and maximal 
distance from a given point r/J lie on N¢. 

Proof Let S be a point on fJ at minimal or maximal 
distance from r/J. The real function on G, I( g)=( g's,r/J), 
consequently, has an extremum (stationary point) at g = 1, 
since G is open. Therefore, 

0= a/( g(w)) I = (t's,r/J ) = - ( s,t.r/J ) VtE~, 
aw g~ I 

where w is any parameter of GoO 
In Appendix C we shall prove: 
Proposition J6: The retraction on an orbit fJ is a C"" -

function at least in an open tubular €-neighborhood of fJ, 
.'TE(fJ) = I r/JERn; 8(r/J,fJ) < €j. 

Definition 6: The map r/J---+ I(r/J ) from a G-invariant sub
set .f eRn into Rn is said to be equivariant if 

I( g.r/J ) = g·/(r/J ) V r/JEf and gEG, (1) 
As a trivial consequence of the G-invariance of the dis

tance of a point from an orbit (Def. 3) one finds: 
Lemma 26

: The map r/J---+ Pn (r/J ) is an equivalent func
tion of r/J. 

The existence of an equivariant function mapping one 
orbit onto another relates the associated orbit types as we 
shall show in the following Lemma 4. 

In this aim let us introduce a partial ordering in the 
collection C of all orbit types: 

Definition 7: [fJ ]< [fJ '] if G ¢ !:;;; G ¢' for at least one cou
ple (r/J,r/J '), r/JEn, r/J 'En '. 

Lemma 36
: Let Ibe an equivariant map from the G

orbit onto the G-orbit fJ '; then [fJ ']>[fJ] and the equality 
holds if and only if lis one-to-one. 

Proof From the equivariance of J, Eq. (1), one immedi
ately obtains 

GN1-;;JG",. (2) 

Then [fJ ']>[fJ] follows from Def. 7. Ifmoreover lis 
one-to-one, I - I: fJ '---+fJ is also equivariant. Thus, using the 
first part of the lemma we have just proved, we obtain 
[fJ ']<[fJ], which added to [fJ ]>[fJ '] implies [fJ] = [fJ ']. 
Conversely let us assume [fJ] = [fJ '] and prove that ifgsatis
fies 

I(r/J ) = I( g.r/J ) (3) 

then, necessarily g.r/J = r/J. 
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In fact, if we assume Eq. (3), from the equivariance of I 
we getg . I(r/J ) = I(r/J ) which impliesgEG,,¢ I' But Eq. (2) and 
the assumption [fJ] = [fJ '] assure that G[(", I = G ¢. There
fore, Eq.(3) implies g.r/J = r/JoO 

III. A CHARACTERIZATION OF THE INVARIANT 
NORMAL SPACE 

All the functions we shall deal with in this section will 
be COO-functions, 

Definition 8: the map F: Rn ---+R I is said to be G-invariant 
if 

F( g.r/J) = F(r/J), all r/JERn and gEG, (4) 

Definition 9: A finite set () = (()I""()q) of homogeneous 
polynomials ()j (r/J ) will be called an integrity basis (for the 
ring of G-invariant polynomials of r/J ), if every ~invariant 
polynomiaIF(r/J ) can be written as a polynomial Fin the () 's: 

(5) 

As shown by Hilbert,7 all finite dimensional representa
tions of compact Lie groups admit integrity bases. 

Schwarz8 has extended Hilbert's results, showing that 
for each integrity basis () = (()I"",()q) and each G-inva~ant 
C"" -function F(r/J), r/JERn, there exists a C ""-function F(()), 
defined in a convenient subset ofRq, so that Eq. (5) holds 
identically in r/J. 

Lemma 44 : The gradient of r/J at every G-invariant dif
ferentiable function lies on the invariant normal space at r/J. 

Proof Let aF(r/J ) denote the gradient of F(r/J ) at r/J. By 
differentiating Eqs, (4), respectively, with respect to r/J and 
the parameters of Gat g = 1, one gets 

g -1.aF( g.r/J ) = aF(r/J ), all gEG (6) 

and 

(t·r/J,aF(r/J) = 0 for all gE~. (7) 

Equations(7)assurethataF(r/J )EN¢ andEqs.(6)thataF(r/J lisa 
G¢ -invariant vectoroO 

The converse statement of Lemma 4 represents the 
main result of this paper and will be proposed as 

Theorem: Let G be a compact Lie group acting ortho
gonally on Rn. The invariant normal space at r/JERn is 
spanned by the gradients at r/J of the elements of an integrity 
basis for the ring of all G-invariant polynomials of r/J. 

Proof Let ~ERn and 7j be an arbitrarily chosen vector of 
N~I, We shall defiI.:e a G-invariant C ""-function Fij(r/J) 
whose gradient at r/J is proportional to 7j. 

For aER 1 let us define 

t = ~ + a7j, (8) 

Then tEN ~I and 

Gt -;;J(G4i nGij)-;;JG4i • (9) 

Moreover, if a is sufficiently small, t will belong to an 
open tubular €-neighborhood of fJ (~), .'TE(fJ (~)), where 
Pn(4i1 is defined and is a C ""-function according to Proposi
tion 1. 

Thus, from Lemma 1, 

(10) 
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which implies, according to Lemma 3, [n (~))>[n (t))·From 
this relation and Eq. (9) we obtain [n (~ )] = [n (t I], assuring 
thatpn(~) is a one-to-one map fro~ n!t) onto n (~) (see_ 
Lemma 3.). As a consequencepn(S) will be defined on n (¢J) 
(Ref. 9) and, according to Proposition 1, an open tubular 
neighborhood Y .. (n (t ))3~ will exist, wherepn(tl is a C "" 
-function. Moreover, evidently 

(11) 

Let us now define the following G-invariant function: 

F(¢J) = {(lIa) exp{D(¢J,n (t)) - €'j-I for ¢JE~€,(n (t)) 
0, otherwIse. 

(12) 

For ¢JEY .. (n !t )), one gets from Defs. 3 and 5 and the 
orthogonality of every matrix gEG, 

D(¢J,n (t)) = (¢J,¢J ) + ( t,t) - 2(¢J, Pn(tM I), (13) 

so that, denoting a/a¢Jj byaj , 

~ajD(¢J,n!t)) = ¢Jj - (Pn(tl(¢J ))j - (¢J,aj Pnlt)(¢J ).(14) 

ThereforeF I¢> ) is C "" and its gradient at ¢J can be calcu
lated using Eqs. (14). 

The last term in the rhs ofEqs. (14) vanishes owing to 
Eqs. (C7), (11), (10), amd Lemma 1. Thus, using once again 
Eq. (11)toevaluatepn(t)(~) = t, and recalIingEq. (8), we get 
from Eqs. (12) and (14), 

aF(¢J)I~=i6 =B"iJ, (15) 

where B is a nontrivial real constant. 
To conclude the proof of the theorem it suffices to recaII 

Schwarz' theorem. In fact, from Eqs. (5) and (15) we get 
A 

"iJ=B-IaF(¢J)I~=~ =B- I i aF(O) I aOd~), 
k= I aOk (J= O(~) 

so that every vector "iJEN~' can be expressed as a linear com
bination of the gradients at ~ of the elements of an integrity 
basis.D 
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APPENDIX A: LOCAL PARAMETRIZATION OF G
ORBITS 

A local parametrization for a given G-orbit n can be 
defined in the foIIowing way. 10 

Let y ~ denote the Lie algebra of G~. For each sED let 
us choose a basis B (sl = {t ~slj" = I, ... ,r for Y so that the fol
lowing conditions (i) and (ii) are satisfied 

(i) Tr t~s)tV' = - D"p' 
(ii) The last r n = dim Y s elements of B (s 1 yield a basis 

for Y s. 
Conditions (i) and (ii) imply that the adjoint matrix re

presentation of Gis orthogonalin the basis {t~s)j" = I, ... ,r and 

t(,P's=O fora=r-rn+l" .. ,r, (AI) 
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while {t ~s)'sl" = I .... ,r _ rn is a set of independent vectors 
forming a basis for the vector space Ts' 

As is well known,1O a d n > 0 can be chosen so that for 
every tED the set of points {sED; D ( s,t ) < d n I is connected 
and r - r n local coordinates x" can be introduced in the 
following way: 

six) =gt(x)·t, (A2a) 

where x = (XI""'X r _ rn)isinaconvenientneighborhoodofO 
and 

(A2b) 

Moreover, dn does not depend on t, since t-+g-t is an iso
metric map from n onto n for all gEG, 

APPENDIX B: THE HESSIAN OF f( g) = {j( g's,¢J) 

LetK(s,¢J )bethe (r - rn(sl)X(r - rnw) realsymmet
ric matrix defined by 

Kap(s,¢J) = !(t~sl·S,t~sl.¢J) + (a~,B), 
(BI) 

a,,B = 1, ... ,r - r n( si' s,¢JERn, 

where t ~s) is defined in Appendix A. K ( s,¢> ) is a continuous 
function of ¢> and a positive definite matrix for ¢J = S, owing 
to condition (ii) of Appendix A. Therefore, when ¢J is in a 
convenient neighborhood of S, K ( s,¢J ) > 0, Below we shall 
also prove that for all gEG: 

A "" A A 

K (g·S,g·¢J) = 0 (g,s)K (s,¢> )0 T( g,s) , (B2) 

where 0 (g,{) is a (r - rn ( s))X(r - rn ( 5)) real orthogonal 
matrix and 0 T denotes its transpose. As a consequence the 
rank of K ( s,¢J ) will be a constant along the G-orbit in Rn X Rn 

defined by ( g.( s,¢> ) = ( g·s, g.¢J ) j gEG' 

Thus we have proved 
Lemma B 1: For each orbit n a positive number d n 

exists, so that K ( s,¢J ) > 0 whenever sED and D ( s,¢> ) < d n. 
It remains for us to prove Eq, (B2). 
Proof of Eq. (B 2): From Eq. (B 1) and the G invariance of 

the scalar product in Rn one immediately gets 

Kap( g.g, g.¢> ) = !<! g-I t ~g·s)gj·s,{ g -It ~g·slg j.¢> ), 
(B3) 

The r matrices ( g - I t ~g·s 'g I, a = 1, .. "r yield an orth
onormal basis for Y, satisfying conditions (i) and (ii) of Ap
pendix A. Therefore, 

r-rU(tl ........ 

g -It~g·s)g = I Oaf3(g'S)t~5), 
P=I 

a= I, ... ,r-rn(SI' (B4) 

where 0 (g,s ) is a real orthogonal matrix. Equation (B2) is an 
immediate consequene of Eqs. (B3) and (B4).D 

APPENDIX C: PROOF OF PROPOSITION 1 

We must show that if ¢> is near enough to an orbit n, 
there is only one point on n at minimal distance from ¢J and 
its location is a C ""-function of ¢J. 

Let d nand d n be as defined in Appendix A and 
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Lemma BI and call Dn the smaller of the numbers !dn and 
d 'n, 

(CI) 

Thus, whenever ~EY D (n), all the points of n at minimal _ (J 

distance from </J belong to the set fiJ : 

(C2) 

Let ~ be one of these points. Then fiJ can be parame
trized as in Eq. (A2) and the points of n at minimal distance 
from ~ can be determined as the points where the following 
function of x, 

F(x;~,~) = 2( S (x),~ > 

= (~,~ ) + ( S (x),s (x) - 8( s (x),~ ) 
= (~,~) + (~,~ > - 8( s (x),~), (C3) 

is maximal, for x sufficiently near the origin and S (x) defined 
in Eq. (A2a). 

From Eq. (C3), theskewsymmetryoftE.c9', and Eq. (BI) 
we get 

a2F(x;~l) 
(C4) 

so that, according to Lemma B 1, the Hessian of F (x;~,~ ) is 
negative definite for S (x)EfiJ. As a consequence there will 
only be one extremum of F(x;~,~) in fiJ. necessarily a maxi
mum. 

The above arguments show that for every </JEY D (n), _ n 

and for </J in a convenient neighborhood of </J, there is a unique 
point on n at minimal distance from </J. It can be written in 
the form of Eq. (A2). where x is determined as the unique 
solution of the extremum conditions: 

768 

F~~I(X;</J)= aF(x;</J,~) =0, a=l, ... ,r-ra . (C5) 
aXa 
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As 
(a) F~~I(O;~) = 0, by assumption; 
(b) F~~ I(X;</J ) is C ~ both in x and </J in a neighborhood of 

(O,~); 
(c) the matrix apF~~I(O;~) = - KaP( ~,~). 

a, {3 = I, ...• r - rn , is positive definite; from the implicit 
function theorem. Eqs. (C5) will admit a solution x = x(</J ) 
which is a COO-function in a neighborhood of ~ and satisfies 
x(O) =0. 

As previously argued this solution is unique and. from 
Def. 5, in a convenient neighborhood of ~ it satisfies 

Pn(</J) = s (x(</J)) = expC~:lXa(</J)t ~).~, 
and x(~ ) = 0.0 

By differentiating Eqs.(C6) we also get 

ap~!;(</J) I¢~~ 

which implies 

apfl (</J )I¢ ~ ~E Ypn(~I' 

(C6) 

(C7) 
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An expression for the number of internal labels of degenerate irreducible representations of 
compact semisimple Lie groups is given in the same spirit as Racah's formula for the 
nondegenerate case. 

P ACS numbers: 02.20.Qs 

I. INTRODUCTION 

Years ago Racah 1 gave the useful formula 

b = !(r -I) (1) 

for the number b of internal labels needed to specify the 
states of a general irreducible representation (IR) of a com
pact semisimple group; here r is the order of the group (di
mension of the group manifold, or number of generators) 
and I is its rank (dimension of its weight space). 

We point out a simple and direct interpretation ofRa
cah's result. An arbitrary state can be constructed by the 
successive application oflowering generators (those corre
sponding to negative roots) to the highest weight state of an 
IR; we may fix their order of application, since different 
orderings are related by commutators. Then the exponents 
of the lowering generators, of which there are ~(r - I ), pro
vide the necessary labels. 

Our purpose in this paper is to obtain a result for degen
erate representations similar to Racah's. A degenerate repre
sentation is one for which one or more Cartan (or Dynkin) 
representation labels are zero. From the above interpreta
tion ofRacah's result we readily conjecture that the number 
of labels needed is just the number of lowering generators 
which yield a nonzero result when applied to the highest 
weight state of the degenerate representation. In Sec. II, we 
prove this conjecture and give a simple rule for calculating 
the number oflabels. 

There are many reasons why this result is of interest. 
We often encounter a group chain which has missing labels 
for general representations, but mayor may not define states 
completely for degenerate representations of physical inter
est. Counting labels for the representations involved will de
cide that and similar questions. 

A convenient way of presenting branching rules is pro
vided by generating functions, 2 and their structure is directly 
related to the number oflabels involved. Ifwe are interested 
only in particular degenerate representations, knowledge of 
the number of labels provides important clues for the con-

_I Work supported by the Natural Science and Engineering Research Coun
cil of Canada and by the Ministere de L'Education du Quebec. 

bl Permanent address: Instituto de Fisica, Universidad Nacional Autonoma 
de Mexico, Mexico DF, Mexico. 

ci Laboratoire associe au C.N.R.S. 
dlOn leave from Physics Department, McGill University, Montreal, Can

ada. 

struction of the relevant generating functions. In Sec. III, we 
provide new examples of generating functions for branching 
rules, as well as of generating functions for polynomial ten
sors where a similar situation holds. 

Known branching rules for complete chains of groups 
permit the counting of internal labels for degenerate repre
sentations of the classical groups and of the exceptional 
group G2• However, this procedure is tedious and is not 
available for the higher exceptional groups. 

II. COUNTING INTERNAL LABELS 

In Sec. I we conjectured that by rejecting lowering gen
erators which annihilate the highest state of a degenerate IR 
and counting the rest we get the correct number of internal 
labels. The conjecture requires proof because the polynomial 
independence of the remaining lowering generators, acting 
on states of a degenerate IR, is not obvious. The proof is 
based on Weyl's character formula. 3 First, we recall a few 
needed definitions. 

To label an IR, we use Dynkin, or Cartan, labels Ai 
defined by 

A; = 2(M" la;)/(a i lai ) , (2) 

where M" is the highest weight of the IR and a i are the 
simple roots, in terms of which any positive root can be ex
pressed as a nonnegative linear combination. An alternative 
definition of Ai is through the expansion of M" as a nonnega
tive linear combination of fundamental weights Wi: 

In order that Eqs. (2) and (3) be consistent we must have 

(Ujla;) = ~8ij(ajla;) . (4) 

Weyl's formula for the character of an IR A may be 
written3 

XA = s"/J1 , 

where the numerator is the characteristic function 

(5) 

S" = L (- l)S X
S

(MA +R) • (6) 
S 

The sum in Eq. (6) is over Weyl reflections S; M" is the 
highest weight of the IR and R is half the sum of the positive 

roots; ~ means niXi '\ where the Xi are dummy variables 
which carry as exponents the components Ai of a weight A. 
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The denominator L1 of(5) is the characteristic of the scalar 
IR, 

L1 = I ( - 1 )SXSR = II (Xd2 - X - E/2) . (7) 
S E 

The product in the factored form of L1 is over positive roots E. 

We may remove a factor nE x d2 = x R from numerator and 
denominator ofEq. (5) with the result 

X-R~S( _ l)SxS(MA+R) 

X,\ = n
E

(1 _X-E) (8) 

First consider general IR's and suppose that all the re
presentation labels Ai are large. For the purpose of counting 
labels we need to consider only states in the neighborhood of 
the highest one. Then we may ignore all Sbut the identity in 
the numerator of (8), getting 

X,\ g;;X
M! I} (1 - x - E) • (9) 

The expansion of (9) correctly counts states in and on the 
boundary of the hyperparallelopiped defined by the highest 
state of A and the other I vertices of the weight diagram 
nearest to it, confirming our statement that internal states 
are correctly counted by labeling them with exponents of 
negative generators applied to the highest state. Outside the 
parallelopiped cancellations with the neglected numerator 
terms reduces the number of states, implying that those gen
erated by (9) are no longer independent there. 

Now let us deal with a degenerate IR (A l,A2"",A[) for 
which one or more Ai vanish. 

The negative roots which lead outside the weight dia
gram when applied to the highest state and must therefore be 
rejected as carriers of internal labels are those which are 
orthogonal to Mil (any root E not orthogonal to M,\ implies a 
Weyl reflection which sendsM,\ to another vertexM ~ of the 
weight diagram such that the edge from M,\ to M ~ is parallel 
to E). The roots orthogonal to Mil are those whose expan
sions Ej = ~inijai contain only a i corresponding to vanish
ing representation labels Ai [use (3) and (4)]. This affords a 
direct method of counting the rejected roots. 

It is easy to see that the rejected roots are just the nega
tive roots of the largest semisimple subgroup H of G which 
leaves the highest state invariant. Patera4 has pointed out to 
us that H is just the subgroup corresponding to the Dynkin 
diagram obtained from that of G by retaining only the ver
tices (and lines joining them) corresponding to vanishing la
bels of the degenerate IR; see Figs. 1-4. We give illustrative 
examples in the next section. For the number of internal 
labels we get 

hil = !(rG -IG) - !(rH -IH)' (10) 

x 

~~3 
~4 
FIG. 1. Dynkin diagram ofSO(8); the labels 1,2,3 pick out an SU(4) sub
group. 
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In particular, when one representation label vanishes the 
number of internal labels is reduced by one. 

We complete this section by showing that all internal 
labels other than those already rejected are actually re
quired. We start with Weyl's character formula, Eq. (8). 
Again consider states in the neighborhood of the highest 
state and suppose that the nonvanishing representation la
bels are sufficiently large. In the numerator of (3) we need to 
retain only those Weyl reflections S corresponding to roots 
orthogonal to M,\, and those generated by them, i.e., the 
Weyl reflections S' of the subgroup H of the preceding para
graph; those reflections must be retained because Mil is near 
the corresponding reflection planes. We get 

Xii = x-- RI (- WXS'(MA + R)/II (1 - X-E). (11) 
S' / £ 

The remarks following Eq. (9) concerning its region of 
validity apply equally to Eq. (11). Write R = R 1 + R2 where 
R 1 is half the sum of the positive roots of Hand R2 is half the 
sum of the other positive roots of G. Then S' M,\ = Mil and 
S'R2=R2' We find 

X,\ g;;XMA-R'I (-l)S'xS'R/II (1-x- E). (12) 
S' E 

Now according to Eq. (7) we may write 

I (- I)SxSR , =xR\ II(1-x- E
), (13) 

s· ~ 

where the product is over positive roots E' of the subgroup H; 
the negative roots to be rejected are - E'. We get the desired 
result 

(14) 

where now the product excludes negative roots which lead 
outside the weight diagram when applied to the highest 
weight. 

III. ILLUSTRATIVE EXAMPLES 

In this section we give a few (new) generating functions 
which illustrate the utility of our results. 

The first two deal with tensors whose components are 
polynomials in the components of the basic spin tensor of 
SO(8) or S0(12). 

For SO(8) the spinor transforms by the IR (0001), and 
for polynomial tensors we find, by looking at low degrees, 
the generating function 

F(U,D) = [(1 - UD)(1 - U 2)]-I. (15) 

When Fis expanded, F = ~ud UUD dCud ' the coefficient Cud 
is the multiplicity ofthe IR (OOOd ) among tensors of degree u. 

x 

~ _ ': /5 
~6 
FIG. 2. Dynkin diagram ofSO(12); the labels 1,3,5 pick out an 
SU(2) X SU(2) X SU(2) subgroup, 
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x X 

0--0>===".""--". 
2 3 4 

FIG. 3. Dynkin diagram of F4 ; the labels 2,3 pick out an SO(5) subgroup. 

Tensors other than the degenerate ones of type (oood) do not 
arise. 

Figure 1 shows the Dynkin diagram for SO(8). The ver
tices marked X, which correspond to vanishing labels, con
stitute the Dynkin diagram for SU(4). Since SU(4) requires 
!(15 - 3) = 6 internal labels, the generating function (15) 
should have 8 - 6 = 2 denominator factors. Eight is the di
mension of the original (0001) tensor; six is the number of 
internal labels for (oood) [12 internal labels for SO(8) minus 6 
for SU(4)]. 

As a second example we consider polynomial tensors in 
the components of a (()()()()()1) tensor of SOt 12). For the gen
erating function we find 

F(U,B,D,G) = [(1- UG)(1 - U 2B)(1 - U 3G) 

X(1 - U 4D)(1 - U 4)]-1 . (16) 

When F is expanded, the coefficient of U UB b D dG g gives the 
multiplicity of tensors of degree u transforming by the de
generate representation (Ob Od Og); no others occur as polyno
mials in (()()()()()1). The Dynkin diagram ofSO( 12) is shown in 
Fig. 2. The vanishing labels, marked X, correspond to 
SU(2) X SU(2) X SU(2). Considerations similar to those of the 
preceding paragraph show that five is here the correct num
ber of denominator factors. 

In the preceding two examples, since classical groups 
were involved, the counting of internal labels of degenerate 
IR's could have been done with the help of known branching 
rules for subgroup chains. Our remaining examples involve 
F4 and E7, for which complete branching rules are not 
known for any subgroup. 

Consider branching rules of F4 :J SO(9) for the degener
ate IR's (aOOd ) of F4. By looking at low IR's of F4 we find the 
generating function 

F(A,D;E,G,H,J) = [(1-AG)(I-AJ)(I-DE)(I-DJ) 

X (1 - D )( 1 - ADH )]- 1 • (17) 

The coefficient of A a D dE eG g H h J j in the expansion of (17) is 
the multiplicity of the SO(9) IR (eghj) in theF4 IR (aOOd). The 
Dynkin diagram for F4 is shown in Fig. 3. The vanishing 
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x x x 

2 3 4 5 6 

x 
7 

FIG. 4. Dynkin diagram of E7 ; the labels 2,3,4,7 pick out an SO(8) subgroup. 

labels, marked X, imply the subgroup SO(5) with 4 internal 
labels. Hence the number of internal labels for these degener
ate IR's of F4 is !(52 - 4) - 4 = 20. To this we must add 2, 
the number of nonzero F4 representation labels and subtract 
!(36 - 4) = 16, the number of internal SO(9) labels, to get the 
number of denominator factors in (17), namely 6. 

As a final example we consider polynomial tensors in 
the 56-dimensional (()()()()() 10) tensor of E7 • We find, heuristi
cally, 

F(U,A,E,G) = [(1 - UG)(1 - U 2A)(1 - U 3G) 
X(1 - U 4E)(1 - U 4

)] -I, (18) 

whose expansion gives, as the coefficient of U UA a E eG g, the 
number of (aoooegO) tensors of degree u; tensors other than 
these degenerate ones do not arise. The Dynkin diagrams of 
E7 is shown in Fig. 4; the vanishing labels, marked X, pick 
out the SO(8) subgroup. Considerations like those of the pre
ceding paragraph show that five is here the correct number 
of denominator factors. 
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Expressions are derived to write the basis vectors for an irreducible representation J.l of the 
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yields J.l. 
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I. INTRODUCTION 

It has been noticed l
•
2 that the symmetric group can be 

used to calculate recoupling coefficients for special unitary 
groups SU(N). The most obvious approach is to study the 
properties of the representations of the symmetric group in a 
tensor space. For this it is necessary to consider the outer 
product of the symmetric group in some detail. In particular, 
one must know how to express the basis vectors for an irre
ducible representation (irrep) fl in basis vectors belonging to 
irreps whose outer product gives fl. The factors which give 
these relations are called outer coefficients. These outer coef
ficients are very important because the recoupling coeffi
cients for SU(N) can be written3 as products of outer coeffi
cients and Clebsch-Gordan coefficients for the symmetric 
group independent of N. 

The outer coefficients can be calculated in a number of 
ways. The first possibility is to use projection operators and 
the matrix form of the representations of the symmetric 
group. This is done in Sec. II. The second method generates 
the outer coefficients for Sp recursively from the outer coeffi
cients for Sp _ I . Sections IV and V deal with this method. 
Section VI gives a graphical rule for a f~w special cases. Our 
notation for the representations of the symmetric group is 
given in Appendix A. 

II. OUTER COEFFICIENTS 

Suppose fl is an irreducible representation (irrep) of Sp. 
It is defined in a vector space V ( fl) with an orthonormal basis 
elJ:l. The matrix elements of fl are written as 

D il'l(s)elJ:' = 1: eIJ:lD IJ:IM(s) (1) 
M' 

for all elements s of S p' We choose the standard form for the 
vectors elJ:l. Standard means in this context that the basis 
vectors are labeled with Yamanouchi symbols M and that 
the matrix elements of fl are in the "Young's orthogonal 
form" [see Appendix A, Eq. (40)]. We restrict ourselves to 
those elements s of Sp that are also contained in the subgroup 
SPI X SP2 with PI + P2 = p. Then we may write s = SIS2' 

where Sl and S2 are elements of SPI and SP2' The operators 
D (1'1(SIS2) for alls\ E SPI andsz E SP2 form a representation of 
the subgroup SPI X SP2' This representation is in general re
ducible. It can be reduced completely in irreps K X A of 
SPI X SP2' This means that we can construct subspaces 
V(K X A; fly)ofV( fl)thatareinvariant underfl. Therestric
tion of fl to such a subspace V(K X A; flY) is equivalent to 

K X A. We need the extra index y to distinguish the different 
equivalent subs paces. 

In each of the invariant subspaces we choose a properly 
adapted basis for the product K X A. These basis vectors 
e~iA; I'yl are also orthonormal. The two orthonormal bases in 
V ( fl) are connected by a unitary transformation. The matrix 
elements of this transformation we call outer coefficients. 
The relation is written as 

or 

e(1'1 -
M-

(2a) 

(2b) 

where S ~tk is an outer coefficient for SPI X SP2 C Sp. It 
appears that the phases of the basis vectors e~iA; I'yl can be 
chosen in such a way that the outer coefficients are real. 
Since the outer coefficients are elements of a unitary matrix, 
they satisfy the following orthogonality relations: 

1: S ;;:kS ~~!:r: = t5(K, K')t5(A, A ')O(K, K ')t5(L, L /)t5(y, y/) 
M 

and 

" SKAI'YSKAl'y' - £(M M') L KLM KLM' - u, . (3) 
KAKLy 

The asterisk, denoting complex conjugation, is superfluous 
when the coefficients are real, as is the case for the symmetric 
group. From now on we will omit this asterisk everywhere. 

The problem is: How to calculate these outer coeffi
cients? Or to state it differently: How to construct the basis 
vectors e~iA;I'Yl? For this we use the projection and shift 
operators defined in Appendix B. They are equal to 

p(KXAl - f(K)f(A) "DiKxAl (s S )Dil'l(s s) (4) 
KL,K'L' - I I L KL.K'L' I Z 12 , 

P\,P2' sls2 

where s\ and S2 are elements of SPI and SP2 respectively. 
D (1'1(s\S2) is the representation of SPI XSP2 subduced from fl. 
We use only real matrix elements for the irreps of the sym
metric group. Therefore, we have omitted the complex con
jugation. The dimensions of the representations K and A are 
written asf(K) andf(A ). Applying the shift operator to a basis 
vector elJ:l yields 
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f().) '" D (A) ( )D (JL) () = --, £.. L. I S2 M. KM'(P2) S2 
P2' 52' M 

X15(K,pIM'(p2))15(1, M'(pI))e~). (5) 

In this equation the labels K I, L I = 1, 1 correspond to the 
first Yamanouchi symbols in the standard ordering for K and 
). (see Appendix A). We have used the fact that the permuta
tions S I and S2 commute. Furthermore, the following general 
orthogonality relation has been used for the matrix elements 
of irreps of a group G of order f( G ). 

L D~1(g)D~:~,(g)· =f(G) 15(p,p')15(M, M')15(N, N ' ), 
~G f(p) 

(6) 

wheref( p) is the dimension of the irrep p. 
According to the prescription given in Appendix B all 

we have to do is: 
-Apply P\,.,tl~) to all vectors e~!. 
-Orthonormalize the result. This means that the orthonor-
mal vectors e\~XA; JLY) are the result of the action of the projec
tion operator upon a certain linear combination of vectors 
e~!. They can be expressed as 

e(,.,XA;JLY)_P(KXA) "'a(r M')e(JL) - "'SKAJLy (JL) 
II - 11.11 £.. ' M' - £.. lIMeM' (7) 

M' M 

-Let the other shift operators act upon the same linear com
bination of vectors e~! . Again the resulting vectors e~rA; JLY) 

are expressed as a linear combination of vectors e~) 

e(KXA;JLY) - p(KXA) '" air M')e(JL) - '" SKAJLy e(JL) (8) KL - KL.II £.. ' M' - £.. KLM M . 
M' M 

It is possible to simplify the outer coefficients. In Ap
pendix A we show that for elements S2 of SF, the matrix 
elements of the representation p only depend upon the part 
of the Young diagram associated with M (P2)' So if we define 
K as being the diagram belonging to the tableau K, the follow
ing relation holds for the matrix elements appearing in (5): 

D ~.)KM'(P2)(S2) = 15(K, M(PI))D ~(;~), M'(P2) (S2) , (9) 

The number 15(K, M (p I)) can always be factored out of S ~tk 
in a trivial fashion. This means that the outer coefficients do 
not really depend upon K. Therefore, we will represent the 
outer coefficient by the notation (i ~I P~) ) 

(10) 

We will now study the case in which there is no degener
acy r present and derive an expression for the outer coeffi
cients. When the product is not degenerate, it is sufficient to 
choose one vector e~! for which the result of the projection 
operator P \"{I ~ ) is unequal to zero. The normalization is then 
carried out by dividing by the norm N of the result. The 
square of this norm is equal to 

N 2 _f().) '" DIA)( )DIJL) ( ) - --, £.. 1.1 S2 IM'lp2).IM'(p2) S2 
P2' 52 

(11) 
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The result of the other shift operators must be divided by the 
same norm. So the outer coefficient will be 

S KAJL - 1 f().) '" D (A ) ( )D (JL) () 
KLM ----, £.. L.I S2 M,KM'(P2) S2 . 

N P2' 52 
(12) 

For the shorthand outer coefficients defined in (10) a similar 
formula holds: 

f). P/K) = ~f().) '" DIA) (s )D(JL/K) , (s) \L M() N I £.. L,I 2 Mlp2),M Ip2) 2 • 
P2 P2' 52 

(13) 

We have fixed an overall phase by choosing some particular 
M I and dividing out the norm (instead of the norm times 
some phase factor). It turns out that in this particular case 
the sign of the result is independent of the choice of M I (pro
vided, of course, that the result is unequal to zero). 

Consider now the degenerate case. We adopt the fol
lowing phase convention: any nonzero outer coefficient 
which has the following properties is positive: 
-it must contain the first L in the standard ordering of the 
different L 's belonging to ).; 
-it has the first possible M for p (that means the outer coef
ficient is nonzero). 

III. SOME PROPERTIES OF THE OUTER COEFFICIENTS 

We will derive some useful equations for the outer coef
ficients. Apply D (JL}(s IS2) to (2b), where s I is an element of SPI 

and S2 of SP2' For the left-hand side of the equation this re
sults in 

"'eIJL)D(JL) (ss)- '" SKAJLyeIKXA;JLY)DIJL) (ss)· (14) £.. M' M' M I 2 - £.. KLM' KL M' M I 2 , 
M' KAy 

KLM' 
for the right-hand side we find 

L S~tk L e~?i~;JLY)D~)'K(SI)D~,jJS2)' (15) 
KAy K'L' 
KL 

Putting (14) and (15) together, we find, after removing the 
vector from the equation, interchanging the left- and right
hand side and choosing s I = e, 

'" S K,iJLy D (A) () '" S K,iJLy D ( JL) ( ) £.. KL'M LL' S2 = £.. KLM' M'M S2 . (16) 
L' M' 

From now one we will use the shorthand notation given in 
(10) for the outer coefficients. We also introduce the abbre
viation: 

(17) 

for the skew-symmetric Young diagram found by subtract
ing K from p. The label N is used to denote the corresponding 
part of the Yamanouchi symbol M [we used to write this in 
the form M (P2)]. Equation (16) will then look like 

v 

N 

V 

N' 
(18) 

In the following we will also omit the argument S2 from the 
representation matrices D. Shifting the outer coefficient to 
the right yields 
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D~i,D(A, A ')D(y, y') 

v v y,) . 
N' N 

(19) 

We can shift the outer coefficient in (18) to the left: 

L ~ ;, Y)D~i'(:, v y) =D~)'N' (20) 
ALL'y N 

IV. RECURSION COEFFICIENTS 

The method described in Sec. II to calculate the outer 
coefficients has the disadvantage that for larger values of P2 
the work becomes extremely time-consuming. To solve this 
problem, we show that the outer coefficients for a given P2 
can be calculated recursively from coefficients for P2 - 1. To 
obtain the recursion coefficients which relate the outer coef
ficients for P2 and P2 - 1, one has to solve a simple set of 
coupled linear equations. 

Consider the elements S2 of Sp, which leave P invariant. 
They form a subgroup SP2 _ J of SP2' For these elements we 
may write 

D ifi, (S2) = D(Lp, L ;)D ~.~L/(S2) 
and 

D ~~, (S2) = D(Np, N;)D ~:~)(S2) . (21) 

We have introduced here the subscript asterisk to de
note that the last number of a Yamanouchi symbol M has 
been omitted: M. = M t ,,· Mp _ J • Inserting the restriction 
(21) into (19), one finds 

D ~.~L/8(Lp, L ; )D(A, A ')8(y, y') 

y,) 
D(Np, N;). 

v v 

N N' 
(22) 

We apply now Eq. (20) to representations A ILp or plRp of 
SP2 _ J and vi Np of Sp _ J (limited to the last P2 - 1 objects). 
The corresponding Yamanouchi symbols are L. or R. and 
N •. We find 

D1v1Np) = (PIRp vlNp ) N:N. P/~,8 R. N~ 

R.,R: 

XDIPIRr{PIRp vlNp ). R.R. R ~ N. 
(23) 

One now inserts (23) in (22) and shifts two outer coefficients 
to the left-hand side to find 

L (:, v y)(p~~p vlNp )DIAlLp) 
N N. L.L: 

L:.N. 

R~J~ 
v Y)(P~~p vlNp )D1PIRp) 

N' N~ R.R: ' 

(24) 

where L; = Lp and N; = Np is assumed. The above equa
tion can also be written in the following form: 
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= L Z(A, Lp, v, Np' y,pIRp,(3)L.R.D':.::r), (25) 
R. 

where we have defined 

(26) 

Now we suppress all indices which are the same in the left
and right-hand side of (25). The simplified notation is 

(27) 

The above equation is in fact nothing else than a matrix 
equation for D and Z. We will apply Schur's lemma to (27). 
This lemma says that from (27) follows that either Z is zero 
when pi Rp i= AI Lp or else Z is a mUltiple of the unit matrix 
whenplRp =AILp. Therefore, 

Z(A, Lp, v, Np' y,pIRp,(3)L.R. 

=8(AILp,pIRp)8(L.,R.)R1'}.,P . 

Now we fill in the definition (26) of Z: 

(28) 

(29) 

Shifting one outer coefficient to the right-hand side of the 
equation yields the recursion relation we were looking for: 

G ; y)= ~R1'}.,PC:~P v~~P ) (30a) 

or 

S"A/t r _ "R A /tIl< 'YS" AILp /tIMp 
(3 (30b) KLM - £... L~ptJ KL.M. . 

tJ 
With the help of (30a) or (30b) we are able to calculate all 
outer coefficients for P2 when the outer coefficients for 
P2 - 1 and the recursion coefficients R 1'}.,P are known. For 
P2 = 1 we have 

(31) 

It is straightforward to prove that the recursion coefficients 
satisfy the following orthogonality relations: 

L R 1';Jr'pR 1;t'p8(A ILp' A 'IL;) 
N'p 

= 8(A, A ')8(Lp' L ;)8(y, y') (32a) 

and 

L R i';Jr'pR 1'J,;p ,8(A ILp, A 'IL;) 
ALp'Y 

= 8 (Np, N ;)D( /3, /3') . (32b) 

In (32b) the factor 8(A ILp, A 'IL;) means that one has to 
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sum all A and Lp for which A / Lp is equal to some given 
A '/L;. 

V. RELATIONS FOR THE RECURSION COEFFICIENTS 

In this section we derive a set of equations that can be 
used to calculate the recursion coefficients. Consider the 
transposition (p - 1, pl. According to Eq. (40) the matrix ele
ment for this element of the symmetric group is given by 

D!f,~(p - 1,p) 

= a(A, Lp, L p_ 1 )D(L;, Lp)D(L;_ l' L p_ 1 )D(L ~., L •• ) 

+ r(A, Lp, L p_ I )D(L;, L p_ I )D(L ;-1' Lp)D(L ~" L •• ) 
(33) 

and the same with v, N instead of A, L. We have used the I 

The above set oflinear equations can be solved using also the 
orthogonality relations (32). For each A and v it will have as 
many independent solutions as there are equivalent sub
spaces V (K X A; JlY) of V (Jl). These solutions are distin
guished from each other by the label y. 

VI. GRAPHICAL RULES 

A graphical rule to calculate the recursion coefficients 
for the case that A = [p] or A = [lP ] can be given. 

Consider first the case A = [p]. Suppose one wants to 
calculate the recursion coefficient R i~p' For A = [p] (and 
also for A = [lP ]) there are no degeneracy labels yand/3 
present. 

Choose the first possible N. in the standard ordering to 
form a Yamanouchi symbol N with Np • Then the above re
cursion coefficient is equal to 

R i~p = (p)-I12 IT [1 + a(v, Np , N q )] 1/2. (36) 
q#p 

For A = [l P ] the formula is 

Ri~p=E(S)(p)-1/2 II [l-a(v,Np ,Nq l]1/2, (37) 
q#p 

where E(S) is the sign of the permutation s which transforms 
the first Yamanouchi symbol in the standard ordering into 
the Yamanouchi symbol N. The label q runs from p I + 1 to 
p-l. 

As an example we consider p = 5, P2 = 3, 

v = [221]![ 11] e:::P and Np = 2. Then N. = 13. So the 

permutation s which transforms the first Yamanouchi sym
bol for v (which is equal to 123) into N = 132 is equal to 
s = (23). Therefore, s is odd. The inverse axial distances in-
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notation M •• = M1···Mp _ 2 for a Yamanouchi symbol M 
with the last two numbers omitted. Furthermore, u is the 
inverse of the axial distance p defined in (A2) and 
r = (1 - u 2)1/2. Inserting (33) in (18) yields 

{u(A, Lp, L p_ l ) - u(v, Np, Np_ dl~ ; 

v 

N 

(34) 

We have used r(A, Lp, Lp _ I ) = r(A, Lp _ I' Lp) . For the re
cursion coefficients we find 

(35) 

volved are 
a(2,1) = - 1 and u(2,3) = ~. 

Therefore, for A = [1 3
] and Lp = 3, 

R i~p = - (3)-1/2(1 + 1)1/2(1 _ ~)1/2 = _ ml/2 . 
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APPENDIX A: THE SYMMETRIC GROUP 

1. General remarks 

A Young diagram Jl = [ JlI"'Jl p ] is a figure containing 
p boxes ordered in prows oflength JljJ with the properties: 

JlI>"'>Jlp > 0 and Jl! + '" + Jlp = P . (AI) 

A standard Young tableau is a diagram which contains the 
numbers 1 to p in such a way that the numbers in each row 
increase from left to right and in each column increase from 
top to bottom, 

Each standard tableau can be written in a compact way 
by a Yamanouchi symbol M = M ! ... M p • This is an array of p 
numbers, the M; being the rows in the standard tableau in 
which the number i appears. For example, the standard 
Young tableaux and Yamanouchi symbols for the diagram 
[31] are given by 

~ =1112, ~=1121 
and 
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[IIillJ 
~=I2II. 

Note that our notation differs from the one used by Hamer
mesh.4 The Yamanouchi symbols belonging to some dia
gram (and therefore the corresponding Young tableaux) can 
be ordered. The symbol M comes before the symbol N if 
M < N when the symbols are regarded as composite numbers 
(lexicographic ordering). 

Consider two boxes x and y in a Young diagram /1-. Box 
x is at the position (a,b ), where a denotes row and b column, 
and y at (e,d). The axial distance p( /l; x, y) between these 
boxes is equal to 

p(/1-; x,y) = (b - a) - (d - e). (A2) 

It is the number of steps (horizontal or vertical) from x to y. 
The steps are counted positive going down or to the left and 
negative when going up or to the right. 

The different irreducible representations (irreps) of Sp 
can be represented by Young diagrams. Let the irrep /1- of S 

• p 
be defined III a vector space V ( /1-). The orthonormal basis 
vectors e'j;l in this space can be labeled by the Yamanouchi 
symbols M = M 1···Mp • The matrices of the transpositions 
(i, i + 1) in the "Young's orthogonal form"s.6 are given by 

D I PI(i,i + 1 )e'j;I'''M 
, p 

= ueipi + (1 - u 2)II2elpl 
M.··.Mp M.".Mi + \Mj' .. Mp , (A3) 

where 0== IIp( /1-; M; + I' M;) is the inverse axial distance 
between the boxes corresponding to M; + I and M;. 

2. Subgroup representations 

Consider subgroups SPl and Sp2 of Sp' where 
PI + P2 = p. Here SPl and Sp, are the permutation groups of 
the first P I objects and the last P2 objects. The Yamanouchi 
symbol M for the symmetric group Sp is adapted for the 
subgroups SPl and Sp, 

M MI·"Mp,Mp, + I ".Mp M(ptlM(P2)' (A4) 

The part M (p I) of the Yamanouchi symbol M forms again a 
valid Yamanouchi symbol for the group SPl' It belongs to a 
Young tableau for SPl which can be obtained from the tab
leau M of Sp by removing the boxes with the numbers 
PI + 1, ... , p. This new tableau for SPl belongs to a Young 
diagram thatisdenotedas/1-IM(P2)or/1-IMp, + I ."Mp' From 
(A3) it follows immediately that the matrix elements of an 
irreducible representation of any transposition of the sub
group SPl depend only upon that part of the Young diagram 
where the numbers I'''',PI have been put. Hence the same 
holds for general permutations in the subgroup SPl . So the 
elements S I of SPl leave the last P2 numbers in the Yamanou
chi symbol invariant. We have 

D I pl(s tle'j;! pJiMI p,1 

(A5) 
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For transpositions (and also for general elements) of the sub
group SP2 holds analogously that the matrix elements of the 
irreducible representations only depend upon the form of 
that part of the diagram where the numbersPI + I, ... , P have 
been placed. These elements S2 of SP2 leave the first P I 
numbers in the Yamanouchi symbol invariant: 

D I"I( ) Ipi 
S2 eMlpJiMlp21 

(A6) 

The skew-symmetric diagram obtained from the diagram /1-
by omitting the boxes M I , ... , Mp, will be written down as 

/1-IM(ptl or /1-IMI,,·Mp, or /1-/K, (A7) 

where K is the Young diagram which corresponds to the 
boxes which contain the numbers I,,,,,PI' 

APPENDIX B: PROJECTION AND SHIFT OPERATORS 

Consider a vector space V where a representation D of a 
group G is defined. Suppose D contains the irrep /1- r ( /1-) 
times. The shift operator? is defined by 

pipi , = f(/1-) " Dipi ,(g)*D(g) 
MM f(G)7' MM , 

(BI) 

wheref( /1-) is the dimension of /1- andf(G) is the number of 
elements g of G. P is a projection operator if M = M'. When 
the basis vectors of the irreducible subspaces are given by 
e~1'I, the following relations hold: 

(B2) 
P'j;1,P~~, = 8(/1-, v)8(M', N)P 'j;1 , . 

The procedure for constructing a basis for the irreducible 
subspaces is as follows: 
-apply P \jl to all vectors of V (1 means the first basis vec
tor; 
-orthonormalize the result; this will lead to vectors elt1'l, 

where r runs from 1 to r (/1-); 
-determine the vectors 

elp1') - pip) elpy). 
M - M.I I , (B3) 

-the vector spaces Vi P1') spanned by the vectors e'j;1') will 
form invariant subs paces of V, such that the restriction of D 
to Vi P1') is equivalent to /1-. 

APPENDIX C: TABLE OF RECURSION COEFFICIENTS 

We have tabulated the recursion coefficients R i';Xrjj for 
P2 = 2 and P2 = 3. In these cases there is no degeneracy label 
/3 present. In Table I we denote the inverse of the axial dis
tance between the box in the lowest left corner of a diagram v 
and the box in the upper right corner by x. For example, VI 
(see Fig. 1) could stand for /1-1 where x is equal to -!. One 
sees here that when boxes of a diagram v in the table touch 
only at the corners they can be shifted with respect to each 
other. For the diagram V 2 (see Fig. 1) the situation is some
what more complicated. Number the boxes according to the 
first Yamanouchi symbol. This means that 1 is the upper 
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TABLE I. Table of recursion coefficients. 

P2= 2 A. [2] 
v N2 L2 I 

[2] I I 
[11] 2 0 

cP 
2 (I +x)/2 

(I -x)/2 

P2 = 3 A. [3] 
v N3 L3 I 

[3] 

cB 2 0 

2 
2(1 +2x) 

o::P 3(1 +x) 

(I-x) 

3(1 +x) 
[21] 2 0 

I 0 

ctTI 2 (I + 2x)/3 

I 2(1 -x)/3 

[111] 3 0 

ff 3 0 

I 0 

3 0 

J1 2 0 

# V= 

A. L3 N3 r 

[3] 3 
2 
I 

[111) 3 3 
2 
I 

[21] 2 3 
2 
I 
3 
2 
I 

2 2 3 
2 
I 

2 3 
2 

FIG. 1. Graphical representation ofthe diagrams VI' Ji-I' and V 2. 
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[11] 
2 

0 
I 

(I -x)/2 

-(I+x)/2 

[21] [21] [111] 
2 I 3 

0 0 0 

I 0 

(I-x) 
0 

3(1 +x) 

2(1 + 2x) 
0 0 

3(1 +x) 
0 0 

0 I 0 

2(I-x)/3 0 0 

- (I + 2x)/3 I 0 

0 0 I 

I - (I + 2x)/3 2(I-x)/3 

0 2(I-x)/3 (1+2x)/3 

0 2(1 +2x) ~ 
3(1 +x) 3(1 +x) 

(I-x) 2(1 +2x) 

3(1 +x) 3(1 +x) 

RAry 
L3N } 

(I + y)(1 + x)/3 
(I + z)( I - y)/3 
(I - z)(1 - x)/3 
(I - y)(1 - x)/3 
- (I - z)(1 + y)/3 

(I + z)(1 + x)/3 
a/(3(y +z)) 
- (I + z)(1 + y)(1 - y)(1 + x)(y + z)/(3a) 
- (I - z)(1 + y)(1 + x)(1 - x)(y + z)/(3a) 
- (I + z)(1 - z)y4/(a(y + z)) 

(I +z)(1 +y)(l-y)(I-x)(y+z)/a 
(l-z)(l-y)(1 +x)(l-x)(y+z)/a 
0 
(I - z)(1 - x)(y + z)/a 
-(I +z)(l-y)(y+z)/a 

4(1 +y)(l-y)(1 +x)(l-x)(y+z)/(3a) 
(I - z)(1 + x)(1 - 2yf(y + z)/(3a) 
- (I + z)(1 + y)(1 - 2x)2( y + z)/(3a) 

box, 2 is the middle box, and 3 is the lower box. Then x is the 
inverse axial distance from 3 to 1, y from 3 to 2,and z from 2 
to 1. The variables x, y, and z are related via 

l/x = l/y + lIz . 

Throughout the table we have used the abbreviation 

a= - zy2 - 2zy + 2z _ y2 + 2y . 

The recursion coefficients in the table yield outer coefficients 
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with phases according to the convention of Sec. II. A vi 
must be added over each entry in the table. For example, 
- (1 + x)l2 means - [(1 + x)l2j1/2. 
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Complementary group with respect to SO(n) 
G. Couvreur, J. Deenen, and C. Quesnea) 

Physique Theorique et Mathematique CP 229. Universite Libre de Bruxelles. Bd. du Triomphe. B 1050 
Brussels. Belgium 

(Received 20 July 1982; accepted for publication 12 November 1982) 

We look for a complementary group with respect to SO(n) within either irreducible representation 
qdn) or qdn - I~) of the group Sp(2dn,R ) oflinear canonical transformations in a 2dn-dimensional 
phase space. We prove that: (i) such a group is Sp(2d,R ) when n = 2q + lor n = 2.q>2d; (ii) it is 
SU(d,d) when n = 2 and d> 1; (iii) it does not exist when n = 2, d = 1, or 2 < n = 2q<2d. 

PACS numbers: 02.20.Qs, 02.20.Rt 

I. INTRODUCTION 

The notion of complementary groups, introduced by 
Moshinsky and Quesne some years ago, I plays an important 
part in physical applications. Two groups G I and G2, whose 
direct product is a subgroup of a larger group H, are referred 
to as complementary within a definite irreducible represen
tation J-l of H, if there is a one-to-one correspondence 
between all the irreducible representations A I and A2 of G I 
and G2 contained in this irreducible representation of H. 
Then all the basis states of the irreducible representation J-l of 
H which transform irreducibly in the same way under GI , 

i.e., belong to the same row of equivalent irreducible repre
sentations ofG I characterized by AI' form a basis for the 
irreducible representation A2 of G2 , and vice versa. In other 
words, the multiplicity of any irreducible representation of 
one of the subgroups, contained in the irreducible represen
tation J-l of H, is equal to the dimensionality of the corre
sponding irreducible representation of the complementary 
subgroup. 

Various complementary subgroups of the real symplec
tic group Sp(2N,R ) 2 are known when N factorizes into a 
product of two integers d and n.2

-
5 Such are the full ortho

gonal group O(n) and the real symplectic group Sp(2d,R ), 
corresponding to the group chain 
Sp(2dn,R PSp(2d,R )XO(n).2.4 However, the complemen
tarity relationship with respect to Sp(2d,R ) does not remain 
in general valid when O(n) is restricted to its rotation sub
group SO(n). This property, which was already implicitly 
contained in Ref. 4, was recently stressed by some of the 
authors.6 The purpose of the present paper is to further in
vestigate this point and to look for a subgroup ofSp(2dn,R ), 
complementary with respect to SO(n), in those cases where 
Sp(2d,R ) does not fulfill the complementarity requirements. 

In Sec. II, we begin by establishing that the complemen
tarity relationship between SO(n) and Sp(2d,R ) does not hold 
if and only if n is even and not larger than 2d. Sections III-V 
are devoted to the construction of a complementary group 
with respect to SO(2). In Sec. III, we show that 
SU(d,d) X SO(2) is a subgroup ofSp(4d,R ). We build the Lie 
algebra ofSU(d,d ) in Sec. IV and prove the complementarity 
ofSO(2) and SU(d,d) for d > 1 in Sec. V. By generalizing the 
procedure followed in Sec. IV, we demonstrate in Sec. VI 
that no subgroup of Sp(2dn,R ) is complementary with re
spect to SO(n) for even values ofn such that 2 < n<2d. Final
ly, Sec. VIII summarizes the conclusions. 

II. DISCUSSION OF THE COMPLEMENTARY 
RELATIONSHIP BETWEEN SO(n) AND Sp(2d,R) 

The real symplectic group Sp(2dn,R ) is the group of 
linear canonical transformations in a 2dn-dimensional phase 
·space. 2 In this space, the coordinates and momenta are de
noted by Xis andpis' i = 1, ... ,d ands = 1, ... ,n. Let us definexs 
and x by 

(2.1) 

respectively. Similar relations hold for Ps and p. A linear 
canonical transformation from the coordinates and mo
menta Xis' Pis to new coordinates and momenta Xis' Pis' 

is represented by a 2dn X 2dn real symplectic matrix 

i.e., a real matrix such that 

SKS=K, 

where the matrix K is defined by 

K = ( 0 I) 
- I 0 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

and the tilde stands for transposed. On the right-hand side of 
Eqs. (2.3) and (2.5), all the submatrices are of dimension 
dn Xdn. The condition (2.4) implies the following restric
tions on the real matrices A, B, C, D: 

and 

BA=AB, 
CD= DC, (2.6) 

The generators ofSp(2dn,R ) are more easily written in 
terms of the boson creation and annihilation operators, de
fined as usual by 

1]is = 2-1/2(XiS - ipiS)' tiS = 2-1/2(XiS + ipiS)' 

i = 1, ... ,d, s = 1, ... ,n, (2.7) 
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whose commutation relations are 

['TJis,'TJjt] = [Sis,Sjt] = 0, [Sis ,'TJjt ] = ~ljst. (2.8) 

They are given by the expressions2 

D l.jt = 'TJis'TJj" 

and 

E is.jt = M'TJisSjt + Sjt'TJis) = Cis,jt + !~ij~S" 
where 

(2.9) 

Cis,}t = 'TJisSjt (2.10) 

denotes the generators of the U(dn) subgroup. Their commu
tation relations are given by 

[D l,jt,D ts',lt' ] = [DiS,j"Drs'./t' ] = 0, 

[Dis,jt,D ts',lt' ] = ~ii'~ss'~'t',jt + ~ij'~st,Ei's',jt 
+ ~j"~ts,Elt',is + ~iJ'~tt,Ei's"iS' (2.11) 

[Eis,jt,D tS'.lt' ] = ~j"~ts,D l./t' + ~ff~tt,D l,i'S" 

[EiS.jt,Di's'./t' ] = - ~ir~ss,Djt.lt' - ~i]'~st,Djt,i'S" 

[Eis,j"E"s'./t' ] = ~ji'~ts,Eis.lt' - ~i]'~st,Ei's',jl' 
In addition, they satisfy the following symmetry properties: 

and 

Eis,jt = [Ejt,iS] t, (2.12) 

where the dagger stands for the Hermitian conjugate. The 
set of all boson states belongs to one of two irreducible repre
sentations of the group Sp(2dn,R ), which can be character
ized by their lowest weight «(!)dn) or «(!)dn - I~), according as 
the boson number is even or odd. 2 

Let us consider the group chain2 

Sp(2dn,R PSp(2d,R )XO(n). (2.13) 

Here O(n) denotes as usual the full orthogonal group in n 
dimensions, whose connected piece, the rotation group 
SO(n), is generated by the operators 

Ast = - i(Cst - C's), 

where 

(2.14) 

(2.15) 

is a generator of the U(n) subgroup ofU(dn). The generators 
ofSp(2d,R) are obtained by contracting those ofSp(2dn,R) 
with respect to index s, and are given by 

Dij =DJ; = L'TJis'TJjS' 
s 

Eij = (Eji)t = L ('TJiSSjS + Sjs'TJiS) = Cij + ~n~ij' 
s 

where 

Cij = L Cis,}S (2.17) 
s 

is a generator of the U(d) subgroup ofU(dn). 
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It was shown by Chac6n4 that the irreducible represen
tations of O(n) and Sp(2d,R ), contained in either irreducible 
representations (mdn ) or (mdn - Il ) ofSp(2dn,R ), are essen
tially characterized by the same partition [AI' A2 '''A,] into r 
parts, where r = min(d,q) and q = [n/2] is the rank ofO(n). 
By essentially, we mean that if [AI, A2'''A, ] specifies an O(n) 
irreducible representation, then the Sp(2d,R ) corresponding 
one is characterized by the lowest weight (Ad + n/2, ... , 
A2 + n/2, Al + n/2) or «(n/2)d - q, Aq + n/2, ... , Al + n/2) 
according as d <.q or d > q. The groups Sp(2d,R ) and O(n) are 
therefore complementary within either irreducible represen
tation of Sp(2dn,R ).2 

When O(n) is restricted to its rotation subgroup SO(n), 
the irreducible representation [A I , ... ,..i, ] decomposes ac
cording to the following branching rule 7: [A I'''A,] remains 
irreducible if n = 2q + 1 or if n = 2q and Aq = 0, and sepa
rates into two irreducible representations, respectively char
acterized by [AI"'Aq _ I Aq ] and [AI"'Aq _ I - Aq ], if n = 2q 
andAq #0. Consequently, whenever n = 2q + 1 or 
n = 2q)2d, SO(n) and Sp(2d,R) are complementary within 
either irreducible representation ofSp(2dn,R ), and the rela
tion between their associated irreducible representations re
mains the same as for O(n) and Sp(2d,R ). However, when 
n = 2q<.2d, there is a two-to-one correspondence between 
the irreducible representations ofSO(n) and Sp(2d,R ), which 
are therefore not complementary. 

We are then faced with the following problem: Does a 
complementary group with respect to SO(n) within either 
irreducible representation of Sp(2d,R ) exist when 
n = 2q <. 2d ? We shall answer this question in the following 
sections, starting with the simplest case corresponding to 
n =2. 

III. THE GROUP CHAIN Sp (4d,R):::> SU(d,d)X SO(2} 

In the present section, we are going to construct the 
subgroup oflinear canonical transformations in a 4d-dimen
sional phase space, which are invariant under SO(2). For this 
purpose, it is convenient to use creation and annihilation 
operators in polar coordinates, 'TJia and Sia' i = 1, ... ,d, 
(T = +, -, defined in terms of 'TJis' Sis' i = 1, ... ,d, s = 1,2, 
by 

-2- 1/2( +' ) 'TJi ± = + 'TJil _ l'TJi2 , 

Si± = +2- 1/2(Sil +iSi2) = ('TJi±)+' 

Let us introduce 

(

'TJla) 
l1a = 'TJ2a , 11 = (~:) , 

'TJda 

(3.1) 

(3.2) 

and ~a' ~, defined by similar relations. Note that for simplici
ty's sake, we use lower indices to denote both the covariant 
components of 11 and the contravariant ones of ~. By com
bining Eqs. (2.7) and (3.1), we obtain 

(3.3) 

where U is a 4d X 4d unitary matrix, defined by 
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U = 2- 1/2(V 
V· 

-IV) 
IVt ' 

in terms of the 2d X 2d unitary matrix 

V=2- 1/2(-1 -11). 
1 -11 

Here the asterisk stands for complex conjugate. 

(3.4) 

(3.5) 

The linear canonical transformation (2.2) induces a 
transformation from the creation and annihilation operators 
'TJio- and Sio- to new creation and annihilation operators Tfia 

andtia' 

(3.6) 

where 

(3.7) 

and .sf, fJIJ, 'if, ~ are 2d X 2d complex matrices. The latter 
can be easily expressed in terms of the submatrices A, B, C, D 
ofEq. (2.3). We shall, however, not proceed this way, and 
instead write the conditions to be fulfilled by .sf, fJIJ, 'if, ~. 
From Eq. (2.4) and the relation 

UKU = iK, (3.8) 

Y must satisfy the same condition as S, i.e., 

YKY = K. (3.9) 

Consequently, .sf, fJIJ, 'if, ~ are restricted by conditions 
similar to Eq. (2.6). In addition, Y must preserve the Hermi
ticity properties of the creation and annihilation operators, 
so that 

~ =.sf. 

and (3.10) 

'if = fJIJ·. 

Therefore, Y can be written as 

,Y = (~. ~.), (3.11) 

(3.12) 

Let us consider now the canonical transformations cor
responding to rotations in the two-dimensional space asso
ciated with index (7. They are represented by the 4d X 4d 
matrices 

(
9 0 ) 

~ = 0 9·' (3.13) 

where 

(3.14) 

and 0 is some real number such that 0..;;0..;;217'. The canonical 
transformations invariant under SO(2) are represented by 
those matrices (3.11) which commute with all the ~ matri
ces. Let us decompose.sf and fJIJ intod Xd submatrices.sf;. 
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fJIJ;. i = 1, ... ,4, such that 

.sf = (.sf 1 .sf 2), fJIJ = (fJIJ 1 fJIJ 2) . (3.15) 
.sf 3 .sf 4 fJIJ 3 fJIJ 4 

The condition [~, Y] = 0 leads to the following form for 
Y: 

C 
0 0 

~') Y= ~ .sf4 fJlJ 3 0 

fJIJ* .sf* o ' (3.16) 
2 I 

fJlJT 0 0 .~! 

where, from Eq. (3.12), .sf I' fJIJ 2' fJIJ T, and .sf! are restricted 
by the conditions 

.sf1.sf1t - fJlJ 2fJIJ/ = I, 
fJIJ T ij 3 - .sf! d 4 = - I, 

.sf 1 ij 3 - fJIJ 2d 4 = o. 
(3.17) 

The matrices (3.16) form a 4d X 4d matrix representation of 
the group U(d,d), whose elements are the 2d X 2d matrices 

(3.18) 

satisfying Eq. (3.17). We have therefore established that 
U(d,d), or more exactly a 4d-dimensional representation 
thereof, is a subgroup of Sp(4d,R ). 

Since SO(2) is an abelian group, any matrix ~ belongs 
to the 4d-dimensional representation of U(d,d ), and corre
sponds toY = e - iOI. We are thus led to split U(d,d) into the 
direct product of SO(2) and the unimodular subgroup 
SU(d,d). We then obtain the following group chain: 

Sp(4d,R ):::> U(d,d )",SU(d,d) X SO(2). (3.19) 

The Sp(2d,R) group ofEq. (2.13) is a subgroup ofSU(d,d) 
since it is made of those matrices Y for which.sf 1 = .sf 4 and 
fJIJ 2 = fJIJ 3' Equation (3.19) may therefore be supplemented 
by the following group chains: 

SU(d,d):::>Sp(2d,R), SO(2)CO(2). (3.20) 

In Sec. V, we shall prove that SU(d,d ) solves the comple
mentary problem for SO(2) when d> 1. Before coming to 
that point, we shall derive the Lie algebra of SU(d,d ) in the 
next section. 

IV. LIE ALGEBRA OF SU(d,d) 

In polar coordinates, the Sp(4d,R ) generators are de
noted by D !a,j.,., Dia,jT' and Eia,jT and are defined by relations 
similar to Eq, (2.9) with sand t replaced by (7 and T, respec
tively. Equations (2.11) and (2.12) remain valid for the new 
generators provided the same substitution is carried out. In 
the same way, the single generator of SO(2), defined in Eq. 
(2.14), becomes 

A = AI2 = L €a'TJiaSia' 
ia 

where 

€o- = + 1 if (7 = +, 

(4.1) 

= - 1 if (7 = -. (4.2) 

Let us look for those linear combinations of the 
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Sp(4d,R) generators which commute withA. A straightfor
ward calculation shows that the following operators, 

Pi+. j + =Ei+,j+' Pi+,j- =Di~.j_' 

Pi-,j- =Ej_,i_' Pi-,j+ = Dj+.i_ , (4.3) 

fulfill the condition 

[A,PiU,jT] = 0, (4.4) 

and that no additional operator commuting with A can be 
formed in the Lie algebra of Sp(4d,R ). From the commuta
tion relations and symmetry properties of the Sp(4d,R ) gen
erators, those of the operators PiU,fr are, respectively, ob
tained as 

and 

PiU,jr = (PjT,iu)t, 

where the metric giu,jr is equal to 

giU,jT = Eu{jij{jC1"T' 

(4.6) 

(4.7) 

The operators PiU,jT are therefore the generators of the 
U(d,d) subgroup of Sp(4d,R ). The SO(2) generator A is just 
the first-order Casimir operator of U(d,d ), 

A = L giu,iuPiu,iu' 
iu 

and the traceless operators 

(4.8) 

P ;U,jT = Piu,jr - (2d )-lgiU,iT L gkp,kpPkp,kp (4.9) 
kp 

generate the SU(d,d) subgroup. 
To express the Sp(2d,R ) generators in terms of those of 

SU(d,d ), it is most convenient to go back to Cartesian coordi
nates. In such coordinates, the operators Piu.jr can be ex
pressed as 

Pi+,j+ =1(Eij -rij)' 

Pi _ ,j _ = !(Eji + r ji ), 

Pi+,j- = -!(Dij -.dij), 

Pi-,j+ = - !(Dij +.dij)' 

(4.10) 

in terms of the Sp(2d,R ) generators D ij, Dij' Eij and of some 
additional operators.d ij, .dij' rij' defined by 

.dij = - i L E"SisSjt' 
sl 

rij = i L Esl 7JiSSjt' 
sl 

and satisfying the following symmetry properties: 

.d ij = -.d J; = (.dij)t, 

rij = (Tjif 

(4.11) 

(4.12) 

In Eq. (4.11), ESI is the antisymmetric tensor. From Eqs. 
(4.10), (2.16), (4.12), and (4.9) the Sp(2d,R ) generators are 
given by 
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Dij = -Pi+,j- -Pj+,i- = -P;+,i- -Pj+,i-' 

Dij = -Pi-,j+ -Pj-,i+ = -P;_,j+ -Pj-,i+' 
(4.13) 

Eij =Pi+,i+ +Pj-,i- =P;+,j+ +Pj-,i-' 

We know that the Sp(2d,R) generators are the scalars 
with respect to 0(2) which can be formed from the Sp(4d,R ) 
generators. In the same way, the operators.d ij, .dij' and rij 
are the pseudoscalars which can be built from the same gen
erators. Both types of operators become scalars when re
stricting to unimodular transformations.8 It is then clear 
that to get the Lie algebra of SU(d,d ), we could start from 
that of Sp(2d,R ) and add to it the pseudoscalars built from 
creation and annihilation operators. We shall show in Sec. VI 
that such a procedure can be generalized to SO(n) for arbi
trary n values. 

v. COMPLEMENTARY RELATIONSHIP BETWEEN 80(2) 
AND8U(d,a} 

In the present section, we are going to prove that, when
ever d > 1, SO(2) and SU(d,d ) are complementary within ei
ther irreducible representation <(!)2d) or <(!}2d - I~) of 
Sp(4d,R ). For such a purpose, we shall determine the lowest 
weight state of the irreducible representations of SU(d,d ) 
contained in either irreducible representation ofSp(4d,R ), 
and show that the irreducible representation of SO(2) to 
which it belongs is in one-to-one correspondence with that of 
SU(d,d). 

From Eq. (4.S), it is clear that the weight generators of 
U(d,d) are the operatorsPiu,iU, wherei = 1, ... ,dandu = +, 
- . If, in accordance with Eq. (3.2), we enumerate the values 

of the double index iu in the order 

io=:}l+, 2+,,,.,d +,1-, 2-, ... ,d-. (5.1) 

the lowering generators of U(d,d ) are the operators Pi + ,j + 

(i> i), Pj _ ,i _ (i> i), and Pi _ ,j + . The lowest weight state 
IF) of an irreducible representation [hl+,· .. ,hd + ' 
hl_, ... ,hd _ ] ofU(d,d) is then obtained by solving the follow
ing system of equations: 

Ciu,iulF) = (h iu - !)IF). 

CiuJulF> = 0, i> i, 
Dj+.i_ IF) = o. 

(S.2a) 

(5.2b) 

(S.2c) 

Let us look for the solution of Eqs. (5.2a), (5.2b), and 
(5.2c) in a Bargmann space of analytic functions F(ziu) in 2d 
complex variables Ziu' i = 1, ... ,d, u = +, _.9 In such a 
space, the boson operators 7Jiu and Siu are represented by Zju 

and a/aziu ' respectively. Equations (5.2a), (5.2b), and (5.2c) 
can be rewritten as 

(5.3a) 

(S.3b) 

(5.3c) 
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Let us successively consider the conditions imposed on 
F(zkp) by Eqs. (5.3a), (5.3b), and (5.3c). Equation (5.3a) im
plies that Fis a monomial of degree hi(7 - !in Zi,,' i = 1, ... ,d, 
(T = +, - . All the U(d,d ) irreducible representation labels 
must therefore be half-integer. Equation (5.3b) means thatF 
does not depend uponzi'" i = 1, ... ,d - 1, (T = +, _. Then 

(5.4) 

and the U(d,d ) irreducible representation labels must satisfy 
the condition hi" = ~ for i = 1, ... ,d - 1 and (T = +, -. 
Finally, Eq. (5.3c) is satisfied if F does not depend upon Zd + 

or Zd _ or both. We therefore obtain three different types of 
solutions according as hd + = m + ! and hd _ =!, hd + =!, 
and hd_ = m +~, or hd+ = hd_ =!, where m is any posi
tive integer. We shall denote them by A, B. and C. respective
ly. They are listed in Table I. together with the correspond
ing U(d.d ) and SU(d ,d) irreducible representation labels. We 
note that. for all d values except d = 1. the three classes of 
SU(d.d) irreducible representations are specified by different 
labels. 

Let us now tum to the SO(2) irreducible representation 
label characterizing F(z;,,). In Bargmann space. the single 
SO(2) generator can be written as 

(5.5) 

The lowest weight functions F(Zi") ofSU(d.d) irreducible 
representations belonging to class A. B. or C are eigenfunc
tions of A corresponding to the eigenvalues m. - m. or 0 
respectively. When d> 1. the SO(2)-irreducible representa
tions characterized by [m] and [ - m] where m is any posi
tive integer. are therefore associated with two inequivalent 
SU(d.d I-irreducible representations. respectively specified 
by 

and 

[(~ + 8)d.H - 8)d-l.m +! - 8], 

where 8 = m(2d)-I. This completes the proof of the comple
mentarity between SO(2) and SU (d,d ) when d> I. When 
d = 1. SO(2) and SU(I.I) are not complementary. This is not 
surprising since SU(1.I) and Sp(2.R) have isomorphic Lie 
algebras. 

In conclusion. we have shown that the Sp(4d.R ) irredu
cible representation <m2d) «(~fd - IP) contains the class A 
and B irreducible representations corresponding to even 
(odd) m values just once. In addition, the irreducible repre
sentation «(~fd) also contains the single class C irreducible 

representation. When restricting SU(d.d ) to Sp(2d,R ). all ir
reducible representations remain irreducible, but those be
longing to class A and B and corresponding to equal m values 
are characterized by the same label ( 1 d - I, m + 1). while the 
class C irreducible representation is specified by < 1 d ) • 

The first significant case of complementarity between 
SO(2) and SU(d.d ) occurs for d = 2. The unitary irreducible 
representations ofSU(2,2) were classified by Yao.1O It is 
straightforward to show that those encountered in the pres
ent work correspond to exceptional degenerate discrete se
ries or E + series in Yao's classification. The occurence of 
SU(2.2) in connection with SO(2) was already noted. al
though in an indirect way. by Moshinsky and his collabora
tors. 11 In their study of the microscopic collective model in 
two dimensions. they showed that boson states invariant un
der SO(2) can be classified according to some SO(4.2) group. 
Since the latter is locally isomorphic to SU(2,2). this result 
follows from the complementarity between SO(2) and 
SU(2.2). For arbitrary d values, the SU(d.d) group was also 
considered by Perelomov as a group of canonical transfor
mations in the problem of boson pair creation in an alternat
ing external field. 12 However. its relation with SO(2) was 
not noted in Ref. 12. 

VI. GENERALIZATION TO SO(n} FOR 2 <n = 2q<2d 

In the present section. we are going to generalize to 
higher n values the procedure used in Sec. IV to derive the 
Lie algebra of the complementary group with respect to 
SO(2). This will enable us to show that no such group exists 
within Sp(2dn,R ) for 2 < n = 2q<2d. 

If a complementary group with respect to SO(n) does 
exist. its Lie algebra is made of invariants under rotations. 
The latter separates into scalars and pseudoscalars. From 
the complementarity between 0(2) and Sp(2d,R ), we know 
that the simplest scalars which can be built from boson cre
ation and annihilation operators are the Sp(2d,R ) generators. 
All the other scalars are then polynomials in these genera
tors. i.e .• belong to the enveloping algebFa of Sp(2d.R ). 

In the same way. let us construct the simplest pseudo
scalars which can be formed from the 1Jis and Sis operators. 
They are the n X n determinants8 

p = O.I .... ,n, il, .... in = 1, ... ,d. 

where Es, ... s• is the antisymmetric tensor. The operators 
nl~!.i satisfy the following relations: 

1 • 

(6.1) 

TABLE I. Lowest weight function F(Ziu) and U(d, d), SU(d, d), SO(2) labels of class A , B, and Cirreducible representations for the n = 2 case. The number m 
may take any positive integer value and 8 is defined by 8 = m(2d) - I. 

Class F(ZiU) U(d,d) 

A 4+ mId - 1 , m + !, (!)d) 

B 4- [W2d - I
, m +~] 

C [(P2d] 
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SU(d,d) 

m - 6)d - I, m + ! - 6, H + old] 

m + 8)d, (! - 6)d - 1 , m + ~ - 6] 

[W2d ] 

SO(2) 

[m] 

[-m] 

[0] 
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Illp) . .. = - IlI.PI. .. if r t/ or t ',"",""("'. """("',"". ' '" p r, > p, (6.2) 

and 

Illp). =(_I)nI2+ p [Il ln- p ) . . ]t (6.3) 
',''''n Ip+ I""n'l""p • 

For n = 2 and p = 2, 1, 0, they reduce respectively to the 
operators..1 r i ,Fi i ,and - ..1,." ,defined in Eq. (4.11). Start-

12 12 12 

ing from the basic pseudoscalars Ill;'!.;., all the remaining 
ones can then be obtained by multiplication with arbitrary 
polynomials in the Sp(2d,R ) generators. 

We note that, except in the n = 2 case, no pseudoscalar 
can be found in the Lie algebra ofSp(2dn,R ). The only rota
tional invariants belonging to the latter are therefore the 
Sp(2d,R) generators. We have thus proved that no comple
mentary group with respect to SO(n) exists within Sp(4d,R ) 
when 2 < n = 2q<:2d. 

VII. CONCLUSION 

In the present paper, we have looked for a complemen
tary group with respect to SO(n) within either irreducible 
representation (m nd

) or (m nd 
- [~) of Sp(2dn,R ). We have 

proved that: 
(i) this group is Sp(2d,R ) when n = 2q + 1 or 

n = 2q> 2d; 
(ii) it is SU(d,d ) when n = 2 and d> 1; 
(iii) it does not exist when n = 2, d = 1, or 

2<n = 2q<:2d. 
Eventually, when 2 < n = 2q<:2d, we might try to ex-
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tend the present work by looking for an algebra f§ contain
ing both the Sp(2d,R ) generators and the basic pseudoscalars 
IlI;'!.i.' defined in Eq. (6.1). Unfortunately, it can be shown 
that: 

(i) For 2 < n = 2q < 2d, ~ does not close since the com
mutator of two basic pseudoscalars belongs to the envelop
ing algebra of Sp(2d,R ); 

(ii) for n = 2d> 2, ~ does close since there is only one 
basic pseudoscalar Il\~.!d [ ... d' but no larger algebra contain
ing both ~ and the SO(2) algebra is known to exist. Pending 
the finding of such a larger algebra, further investigation 
along this very line looks useless. 
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Bargmann space expansions of oscillator functions are used to derive analytic expressions for 
SU(3):JR(3) Wigner coefficients for the couplings (A IO)X(0,u2)-+(A3,u3)L3 = ° and 
(A 10) X (A20)_(A3 ,u3)L3 = 0, with arbitrary (A3,u3)' These lead to expansions useful in nuclear 
cluster problems and are used to give a simple form for the SU(3)-irreducible tensor expansion of a 
scalar two-body interaction, an application which motivated this investigation. 
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I. INTRODUCTION 

The widespread usefulness of the group SU(3) has led to 
many applications ofSU(3) Wigner and recoupling coeffi
cients, and efficient computer codes for their calculation are 
available. 1,2 In many applications analytic expressions for 
certain special coefficients are very useful. In the nuclear 
physics applications reduced Wigner coefficients in the 
SU(3):JR(3) basis are needed. In this basis the natural sub
group labels LM are in general insufficient to label the states, 
and the resultant inner multiplicity leads to complicated 
analytic expressions. Despite this difficulty, algebraic ex
pressions have been tabulated by Vergados3 for many 
SU(3) ~ R(3) Wigner coefficients useful in nuclear shell mod
el applications in an orthonormal basis which is closely tied 
to the physically relevant Elliott KLM labeling scheme.4 In 
addition, many algebraic expressions have been given by 
Sharp, von Baeyer, and Pieper,6 for the reduced Wigner 
coefficients in the SU(3):JR(3) basis involving (1) representa
tions free of inner multiplicity or (2) special states which are 
labeled completely by (A,u), L, and M. These include (1) the 
couplings involving only representations (A 0), (O,u), (A 1), or 
(Ill) and (2) the SU(3):JR(3) coefficients for the "stretched" 
coupling (A 0) X (OIL )_(A,u) and special states of (A,u) such as 
the states L = ° (A and,u both even), or L = 1 (A.,u = even/ 
odd). In recent applications to problems in nuclear collective 
motion exploiting Sp(3,R ) symmetry,1-9 and in applications 
to nuclear cluster problems, 10-12 it has proved useful to ex
pand the rotationally invariant nucleon-nucleon interaction 
in terms ofSU(3)-irreducible tensor components. For this 
purpose an algebraic expression is needed for the 
SU(3):JR(3) Wigner coefficients for the coupling 
(A 10) X (01l2) to states (A:V-l3)L3 = ° of arbitrary A3 andll3 (A3' 
,u3 both even, butA3,A I ,,u3<P2)' Similarly, the SU(3):JR(3) 
Wigner coefficients for the coupling (A 10) X (A 20) to states 
(A:V-l3)L3 = ° with A3,A I + Az, 1l3'>0 have useful applica
tions. 

It is the purpose ofthis note to exhibit analytic expres
sions for these SU(3) ~ R(3) Wigner coefficients. For ready 
reference the results are given in Tables I-III. The method of 
calculation is presented in Sec. II. It makes use of some ofthe 

')Supported by the U. S. National Science Foundation. 
h) Nishina Memorial Foundation Fellow, on leave of absence from Physics 

Department, Niigata University, Niigata 950-21, Japan. 

methods of Sharp et al.5
,6 but is based on an expansion of the 

SU(3)-states in terms of Bargmann space polynomials. 13-15 
The decomposition of an effective two-body interaction into 
SU(3)-irreducible tensor components can also be achieved 
most efficiently through the Bargmann transform of this op
erator. The process is illustrated in detail in Sec. III for a 
scalar interaction of Gaussian radial form as an illustration 
of the usefulness of the results of Sec. II. 

II. METHOD OF CALCULATION 

The notation and phase conventions will adhere to 
those of Ref. 1. (The latter are based on the canonical defini
tions of Biedenharn et al. 16) For ready reference the results 
for SU(3):JR(3) reduced Wigner coefficients are collected in 
tabular form (Tables I-III). The method of calculation makes 
use of the specific construction of the state (A,u) with L = ° 
by techniques similar to those used by Sharp et al. 5

•
6 How

ever, it has proved useful to give all expansions in terms of 
Bargmann space variables. 13-15 With the one-dimensional 
real space variable x, we associate the complex Bargmann 
space variable K". With the three-dimensional real space 
variable r we associate the three-dimensional Bargmann 
space variable K. Transformations from real-space square 
integrable functions </J (x) to the analytic'Bargmann space 
functionsf(Kx) are effected by the transform 

f(Kx) = fdXA(Kx,x)</J(X), (I) 

where 

A (K",x) = 1T-
1/4exp[ -!K~ -!X2 + ~Kxx]. (2) 

The kernel A (K" ,x) is a generating function of harmon
ic oscillator functions 

'" 
A (Kx'x) = I </In(x)·(K~/rn!), (3) 

n=O 

that is, K ~/rn! is the Bargmann transform of a normalized 
one-dimensional harmonic oscillator function. For single 
three-dimensional variables rand K 

A (K,r) = II A (Ki,xi) = I </J ~)(r)·P~)(K). (4) 
i~x.y.z QLM 

The three-dimensional oscillator functions have been ex
pressed in terms ofSU(3) representation labels 
(A,u) = (QO), Q = total number of oscillator quanta. The ex-
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TABLE I. The coefficients «(2nO)L;(02m)L 11(2n - 2v,2m - 2v)0). 

(_I)min(m-v.n-VI[ (2n+2m-4v+2)(2L+I) ll12 
F(2n,L )F(2m,L )(2v)!(2n + 2m + 2 - 2v)! 

X m,"(m i"n -·1 ( - I)'(n + m - 2v -/)!(2v + 2l)!F(2v + 2/,L). 

,~O l!(n-v-/)!(m-v-/)! ' 

( _ I)min(m - v.n - vi [ (2n + 2m - 4v + 2)(2L + 1)(2v)! lll2 F(2v,L)(n + m - 2v)! 

F(2n,L )F(2m,L )(2n + 2m + 2 - 2v)! (n - v)!(m - v)! 
X 4F,(v + I,v +~, - (n - v), - (m - v);(v -IL + I),(v + IL + i), - (n + m - 2v);I); 

( - I)mm(m - v.n vi [(2n + 2m _ 4v + 2)(2L + I)F(2n,L )F(2m,L )(2v)!(2n + 2m + 2 _ 2v)!] 112 

X 1'I21 ( - 1)"(2L - 2a)!(n - iL + a)!(m - lL + a)! . 

a ~ m.,(O.LI' - vi a!(L - a)!(L - 2a)!(v -IL + a)!(n + m - v - IL + a)!(2n + 2m + 2 - 2v - L + 2a) , 

with 
«(2nO)L;(02m)L 11(2n - 2v,2m - 2v)0) =f(n,m,v,L) 

«(2n + I,O)L ';(O,2m + I)L '11(2n - 2v,2m - 2v)0) =f(n + I,m + l,v + l,L ')X( - I( 

F(o,L )=(10 + IL )!/(lo -IL )!(o + L + I)! 

pansion could have been given in terms of any convenient set 
of subgroup labels. For the totally symmetric representation 
(Q 0) the angular momentum labelsLM give a complete label
ing. In this SU(3PR(3) basis the Bargmann transform ofa 
normalized harmonic oscillator function of a single three
dimensional variable is given in terms of solid spherical har
monics, '?tj LM (K), by 

P~~I(K) = [41T2LF(Q,L)] )/2(K·K)(Q- LI12'?tj LM(K), (5a) 

where 

_ _ ---==...[ !,,-=(Q,,-+-,--L.....c).:.....] 1 __ F(Q,L) = 
[!(Q - L )]l(Q + L + 1)1 

(5b) 

(see, e.g., Ref. 15, but note that the phase has been adjusted to 
be in agreement with Ref. 1). The solid harmonics '?tj )M(K), 
e.g., are given in terms of the complex Bargmann space var-

iables Kx,Ky,Kz by - l/.j2(Kx + iKy),Kz, l/.j2(Kx - iKy) 
and have SU(3) transformation properties identical with 
those of three-dimensional SU(3) basis vectors 
1(1 O)L = 1M). Note also that the Bargmann space functions 
(PLM(QOI(K))* have SU(3) transformation properties identical 
with those of basis vectors ( - l)M I (OQ)L - M ). The 
SU(3PR(3) Wigner coefficients for the coupling 

TABLE IIA. The coefficients (2nO)L;(2mO)L 1I(2n + 2m - 4v,2v)0). 

(_I)L12+min(v,n+m-2vIL! [ (2n + 2m - 4v+ 1)(2L + I) ]1/2 
2L [(IL )!]' F(2n,L )F(2m,L )(2n - 2v)!(2m - 2v)! 

(,1)0) X (0J.l2) to states (A.J.l)L = 0 are obtained from a con
struction of the Bargmann space functions P if.~ 0 (K,K*) in 
terms of two independent three-dimensional Bargmann 
space variables K and K. Those for the coupling of 
(A.)0)X(A.20) to states (A.J.l)L = 0 are obtained from a con
struction P if.~ 0 (K) ,K2) in terms of the two independent 
three-dimensional Bargmann space variables Kt and K2 . 

The first construction will be illustrated by the special 
caseA.),J.lt both even, with (,1)0) = (2nO), (0J.l2) = (02m), and 
with (A.J.l) = (2n - 2v, 2m - 2v). Without loss of generality 
we shall assume m<n. (The construction for states with 
m > n is trivially similar. Wigner coefficients for the case 
m > n can also be obtained from those with m<n by simple 
symmetry properties. t) The state with (A.J.l) = (2n - 2v, 
2m - 2v) and with L = 0 is constructed in terms of the ex
pansion 

Pif.,~lo(K.K*) 
= [p(2n.ol(K)XP(O,2ml(K*)] if.~;;, (2n - 2v,2m - 2v) 

= mivCk(K.Kr- m+ k(K*·K*)k(K.K*fm-2k. (6) 
k~O 

The square bracket denotes SU(3) coupling. From the fact 

(n - v)!(m - v)!(n + m - v)! ""n(n,ml ( - I)k 24k - 2V(2n + 2m - 2v - 2k )!(k !)2 F (2k,L ) 

X v!(2n+2m+I-2v)! k~V (k-v)!(n-k)!(m-k)!(n+m-v-k)! 

(_I)L12+v+minlv,n+m-2vIL! [ (2n+2m-4v+l)(2L+I) ll12 
2L [(IL )'f F(2n,L )F(2m,L )(2n - 2v)!(2m - 2v)! 

X 22.+ Iv\(n + m - v)!(2n + 2m - 4v)!(v + lL + I)! 

(n + m - 2v)!(2n + 2m + I - 2v)!(v -IL )!(2v + L + 2)! 

X.F3(v+ I,v+ I, - (n - v), - (m - v);(v-lL + 1),(v+lL +~, - (n + m - 2v-l);I); 

(_ I)Ll2+ v+min(v,n+ m- 2VI[(2n + 2m _ 4v + 1)(2L + I)F(2n,L )F(2m,L )(2n - 2v)!(2m - 2v)!] 112 

Ll2 (_ W22V +4,,-L(2L _ 2a)![(lL )!]2 
X L -
a~ max(O,Ll2 - vi alL !(L - a)![(lL - a)!]' 

X(2n + 2m - 2v + I)!(n -IL + a)!(m -IL + a)!(n + m - v-lL + a)!v\ 

(2n + 2m - 2v - L + 2a + I)!(n - v)!(m - v)!(n + m - v)!(v -lL + a)! 
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TABLE lIB. The coefficients «(2n + I,O)L ';(2m + I,O)L 'II (2n + 2m + 2 - 4v,2v)O). 

(_I)IL·+11/2+minlv.n+,"+1 2vIL'! [ (2n+2m-4v+3)(2L'+I) ]112 

2L-I[(~(L' - I))W F(2n + I,L ')F(2m + I,L ')(2n + I - 2v)!(2m + I - 2v)! 

X(n - v)!(m - v)!(n + m + I - v)! X minln.'"1 (- l)k2·k- 2V(2n + 2m + 2 - 2v - 2k)!(k!)2F(2k + I,L '). 

v!(2n+2m+3-2v)! k~V (k-v)!(n-k)!(m-k)!(n+m+l-v-k)! ' 

(_ I)IL" + 11/2 + V+ minlv.n + m+ I -2VlL '! [ (2n + 2m _ 4v + 3)(2L' + I) ]112 

2L' - I [H(L' - 1))!]2 F(2n + I,L ')F(2m + I,L ')(2n + I - 2v)!(2m + I - 2v)! 

22v+ 2v!(2n + 2m + I - 4v)!(n + m + I - v)!(v + ~L ' + ,I! 
X~--~--~~--------------~~~--~--

(2n + 2m + 3 - 2v)!(n + m - 2v)!(v - !L' + !)!(2v + L ' + 3)! 

X.F)(v+ I,v+ I, - (n - v), - (m - v);(v- !L' + ~),(v+~' +2), - (n + m - 2v+ !);I); 

( _ I)IL' + 11/2 + v+ minlv,n + m + I - 2VI[(2n + 2m + 3 _ 4v)(2L' + 1)F(2n + I,L ')F(2m + I,L ')]112 

(L' ~11/2 22v+ I +4a -L'( _ l)a(2L' _ 2a)![(1(L' _ 1))!]2 
X [(2n + I - 2v)!(2m + I - 2v)!] 1/2 ~ ~ 

a~ muIO.jIL' - 11- vi a! L '!(L' - a)![(!(L' - I) - a)!]2 

(2n + 2m + 3 - 2v)!(n + ! - ~ , + a)!(m + ! - ~ , + a)!(n + m - v - ~ , + , + a)!v! 
X~~~--~~--~~~~~~~~--~------~~~~~ 

(2n + 2m + 4 - 2v - L ' + 2a)!(n - v)!(m - v)!(n + m + I - v)!(v - !L ' + ! + a)! 

combination of states with (AJl) = (2n - 2m,O), that the scalar product (R.K *) is also an SU(3)-scalar and 
from the relations 

(K'K)Q = [(2Q + I)!] 1/2P~~)o(K), 
(K*·K*f = [(2Q + 1)!p/2pr~)o(K*), (7) 

we see that the k th tenn in the expansion (6) gives a linear 

(2n - 2m + 2, 2), ... ,(2n - 2m + 2k, 2k). The coefficients Ck 

with k < m - v are to be chosen to eliminate the unwanted 
representations with A < 2n - 2v, Jl < 2m - 2v. Due to the 
simplicity of the Bargmann space functions this can be 
achieved by direct action ofthe SU(3) Casimir operator. In 

TABLE III. Special cases. 

«(2nO)O;(02m)01l(2n - 2v,2m - 2v)0) 

= [ (2n + 2m + 2 - 4v)(2n + 2m + I - 2v)!(2v)! ] 1/2 ( _ I )minln - v,m - vln!m! 

(2n + 2m + 2 - 2v)(2n + 1)!(2m + I)! (n + m - v)!v! 

«(2nO)L;(02m)L II (2n,2m)0) 
( I)L/2 + minln.mlL In1m1 

= [(2L + 1)F(2n,L )F(2m,L )(2n + 2m + I)!] 112 - ... 
[(!L )!]2(n + m)! 

«(2n + I,O)l;(O,2m + 1) 11I(2n - 2v,2m - 2v)0) 

= [3F(2n + 1,1)F(2m + 1,1)(2n + 2m - 4v + 2)(2v + 1)!(2n + 2m + 3 - 2v)!] 112 

X(_l)l+min(n-v,m-v! n!m! 
v!(n + m + I - v)! 

«(2n + I,O)L ';(0,2m + I)L '1I(2n,2m)0) 

= [(2L' + 1)F(2n + I,L ')F(2m + I,L ')(2n + 2m + 3)(2n + 2m + \)!]I12 
X ( _ I )IL ' + 11/2 + minln,ml (L ' + I )!n!m! 

[!(L' - 1)]![!(L' + I)]!(n + m)! 

«(2nO)(;(2mO)oII(2n + 2m - 4v,2v)0) 

= [ (2n + 2m + I - 4v)(2n - 2v)!(2m - 2v)!] 112 ( - I r + minlv.n + m - 2vI22vn!m! 

(2n + 1)!(2m + I)! (n - v)!(m - v)! 

«(2nO)L;(2mO)L 1I(2n - 2m,2m)0) 

= [(2L + I )F(2m,L )(2n - 2m + I)!] 1/2 ( _ I )L12 + m + minlm.n - miL !22m - Ln!m! 

F(2n,L) [(!L )!]2(n - m)!(2n + I)! 
«(2n + 1,0)1;(2m + 1,0)111(2n + 2m + 2 - 4v,2v)O) 

= [3(2n + 2m + 3 - 4v)(n + I)(m + 1)(2n + I - 2v)!(2m + 1 _ 2v)!] 112 ( _ 1)1 + v+ miniM + m+ I - 2V122v+ In!m! 

(2n + 3)!(2m + 3)! (n - v)!(m - V)! 

«(2n + I,O)L ';(2m + I,O)L '1I(2n - 2m + 2,2m)0) 

= [(2L' + 1)(2n - 2m + 3)F(2m + I,L ')(2n - 2m + I)!] 1/2 ( _ I)IL' + 1112+ m + minlm,n- m + 1122v+ 2 - L'L 'lIn + I)!m! 

F(2n + I,L ') [(!(L' - 1))!]2(2n + 3)!(n - m)! 

«(2a,2m)0;(2b,O)OII(2a + 2b,2mjO) 

= [ (2a)!(2a + 2b + 2m + I)! ]112 (a + m)!(a + b)! I" 
(2b + 1)(20 + 2b )!(2a + 2m + I)! alta + b + m)! (- ) 

u=Oform<a, u=b form>a 
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the subspace spanned by the Bargmann space vectors K, K*, 
the U(3) generators can be expressed by 

A - -K a K* a " 
ij - i -=- - j --, IJ=X,y,z, (8) 

aKj aKr 
leading to the SU(3) Casimir operator 

CSU(3) = 2:AapApa - ~(TrA )2, 
a.p 

with eigenvalue 

CSU(3) = HA. 2 + A.Il + 11 2 + 3(..1. + Il)]. 

(9) 

(10) 

The action of the operator (CSU(3) - CSU(3)) on the relation (6) 
leads to the recursion relation 

kin -m +k) 
Ck_I=- Ck . (II) 

(n - v + k )(m - v + 1 - k ) 

The normalization is achieved by the coefficient Cm _ v [see 
the remarks following Eq. (17)], 

Cm_v = (_lJm - v [ (2n + 2m - 4v + 2) ]112 
(2v)!(2n + 2m - 2v + 2)! 

X 
(n + m - 2v)! , 

(n - v)!)(m - v)! 

leading to 

[P (2n.o)(K) xP (o.lm)(K*)]~: --o2v.2m - 2>') 

_ [ (2n + 2m - 4v + 2) ] 1/2 

(2v)!(2n + 2m - 2v + 2)! 

X m i v ( - l)k (n - v + k )! 

k ~ 0 k !(n - m + k )!(m - v - k )! 
X (K.K)n - m + k (K*'K*)k (K.K*)2m - 2k. 

The relation 10.15 

~ (K·K*)C = [dim(cO)] 112[p«{))(K)XP(OC)(K*mOO) 

c! 

= 2:(pr)(K),p~C)(K*)), 
L 

together with a double application ofEq. (5), leads to 

[P (2n.o)(K) xP (o.2m)(K*)] ~n - 2v.2m - 2v) 

= I«(2nO)L;(02m)L 11(2n - 2v,2m - 2v)0)( - I)L 
L 

X (P ~n.o)(K)·P ~.2m)(K*)) 

[2L+I]112 

(12) 

(13) 

(14) 

_ [ (2n + 2m - 4v + 2) ] 112 

- ~ (2v)!(2n + 2m - 2v + 2)!F(2n,L )F(2m,L ) 

X m i v ( - l)k (n - v + k )!(2m - 2k )!F (2m - 2k,L ) 

k ~ 0 k !(n - m + k )!(m - v - k )! 

(15) 

From this relation a first expression for the SU(3j:)R(3) re
duced Wigner coefficiene 7 is obtained for the coupling 
(2n 0) X (0 2m )---+(A.Il)L = O. This is listed as the first entry in 
Table I. In Table I the summation index has been changed 
from k to I = m - v - k to gain a more symmetrical form. 
The summation can be expressed in terms of a Saalschutzian 
generalized hypergeometric function of type 4F3 and of argu-
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ment unity (see the second entry of Table I). Since no simple 
closed form is known for such a function, it appears that the 
summation cannot be carried out in closed form. For the 
special case L = 0 the hypergeometric function collapses to 
a Saalschutzian function of type 3F2 for which a closed form 
is known; see Eq. (111.2) or Eq. (2.3.1.4) of Ref. 18. (We are 
indebted to Professor A. C. T. Wu for pointing out this iden
tity to us.) This leads to a very simple expression for the 
coefficient «(2n 0)0; (0 2m)011(A.Il)0); see the first entry ofTa
ble III. The need for this coefficient formed the starting point 
for this investigation. 

The normalization coefficient cm _ v' Eqs. (6), (11), and 
(12), was determined with the aid of the relation 

(K·Kt(K*.K*)b (K'K*r 

= 2: «(2aO)0;(02b )011(2a - 2r,2b - 2r)0) 
r 

X [(2a + 1 )!(2b + 1 )!dim(cO)] 112c! 

X [ [p(2a.o)(K)X P (O.2b)(K*)] (2a - 2r.2b - 2r) 

X [P (cO)(K)XP (Oc)(K*)] (00)] ~~o 2r.2b - 2y) 

= 2: «(2a0)0;(02b )01J(2a - 2r,2b - 2r)0) 
r 

X [(2a + 1)!(2b + 1)!(2r + c)!(2a + 2b + C - 2r + 2)!] 112 

(2r)!(2a + 2b - 2r + 2)! 

(16) 

In the last step ofEq. (16) the SU(3)-coupled K-space func
tions have been subjected to an SU(3)-recoupling transfor
mation, and the renormalization relation 

[P (aO)(K) xP (PO)(K)] ~tJ 

= (\'JlHa + P.O) [(a + fJ)!I a!{3!] I 12 P tz~ (3.O)(K) (17) 

has been used. For the recoupling transformation, see in par
ticular Eqs. (AI8) and (AI4) of Ref. 11. [Appendixes Aand B 
of Ref. 11 contain many useful formulae for SU(3)-coupled 
Bargmann space functions.] When Eq. (16), with 
a = n - m - k, b = k, C = 2m - 2k, is substituted into the 
relation (6), only the single term with k = m - v and r = 0 
survives in the summations. This relates the normalization 
coefficient cm _ v and the coefficient «(2n - 2v, 0)0; (0, 
2m - 2v)01l(2n - 2v, 2m - 2v)0) for the "stretched" cou
pling which can be evaluated with the further use ofEq. (15) 
for L = O. This procedure does not determine the phase of 
Cm _ v' We shall adhere to the phase conventions of Ref. 1 
and choose the states I (A.Il)LM ) with A.>1l to have phases 
consistent with angular momentum projection from the in
trinsic state G ~w of Ref. 1, whereas those withll >.,1, have 
phases consistent with angular momentum projection from 
the state G HW' In the notation of Ref. 1 this means that our 
states are of type IJ = 0 1 for A. >Il and of type IJ = 1 0 for 
Il >.,1,. Note also that this insures that P~,S)(K) and 
p~Q}, M(K*) are related by the simple conjugation relations 
spelled out in Ref. 1. With this choice of phases the states (6) 
are defined completely for both m <n, m > n. The sign of the 
coefficient < (2nO)0; (02m)01i(.,1,Il)O > is given by ( - 1)<.6 with 
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¢ = min(!A,!,u) (see Table III). With the knowledge of this 
coefficient, Eq. (16) can be put in the form 

(K·Kt(K*.K*)b (K.K*r 
minla.b 1 ( _ 1 )minla - r,b - 1'1 

= I [(2a + 2b - 4y + 2) 
1'=0 2 

X(2y + c)!(2a + 2b + C - 2y + 2)!] 1/2 

X alb ! [P 12a +c,OI(K) 
r(a + b + I - y)! 

XpIO,2b + CI(K*)]~:o2r,2b - 21'1. (18) 

This expression will prove useful in applications to nuclear 
cluster problems. 10--12 

The first entry of Table I is very convenient when 
m - v, or n - v, is a small integer since the number of terms 
in the I-sum is then small. For small values of v, or for small 
values of L, an alternate form may prove more convenient. 
To obtain this form, we start with the expansion 

= I «(2nO)L; (02m)L 11(2n - 2v,2m - 2v)0) 
v 

X( - W [(2L + 1)] 1/2 

X [pI2n.01(K)XpIO,2ml(K*)]~n - 2v,2m - 2vI 

= (2L + 1)[F(2n,L )F(2m,L)] 1/2 

L12 (_ I)U(2L - 2a)! 

X u.?o a!(L - a)!(L - 2a)! 

X (K'Kt - L12 + U(K*.K*)m -L12 +U(K.K*)L -2a, (19) 

where Eq. (5) has been used together with the expansion of 
the Legendre polynomial P L (S ) in powers of S L - 2u. By sub
stituting Eq. (18) into the right-hand side ofEq. (19) the alter
nate form for the SU(3)::J R(3) Wigner coefficient is obtained. 
This is given as the third entry in Table I in a form which can 
be generalized to the coupling (A 10) X (0,u2) with A I and,u2 
both odd. 

Similar techniques can be used to calculate SU(3)::J R(3) 
Wigner coefficients for the coupling 
(AIO)X(A20)~(A,u)L = O. The SU(3)-coupled Bargmann 
space functions are now constructed from two independent 
Bargmann-space variables KI and K2. The cases AI' ,12 both 
even and A I' ,12 both odd are now slightly different and are 
treated separately. With Al = 2n, ,12 = 2m, m<.n; the cou
pled Bargmann space function with (A,u) = (2n + 2m - 4v, 
2v) and L = 0 is now constructed in terms of the expansion 

[p I2n.01(KdXP I2m,OI(K2)] ~:"O 2m - 4v,2vl 

m 

= I ck(KI·KJt-k(K2·Kz)m-k 
k=v 

(20) 

The last factor involves the square of the vector product 
[K J XK2], an SU(3) (OI)-tensor, so that it carries the single 
SU(3) representation (0, 2k), The k th term in the expansion 
(20) is therefore a linear combination of states with 
(A,u) = (2n + 2m - 4k, 2k ), (2n + 2m - 4k - 4,2k + 2), '''' 
(2n - 2m, 2m). The coefficients Ck with k> v are to be cho-
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sen to eliminate the unwanted representations with 
A < 2n + 2m - 4v and,u > 2v. This is again achieved by the 
action of the operator (CSUI3) - CSU(31)' see Eqs. (9) and (10), 
where the U(3) generators are now given by 

J J 
A =KI ·-- +K2·--

IJ I JK
lj 

I JK
2j 

(21) 

in the subspace spanned by the Bargmann space vectors KI, 
K2. This leads to the recursion formula 

2(n - k )(m - k) 
Ck + 1 = - Ck' 

(k + 1 - v)(2n + 2m - 2v - 1 - 2k ) 

The normalization is achieved by the coefficient Cv 

C
v 

= (_1)v+minlv,n+m-2v1[ (2n + 2m -4v+ 1) ]112 
(2n - 2v)!(2m - 2v)! 

(22) 

X (2n + 2m - 4v)!(n + m - v)!, (23) 
(2n + 2m - 2v + 1)!v!(n + m - 2v)! 

which follows from the term with k = v and y = 0 in the 
expansion 

(KI·Kdn - k(K2'K2 )m - k([KIXK2HKJ XK2])k 

= [(2n - 2k + 1)!(2m - 2k + I)!] I12(2k + 1)!( _ i)2k 

X I «(2n - 2k,0)0; 

1'= Iv-· kl 
X (2m - 2k,0)011(2n + 2m - 4k - 4y,2y)0) 

X «(2n + 2m - 4k - 4y,2y,)0; 

X (0,2k )01i(2n + 2m - 4v,2v)0) 

X [[p I2n-2k,O)(KI) 

xP 12m - 2k.01(K2)] 12n + 2m - 4k - 41'.21'1 

X [PI2k,OI(KdXP 12k,O)(K2)] (O,2k '] ~:"O 2m - 4v,2vl 

= [(2n - 2k + 1)!(2m - 2k + I)!] 1/2(2k + 1)!( _ i)2k 

X I «(2n - 2k,0)0; 
v 

X (2m - 2k,0)011(2n + 2m - 4v,2v - 2k )0) 

X «(2n + 2m - 4v,2v - 2k )0; 

X (0,2k )011(2n + 2m - 4v,2v)0) _1_ 
(2k)! 

X [ (2v)!(2n + 2m - 2v + I)! ] 112 

(2k + 1)(2v - 2k )!(2n + 2m - 2v - 2k + I)! 
X [p(2n,O)(KI)Xp(2m,O)(K2)]~:"o 2m - 4v.2vl, (24) 

where an SU(3 i-recoupling transformation was used, togeth
erwith relation (17), in the last step ofEq. (24); [see Eq. (A21) 
of Ref. 11]. Note also that the nature of the K I , K 2-space 
function requires that the final SU(3) representation must 
correspond to a two-rowed tableau. As a result, y is restrict
ed to the value y = v - k. Equation (24) has used Eq. (7) and 
the related equation 

p~,:kJ( [K I XK2 ]) 

= [(2k + I)!] 1/2( - ifk [P(2k,OI(KdXP(2k,OI(K2)]~,:kJ. 

(25) 
(This relation has been given in Ref. 11; see Eqs. (B4) and 
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(B5); but a correction by the phase factor ( - ifk is needed.] 
Ih the general case, Eq. (24) can be evaluated once the coeffi
cient «(2a, 0)0; (2b, O)OIl(Ajl)O) is known. The second coeffi
cient, which is of type «(2a, 2b )0; (02c)01l(2a, 2b + 2c)0), is 
related by symmetry to «(2b, 2a)0; (2c, 0)01l(2b + 2c, 2a)0). 
For a<.b this can be read from Eq. (13), together with Eq. 
(17). For a > b, the phase of this coefficient is ( - 1 (; see the 
last entry of Table III. For the evaluation of cv , only the term 
with k = v is needed, and in this special case Eq. (24) can be 
evaluated through coefficients known from our earlier dis
cussion. This leads to 

[P (2n,O)(K I) X P (2m.o)(K2)]~:"o 2m - 4v.2v) 

= ( _ It+ min(v,n +m -2V)[ 2n + 2m - 4v + 1 ]112 

(2n - 2v)!(2m - 2v)! 

X (n - v)!(m - v)!(n + m - v)! 

v!(2n + 2m - 2v + I)! 
min(n,m) (_ l)k - v22k - 2V(2n + 2m - 2v - 2k )1 

X k~ v (k - v)!(n - k )!(m - k )!(n + m - v - ~ )! 
X (KI-Ktln 

- k(K2-K2)m - k([KIXK2HKJXK2])k. 
(26) 

I 

= ~) _ l)v+ min(v,n + m - 2v) 
v 

X [(2n + 2m - 4v + 1)(2n - 2v)!(2m - 2v)!] 1/2 

We now use Eq. (25) with the simple coefficient6 «(2k 0)0; 
(2k 0)011 (02k )0) (with phases chosen according to Ref. 1), to 
obtain 

( _ I)L1222k - LL I 
= "(kif . 
7-' [(!L )!f 

(27) 

With this relation, Eq. (26) together with a double applica
tion ofEq. (5) leads to the desired SU(3)::J R(3) Wigner coeffi
cient. The result is given as the first entry of Table II. The 
single sum can again be expressed in terms of a generalized 
hypergeometric function of type 4F3; see the second entry of 
Table II. For L = 0 this collapses to a 3F2 of Saalschutzian 
form and leads to the simple special case shown in Table III. 
With this result, Eq. (24) yields 

(28) 

22v - 2k(n _ k )!(m - k )!v!(n + m - v - k )!(2n + 2m - 2v + I)! 
X----~--~~--~~~--------~--~------~~ 

(n - v)!(m - v)!(v - k )!(n + m - v)!(2n + 2m - 2v - 2k + I)! 
X [P (2n,O)(K I) xP 12m,O)(K2)]~:"o 2m - 4v,2v). 

This result by itself may have useful applications in nuclear 
cluster problems. 10--12 It can also be used to derive an alter
nate form for the SU(3) Wigner coefficient more useful when 
L or v (rather than m - v or n - v) are small integers. The 
analog ofEq. (19) becomes 

= (2L + I)[F(2n,L )F(2m,L)] 1/2 

LI2 (_ I)LI2+ a 22a(2L _ 2a)![(g. )!]2 

X a~o alL !(L - a)![(!L - a)!F 

X ([KI XK
2
]-[KI XK2])LI2 -- a. (29) 

If this is combined with Eq. (28) the alternate form of the 
Wigner coefficient is obtained; see the third entry of Table II. 
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The SU(3PR(3) Wigner coefficients for the coupling 
(AIO) X (A 20)-+(Ajl)L = 0 with Al and A2 both odd have a 
slightly different form. The key intermediate results are 

= (_ l)min(v.n+m+ 1-2v) 

[ 
(2n+2m-4v+3) ]1/2 

X (2n + 1 - 2v)!(2m + 1 - 2v)! 

X (n - v)!(m - v)!(n + m + 1 - v)! mi'Im) 

v!(2n + 2m - 2v + 3)! k~v 

( _ l)k 22k - 2V(2n + 2m + 2 - 2v - 2k )! 
X-...l.---=-t......=---.-:~....:.....-=----.:...-----------"--

(k - v)!(n - k )!(m - k )!(n + m + 1 - v - k )! 

(30) 
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Combining Eq. (27) with (K l oK2) = (P~~ dKtl°P~~ I (K2))' 
applying Eq. (5) and standard spherical harmonic addition 
theorems, followed by a further application ofEq. (5), we 
obtain the first form of the coefficient «(2n + 1, OIL '; 
(2m + 1, OIL 'II (A,u)O) tabulated in Table II. This form can 
again be expressed in terms of a Saalschutzian hypergeome
tric function of type 4F3; see the entry in Table II. In this case 
the 4F) collapses to a 3F2 for the special case L ' = 1, so that 
the coefficient with L ' = 1 can be given in closed form. This 
is included among the special cases of Table III. An alternate 
form for this coefficient is obtained from the analog of Eq. 
(29), which is now 

(L'-1)l2 
= (2L' + I)[F(2n + I,L ')F(2m + I,L 'I] 1/2 L 

a=O 

(- 1)(L'-I)/2+ a22a(2L I _ 2a)l! [!(L' - 1)]W 

X alL '!(L 1_ a)l! [~(L' - 1) - a]!j2 

X(K,oK,)n+ 112-L'/2+a(K
2
oK2t + 1/2-L'/2+a 

X(KloK2)([KIXK2HKIXK2])(L'-1J/2-a. (31) 

Simple Wigner coefficients from Table III, together with a 
recoupling transformation, now give 

(K,oK,)n + 1/2 - L'/2 + U(K2oK2)m + 1/2 - L'/2 + U(K
l
oK2)( [K, XK2]o[KI XK2])(L' - 1)12 - U 

= L( - I)v+ min(v,n + m + I - 2VI[(2n + 2m + 3 - 4v)(2n + 1 - 2v)!(2m + 1 - 2v)!] 1/2 
v 

X 22v + 2u - L' + I (2n + 2m + 3 - 2v)!(n + ! - !L I + a)!(m + i-¥- ' + a)!v! 
(2n + 2m + 4 - 2v + 2a - L ')!(n - v)!(m - v)!(v + ! - !L' + a)! 

X (n + m - v -!L' + ~+ a)! [p(2n+ I,OI(K
I
)XP(2m+ I.OI(K2)]~:"o2m +2-4v.2vI. 

(n +m -v+ I)! 
(32) 

The combination of Eqs. (31) and (32) leads to the alternate 
formforthecoefficient(2n + I,O)L';(2m + I,O)L'II(A,u)O), 
given as the last entry in Table II. 

III. AN APPLICATION: SU(3)-IRREDUCIBLE TENSOR 
DECOMPOSITION OF A SCALAR INTERACTION 

In recent applications to problems in nuclear collective 
motion exploiting Sp(3,R ) symmetry7-9 and in nuclear clus
ter problems 10-12 it has proved useful to expand the rotation
ally invariant nucleon-nucleon interaction in terms ofSU(3) 
irreducible tensor components. If the two-body interaction 
with V = 2.i<j Vij is given by 

V12 = LVST(lr l - r2 1)PST' 
ST 

(33) 

where the SU(3) reduced matrix element is given by the last 
factor ofEq. (37). Note that the SU(3) reduced matrix ele
ment is defined in terms of an unconventional order of the 
SU(3) coupling. This definition proves convenient when the 
SU(3) coupling (X,u) X (A,u)---+(Aotto) requires an outer multi
plicity label Po; that is, when (Aotto) occurs in the coupling 
with a mUltiplicity > 1. For a scalar interaction of the rela
tive coordinate r, V (r) is specified by its SU(3) reduced matrix 
elements in the space of oscillator functions fjJ ~~I(r) of the 
single three-dimensional variable r, that is, by the numbers 
«(ljOlil V(A..,uolll(qO)· These follow at once from the Bargmann 

791 J. Math. Phys., Vol. 24. No.4. April 1983 

I 
w here PST is a two-particle spin-isospin projection operator, 
it frequently proves convenient to expand the radial part of V 
in terms of Gaussians 

V(lr, - r21) = Voexp( - prj, (34) 

where r is the dimensionless relative coordinate 

r = [mlU/2li] 1/2(rl - r2). (35) 

If such a Vis expanded in SU(3) irreducible tensor compon
ents 

(36) 

it is sufficient to specify Vby its SU(3) reduced matrix ele
ments, defined bylO 

(37) 

transform of V (r): 

r(k,k*)= f dr A (k,r)V(r)A (k*,r) 

= L L «qO)1I V(A..,uoIII(qO) 
qq (A..,uol 

(38) 

where we have used the expansion (4) for A (k, r). A (k*, r). the 
defining Equation (37). and the orthonormality of the 
Wigner coefficients. To determine the needed SU(3) reduced 
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matrix elements, it is thus only necessary to evaluate the 
Bargmann transform of VIr), expand it in the SU(3)-coupled 
Bargmann space functions, and pick off the coefficient of the 
q, q (Aotto) term. For the Gaussian interaction of Eq. (34) 

Y(k k*) - Vo 
, - (1 + fJ)312 

[ 
(kok*) 

Xexp -- -
l+fJ 

fJ (kok + k*ok*)] 
2(1 + fJ) 

(39) 

Direct application ofEq. (18) gives 

- (fJ )a +b 
Y(k,k*) = VoJ;.v - 2' 

1 ( _ l)minla - v.b - v) 

X--------'--.....:...----
(1 + fJ )a + b +c + 3/2 2 

X [(20 + 2b - 4v + 2)(2v + c)!(2a + 2b - 2v + c + 2)!] 
c!v!(a + b - v + I)! 

X [p l2a + c.O)(k)XP IO,2b +C)(k*)]~:O 2v.2b - 2v). (40) 

With 20 + c = q, 2b + c = q, (..1.0#0) = (20 - 2v, 2b - 2v), 
and Eq. (38) this gives the needed reduced matrix elements. 
It is convenient to name the summation index b - Yto = m; 
note also that q - #0 = q - ..1.0' The result is 

«(ijOlil VI",,"o)lI(qO) 

_ v. (- 1 )minl"oI2.Jlo/2)( - 1 )Iii - q)Il(¥?, )1"0 + II-o)/Z 

- 0 2( 1 + fJ )Iq + q + 3)/Z 

X [(..1.0 + #0 + 2)(q - #o)!(Ao + q + 2)!] liZ 

liq-II-O)IZJ( fJ )zm 
X L -

m~O 2 

1 
X . (41) 

m!(q - #0 - 2m)! [!(Ao + J-Lo + 2) + 2m]! 
An SU(3)-recoupling transformation converts this reduced 
matrix element for the space of the relative coordinate r to 
the full two particle space. If the two- particle states are 
specified by two-particle relative motion functions (qO) cou
pled with two-particle center of mass motion functions (Q 0) 
to resultant (..1.#), then the two-particle reduced matrix ele
ments are 

([(ijO) X (Q O)](.:i,ulll Vi",,"o)11 [(qO) X (Q O)](AJ-L) Po 

= u ((.:i,u)(OQ )(..1.0 J-Lo)(Oq);(ijO); __ ;(jLA ) _Po) 

X( _l)"+II-+A:+p[ d~m(.:i,u) ]lIz«(ijO)IIVI",,"o)ll(qO). 
dlm(ijO) 

(42) 

Here the U coefficient is an SU(3) Racah coefficient in uni
tary form. 1.11 For some applications it may be important to 
make a Talmi-Moshinsky-Brody transformation from the 
two-particle relative and center of mass motion basis to a 
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two-particle basis expressed in terms of single-particle oscil
lator functions¢ 1~,O)(rd, ¢ ~~20)(r2)' In the SU(3)-coupled basis 
the needed transformation coefficients from the 
[(qO)X(QO)](AJ-L) to the [(qI0)X(q20)](AJ-L) basis are simple 
SU(2) d-functions [see Eq. (4.1.15) of Ref. 19 for our phase 
convention], and 

([(qIO) X (qzO) ](.:i,u) II V 1",,"0) II [(qIO) X (qzO)] (Ap) Po 

= L d tl=- q,)IZ.lq - Q )IZ (!1T)d tq:=- q,)/Z.lq - Q )IZ (~1T) 
q.q.Q 

X ([(ijO) X (QO)] (.:i,u II I V 1",,"0) II [(qO) X (Q O)](Ap) Po' 
(43) 

With Eqs. (41), (42), and (43) the full many-particle expres
sion for the full interaction can then be expanded in terms of 
the SU(3) reduced matrix elements by 

V= -! L _L L L[(2S+ 1)(2T+ 1)]112 
q,ii,q,q, I"P)I"JL) I",,"olpo ST 

X ([(qIO) X (q20) ](.:i,u II I V~.fu)11 [(qIO) X (q20)] (Ap) Po 

X [ [a 7 X a 7 ] IA:P)ST Iq,O) Iq,O) 
X [a X a ] (wI )ST ] 1",Po)poSo = ° To = ° 

109,) 109,) Lo = 0 , (44) 

where the square brackets now denote both SU(3) and spin 

and isospin coupling, and where a\;'O)I,m,m?1l, (a\oq,JI,m.m,m,) are 
single particle creation (annihilation) operators for a particle 
in the q i th oscillator shell. 
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Reciprocal transformation for one-dimensional conservation equations 
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One-dimensional conservation equations (OCE) of the form anlat + af lax = 0 with 
n = n(x,t) > 0 andf = f(n,anlax, a2nlax2,. .. ) admit a symmetric reciprocal transformation 
x-x*(x,t), n_n*(x*,t )=n -I ,J-f*= - n -1. which produces an equivalent OCE for n* in x* 
space. Certain OCE of contemporary interest are reciprocal invariant in the sense thatf* = f(n*, 
an* lax*, a2n* lax*2, ... ). There also exists a class of essentially nonlinear OCE for which the 
reciprocal transformation produces a linear OCE, and thus equations in this class are solvable 
analytically. 

PACS numbers: 02.30.Jr 

Consider one-dimensional conservation equations 
(OCE) of the form 

~+ af =0, (1) 
at ax 

where the dimensionless density function n = n(x,t) is posi
tiveand the flux functionf = fIn, anlax,~nlax2,. .. ) isstruc
tured algebraically in terms of n and its spatial derivatives. 
An OCE [Eq. (1)] guarantees existence of a function 
x* = x*(x,t ) such that 

ax* - ax* 
n=-, f=--

ax at 
(2) 

or, equivalently, 

dx* = n dx - f dt. (3) 

The latter differential form is endowed with 
(x,n,J)+-+(x*,n*,J*) transposition symmetry if one defines 

n*(x*,t)=[n(x,t)]-t, f*=-n-1j (4) 

for then Eqs. (3) and (4) imply 

dx = n*dx* - f*dt. (5) 

Since x* increases monotonically with increasing x accord
ing to the first equation in Eqs. (2), the x+-+x* correspon
dence is one-to-one for fixed t, and thus x can be viewed as a 
single-valued function of x* and t. Hence it follows from Eq. 
(5) that n* satisfies the OCE 

an* af* 
-+-=0. (6) 

at ax* 

In Eq. (6),f* is understood to be expressed in terms ofn* and 
its derivatives with respect to x*, i.e., 

f*= *1( *-1 *-3 an* 3 *-s( an* )2 -n n -n -- n --
, ax*' ax* 

_ n*-4 (~n*) ... ) 
ax*2' , (7) 

by virtue of the definitions in Eq. (4) and chain-rule differen
tiation with t held fixed. Thus if n( > 0) satisfies the OCE (1) 
in x space, n -I=n* (> 0) satisfies the equivalent OCE in (6) 
in x* space. It is evident by Eqs. (3), (4), and (5) that the 
correspondence (x,n,/)+-+(x*,n*,/*) is symmetric. Observe 
that the nonsingular one-to-one character of this transfor
mation depends directly on the assumption n > 0 through 
the first equation in Eqs. (2) and the transformation formulas 

in Eqs. (4). Although the reciprocal transformation 
(x,n,J)+-+(x* ,n* ,J*) has not been discussed in generality 
heretofore, specialized applications of this transformation 
have been employed recently by several authors. 1-3 

Observe that Eq. (1) is reciprocal invariant if the right 
side of Eq.(7) reduces tof(n*, an*lax*, a2n*lax*2,. .. ), for 
then the dynamical evolution of n* in x* space prescribed by 
Eq. (6) is identical to the dynamical evolution of n in x space 
prescribed by Eq. (1). To delineate the class of reciprocal
invariant OCE, one must determine the flux functions which 
satisfy the condition 

f* =f(n*, ::: ' ~:: ,. .. ) (8) 

with the left side given by Eq. (7). Let us introduce the quan
tities 

Sk=(n-
1/2 

!t(lnn), (9) 

defined for nonnegative integer k = 0,1,2,3,. .. : 

I:- -1 I:- _ -3/2 an 
~o= nn, ~I=n -, 

ax 

S2-n-2 ~n _1.- n-3 (~)2,.... (lO) 
ax2 2 ax 

If x is replaced by x* and n is replaced by n *, the quantities 
given by Eq. (9) simply change sign, 

Sk-S r =( n*-1/2 a~* t In n* 

= (n- 1/2 ! r In n- I 
= - Sk' (11) 

in view of the first members ofEqs. (2) and (4). Moreover, 
since n and its spatial derivatives are expressible algebraical
ly in terms ofthe Sk'S, 

an 
n=expso, -=slexpHo, 

ax 

~~ = (S2 + ~ sf) exp 2So"'" (12) 

there is no loss of generality in writing 

/ = n I/2g(s), (13) 

where g is a scalar function of S=(So"",SN) for spatial de
rivatives up to order N appearing inf4 From Eq. (13) and the 
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second definition in Eqs. (4), it follows that 

f* = - n -- 1/2g(S)' (14) 

On the other hand, the right side of Eq. (8) is obtained by 
replacing n by n* and x by x* in Eq. (13); according to the 
first definition in Eqs. (4) and (11), the replacement 
(x,n)~(x*,n*) yields 

( 
an* a

2
n* ) -1/2 ( 1:) 

fn*'ax*'ax*2'''' =n g-~. (15) 

Hence, by substituting Eqs. (14) and (15) into Eq. (8), one 
finds the necessary and sufficient condition for reciprocal 
invariance, 

- g(s) = g( - s)· (16) 

Therefore we have the following result: Equation (1) is reci
procal invariant if and only if the flux function is expressible 
as n I /2 times an odd function of S. 

With g in Eq. (13) only required to satisfy the oddness 
condition [Eq. (16)], the class of reciprocal-invariant aCE is 
quite broad. The following illustrative reciprocal-invariant 
aCE are obtained by using Eqs. (10) and (13) tofixfin Eq. (1): 

~+V~--O, g = 2v sinh !s 0==> at ax (17) 

g= -Dsl=? ~=D~(n-I~), 
at ax ax 

(18) 

g = -!D (cosh SO)-ISI=? 

~=D~ [(1 +n2)-I~], 
at ax ax 

( 19) 

= v-ID2f;-2~+ v-ID2~(n-3/2~) =0 
g ~ at ax2 ax 

(v,D const). (20) 

Equation (17) is the classical linear equation for nondisper
sive steady-wave propagation, Eqs. (18) and (19) are interest
ing nonlinear diffusion equations, and Eq. (20) is a nonlinear 
dispersive-wave-propagation equation. In particular, Eq. 
(18) has been the subject of recent work5

; the reciprocal in
variance ofEq. (18) implies that the resGlts pertinent to n inx 
space5 also hold good for n* = n -I in x* space if one makes 
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the appropriate translation of supplementary (boundary 
and/or initial) conditions. 

The most significant practical applications of the reci
procal transformation arise for flux functions of the form 

N (-I a)k -I f=n I Ck n - n , 
k~ I ax 

(21) 

where the ck's are constants. Whereas Eq. (21) makes Eq. (1) 
essentially nonlinear, the reciprocal transformation yields 

N akn* 
f * = - '" C -

kL:::I k ax*k 
(22) 

according to Eqs. (2) and (4); thus Eq. (6) is linear, and the 
associated initial-value problem is amenable to solution by 
series-expansion or integral-transform methods. Having 
solved Eq. (6) for n*(x*,t) = n -- I, one obtains n and x para
metrically in terms of x* and t by integrating Eq. (5). Finally, 
the algebraic elimination of x* between the expressions for n 
and x produces n = n(x,t). As a remarkable illustrative ex
ample, the solution to Eqs. (1) and (21), subject to the initial 
value 

n(x,O) = (1 + ax2) - 1/2 (a=positive const), (23) 

is obtained as 

n(x,t) = (eM + ax2)-I12, 

where 
N' 

b =2 I C2j _ l d, 
j~1 

{ 
~N for N even, 

N'= !(N + 1) for N odd. 

(24) 

The latter solution is valid without any restriction on the ck's 
in Eq. (21) or the value of N. 

IG. Rosen, Phys. Rev. B 19, 2398 (1979); 23,3093 (1981). 
2J. G. Berryman, J. Math. Phys. 21,1326 (1980). 
3G. Bluman and S. Kumei,]. Math. Phys. 21,1019 (1980). 
4It is interesting to note that Eq. (1) always admits a self-reciprocal solution 
n = A (t )x- 2::::;'n* = A (t )(X*)-2 ifgin Eq. (13) is independent of So ;for this 
self-reciprocal solution Sl = - 2A -112, Sk==O for k>2 and g is indepen

dent of x. 
'J. G. Berryman and C. J. Holland, J. Math. Phys. 23, 983 (1982). 
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We present the results of a systematic investigation of invariance properties of a large class of 
nonlinear evolution equations under a one-parameter continuous (Lie) group of transformations. 
It is shown that, in general, the corresponding invariant variables (the subclass of which is the 
usual similarity variables) lead to ordinary differential equations of Painleve type in the case of 
inverse scattering transform solvable equations, as conjectured by Ablowitz, Ramani, and Segur. 
This is found to be also true for certain higher spatial dimensional versions such as the 
Kadomtsev-Petviashivilli, two dimensional sine-Gordon, and Ernst equations. For the 
nonsolvable equations considered here this invariance study leads to ordinary differential 
equations with movable critical points. 

PACS numbers: 02.30.Jr, 02.20.Sv 

I. INTRODUCTION 

The group theoretic analysis of differential equations 
was advocated by Sophus Lie1 during the nineteenth cen
tury. The basic idea in this analysis is the consideration of the 
invariance of tangent structural equations under one- or sev
eral-parameter transformation groups in conjunction with a 
given system of differential equations. The in variance condi
tions enable one to find the infinitesimal transformations 
and from them the finite transformations, invariant varia
bles, and the Lie algebra associated with a given differential 
equation. In terms of the invariant variables, the order of an 
ordinary differential equation can be reduced by one, and in 
the case of partial differential equations the number ofinde
pendent variables can be reduced by one. In this way one 
could obtain a class of interesting similarity solutions, whose 
importance has been discussed by many authors2

-
14 recently 

in different contexts. 
At present there is a revival of interest in the group 

theoretic analysis of nonlinear partial differential equations. 
This is due to several reasons. It is known that a class of 
nonlinear evolution equations solvable by the inverse scat
tering transform (1ST) technique possess a number of com
mon properties such as "solitons," infinite sequence of con
servation laws, and Backlund transformations with 
associated geometric and group theoretical properties (see 
Ref. 15 and the references therein). It is an exciting problem 
to extend these studies to other systems such as dissipative 
equations and equations in higher spatial dimensions for 
which no 1ST-like technique exists so far. Among the devel
opment of a few techniques in this direction, the group theo
retical approach is one.4 The close connection 16--25 between 
the class of soliton-possessing evolution equations solvable 
by the 1ST method and the Painleve transcendental equa
tions characterized by no movable critical points also 
prompts one to search for the underlying in variance proper
ties. In fact this connection appears to be even stronger, as 
some of the recent studies 1.26--30 show that the Biicklund 
transformations, Lax criteria for complete integrability, and 

a'On leave from N. G. M. College, Pollachi 642001, India. 

higher-order conservation laws are closely related to the ex
istence of higher-order Lie-Biicklund transformations. Such 
studies also lead to solvability of nonlinear diffusive equa
tions in certain cases. 30 Also certain solvable equations seem 
to possess a "seeding operator" mechanism in terms of the 
similarity variables. 31

•
32 

Motivated by the foregoing considerations we plan to 
analyze certain nonlinear partial differential equations, 
which are being intensively studied at present in theoretical 
physics and applied mathematics, through the use of Lie's 
method of continuous transformation groups. 1-4 We obtain 
the appropriate point transformation groups and generators 
which leave these equations invariant and the corresponding 
similarity variables and the finite transformations. In terms 
of the similarity variables, the systems with two independent 
variables reduce to ordinary differential equations, while for 
the systems with three independent variables a reduction is 
made to a partial differential equation with two independent 
variables. For the latter, again another set of invariant varia
bles is found in terms of which they reduce to ordinary differ
ential equations. Classifying the types of ordinary differen
tial equations which result through the above process, we 
find that for the systems which are known to be solvable by 
the 1ST procedure, and some of their higher dimensional 
analogs, the ordinary differential equations (under appropri
ate reductions) fall within one of the 50 canonical forms in
cluding the Painleve transcendental equations with no mov
able critical points. 2 For the 1ST non solvable equations, the 
resultant ordinary differential equations in general are found 
not to fall within the Painleve class, and so the solutions of 
such ordinary differential equations are characterized by 
movable critical points. 

The plan of the paper is as follows. To be self-contained, 
we give a brief outline of Lie's transformation groups as ap
plied to differential equations in Sec. II. In Sec. III, we illus
trate the procedure by explicitly working out the invariance 
properties for two specific equations, namely, generalized 
KdV equation and two dimensional sine-Gordon equation. 
In Sec. IV, we present our results in tabular forms for the 
equations that we have analyzed. In Sec. V, we give a brief 
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discussion of our results and their implications. In the ap
pendices, we present an analysis of the singular points for the 
specific cases where movable critical points Occur. 

II. LIE TRANSFORMATIONS AND SIMILARITY FORMS: 
THEORY4 

In this section, we give a brief outline of the theory of 
Lie's one-parameter group of transformations for invariance 
of a partial differential equation with two independent varia
bles. Generalization to more variables is straightforward. 4 

A. Invariance and infinitesimal characterization 

Consider a partial differential equation with one depen
dent variable u and two independent variables x and t: 

(2.1) 

Here sUbscripts denote partial differentiations. Let a one
parameter (€) group of transformations of the variables x,t,u 
be taken as 

x' = I(x,t,u;€), t I = g(x,t,U;€), u' = h (x,t,U;€). (2.2) 

Let u = 8 (x,t ) be a solution of (2.1). If we replace the varia
bles u,x,t in Eq. (2.1) by V, x' = l(x,t,8;€), t I = g(x,t,8;€), Eq. 
(2.1) becomes 

(2.3) 

Then v = 8 (x',t ') is a solution of (2.3). 
We say that the transformations (2.2) leave the Eq. (2.1) 

invariant iff v = h (x,t,8;€) is a solution to (2.3) whenever 
u = 8 (x,t ) is a solution to (2.1). This condition implies that if 
Eqs. (2.1) and (2.3) have a unique solution, then 

8 (x' ,t ') = h (x,t,8 (x,t );€) . (2.4) 

Hence 8 (x,t ) satisfies the one-parameter functional equation 

8 (f(x,t,8;€), g(x,t,8;€)) = h (x,t,8;€) . (2.5) 

Now, expanding (2.2) about the identity € = 0, we can 
generate the following infinitesimal transformations: 

x' = x + €S(x,t,u) + O(e), 

t ' = t + er(x,t,u) + O(e), 

u' = u + €1/(x,t,u) + 0 (e) . 

(2.6) 

The functions S,7, and 1/ are the infinitesimals of the trans
formations for the variables x, t, and u, respectively. Then 
the group (2.6) is extended to the derivative terms. The trans
formations (2.6) together with the transformations for the 
first, second,.·· derivatives are called first, second,··· exten
sions. We shall denote the infinitesimals for u x ,u "u xx ,u x, ,. .. 
by [1/x], [1/,], [1/xx ], [1/x, ),. ... Then we have 

[1/x] =1/x +(1/u -5,,)8x -7x8, -5u8~ -1'u 8,,8,. 
(2.7) 

Similarly explicit expressions for different higher extensions 
may be given. Using these various extensions, the infinites
imal criteria for the invariance of (2.1) under the group (2.2) 
is given by 

XH IH~O = 0, (2.8) 

where the tangent vector field X is given by 
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a a a a a 
X=-+7-+1/-+ [1/x)-+ [1/x,,]-

ax at au aux auxx 
a + [1/,] - + .. , . (2.9) 

au, 

The condition (2.8) provides an algorithm to find 5,7, 
and 1/. For any solution u = 8(x,t) of(2.1), Eq. (2.8) may be 
treated as a form in the derivatives of 8 whose coefficients 
depend on (8,x,t) and the unknowns (1/,S,7). Collecting to
gether the coefficients of like-derivative terms in 8 and set
ting all of them to zero, we get a system of linear partial 
differential equations from which we can find 5, 7, and 1/ in 
practice. 

B. Similarity variables, similarity forms and reduction of 
independent variables 

Expanding (2.5) about € = 0 with the aid of(2.6), we get 

8 (x + €5 + 0 (€2),t + €7 + 0 (€2)) 

= 8(x,t) + €1/ + o (E2) . (2.10) 

For known functions of 1/,5, and 7 the term of 0 (E) leads to 
the first-order partial differential equation satisfied by 8 (x,t ): 

58,,+78,=1/. (2.11) 

Equation (2.11) is called the invariant surface condition. The 
solutions of(2.1l) are obtained by solving the following char
acteristic equation: 

dx dt d8 
-=-=- (2.12) 

The general solution of this equation will involve two arbi
trary constants of which one constant takes the role of simi
larity variable, say t, and the other, say I(t ), which plays the 
role ofa dependent variable. Thus we finally obtain the simi
larity form of the solution as 

v = F(x,t,J(t)) . (2.13) 

By substituting this relation in Eq. (2.1), we can obtain an 
ordinary differential equation for f The results mentioned 
above can be extended to any number of dependent and inde
pendent variables. In this way we can reduce the number of 
independent variables. 

C. Infinitesimal generators and finite transformations 

The operator Q given by 

a a a 
Q=S-+7-+1/-

ax at au 
(2.14) 

is called the infinitesimal operator of the one-parameter 
group. The solution (2.13) is the corresponding similarity 
solution for invariance under the action of Q. In other words, 
the similarity solution (2.13) satisfies the invariant surface 
condition. The finite.transformations are obtained by expon
entiation of the infinitesimals through the relations: 

"" €" u' = exp(€Q).u = u + L _Qnu, 
n = I n! 

x' = exp(EQ )·x = x + ! €" Q nx , 
n~ I n! 

t I = exp(€Q ).t = t + ! €" Q nt . 
n= I n! 

M. Lakshmanan and P. Kaliappan 
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III. EXPLICIT ANALYSIS OF TYPICAL CASES 

In this section, we will apply Lie's theory discussed in 
Sec. II to a couple of specific nonlinear evolution equations 
to illustrate the method, before presenting the results for the 
full set (of equations we wish to explore) in Sec. IV. 

A. Generalized KdV equation 

We consider the in variance of the generalized KdV 
equation 

u,+unux+uxxx=O (n>l). (3.1) 

Following the discussion of Sec. II, the determining equa
tions (2.8) become, after some analysis, 

11, = 1Ix = 1Iuu = 0, - S, + nun -1 11 - Sx un + 'T, un = 0, 

'T, = 3Sx' Sxx = Su = 'Tx = 'Tu = O. (3.2) 

Here SUbscripts denote partial differentiation. 
By solving Eqs. (3.2) we get, for n = 1,6 

S = ax/3 + /3t + y, 'T = at + 5, 11 = - t au + /3 
(3.3) 

and, for n > 2, 

S = ax/3 + /3, 'T = at + 5, 11 = - 2au/3n, (3.4) 

where the parameters a, /3, y, and 8 are constants. 
By solving the Lagrange characteristic equation (2.18) 

for the values of S, 'T, and 11 found above, we obtain the fol
lowing similarity variables t and f(t): 

Forn=l, 

t = ! a 5
/
3(at + 5)-1/3[2a2x - 3/3 (at + 5) 

+ 6(ay - /30)], (3.5) 

u = ~ a/3 - a/3 2(at + /3 )-2/3 f(t). 

For n>2, 

t = (x + 3/3 fa) (t + 5/a)I/3, 
(3.6) 

u = (2/3n) (t + 5/a) - 2!3n f(t). 

The reduced invariant equation is gotten by substitut
ing (3.5) in (3.1) for n = 1 and (3.6) in (3.1) for n>2. For both 
the cases the invariant equation can be given as 

fm + f" I' - 2f /n - tl' = 0 (' = ~). (3.7) 

We have analyzed this equation (see the appendices) for 
movable critical points by a method given by Ablowitz, Ra
mani, and Segur. 18 (Hereafter we shall refer to them by 
ARS.) We find that Eq. (3.7) is ofPainleve type (having no 
movable critical points) for the cases n = 1 and n = 2. But it 
is not of Painleve type for n > 2. 

Further for the cases n = 1,2 we can reduceEq. (3.7) to 
the second Painleve type as follows. For n = 1, Eq. (3.7) 
reads 

F' + ff' -2f -tl' =0. 

We make a transformation23
•24 

f=F'-~F2. 
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(3.8) 

(3.9) 

Then F satisfies the equation 

(F" - tF - -hF3)" - !F(F" - tF - -hF3)' = O. 
(3.10) 

This equation can be integrated once to 

(F" - tF - is F3)' = I exp[ + J !F(y) dY]. (3.11) 

where I is an arbitrary constant. Looking for solutions which 
are bound as t-oo we have I = O. Another integration then 
gives 

F" -tF-isF3=0. (3.12) 

This equation is of the second Painleve type. For n = 2, Eq. 
(3.7) reads 

fm + P I' - f - tl' = O. (3.13) 

Integrating once, we have 

f" + f3/3 - tf= const. (3.14) 

This equation is also of the second Painleve type. 
The finite transformation Eqs. (2.15) are as follows: 

For n = 1, 

x' = A 1/3 X + (3/3 /2a)(A - A 1/3) t + [3(y/a)(A 1/3 - 1) 

+ (3/35/2a2
) (A - 1) - (9/35/2a2

) (A 1/3 - 1)], 

t' =At + (5/a)(A - 1), 

u' = A -2/3 U - (3(J /2a) (A -2/3 - 1). 

For n>2, 

x' = A 1/3 X + (3/3 fa) (A 1/3 - 1), 

t' =At+ (5/a)(A - 1), 

u' = A -2/3" U. 

B.(2 + 1)-dimenslonal slne-Gordon (sG) equation 

The sG equation in (2 + 1) dimensions reads 

(3.15) 

(3.16) 

(3.17) 

We shall apply the following infinitesimal transformations: 

x' = x + €SI(x,y,t,u) + 0 (e), 

y' = y + €S2(X,y,t,u) + 0 (e), 

t' = t + €S3(X,y,t,u) + 0 (e), 

u' = u + €S4(X,y,t,u) + 0 (e). 

Then the determining equations are of the form 

S3u = Slu = S4uu = 0, 

S4tt - S4uu - S4YY - (S4Y - 2s3,) m 2 sinu 

+ S4 m2 cos u = 0, 

Slxx + Slyy - SItt - 2S4ux = 0, 

S3xx + S3yy - S3" + 2s4u , = 0, 

S2xx + S2yy - S21t - 2s4UY = O. 

SIx = S3,' S2y = S3" Sly = - S2x' 

S2t = S3Y' Sit = S3x' 

M. Lakshmanan and P. Kaliappan 
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Sol ving (3.19), the infini tesimals are obtained as 

SI=At+Cy+a, 

S 2 = Bt - Cx + r, 

S3 =Ax + By +/3, 

S4 =0. 

(3.20) 

Then the similarity variables (with a = /3 = r = 0) become 

; 1 = t 2 _ x 2 _ y2, 

;2=Ct-Bx+Ay, 

and the similarity form for U is 

U = F(;I';2)' 

Then the reduced invariant equation is 

(3.21) 

(3.22) 

4;IF + 4;2F;,;, + 6Fr;, + KFr;,r;, + m2 sinF= 0,(3.23) 

where K = C 2 - A 2 - B 2. The finite transformation group 
corresponding to the Lorentz in variance is given by 

(x',y',t ',U')T = A (x,y,t,U)T, 

where 

BC+AA 

-BC+BA 

BC+AA 

o 

(3.24) 

where a = - /3 = - m 2 IS, which is a special case of third 
Painleve equation. 2 The finite group corresponding to Eq. 
(3.2S) is 

;; =;1 + €a;2 + €2ka2/4, 

;; =;2 + €kaI2, 

F'=F. (3.32) 

IV. EVOLUTION EQUATIONS AND INVARIANT FORMS 

The systems that we consider fall into the following 
three categories. 

A. Soliton-possessing 1ST-solvable evolution 
equations 

(i) Korteweg-de Vries (KdV) equation: 

Ut + UUx + Uxxx = O. (4.1) 

(ii) Modified KdV (MKdV) equation: 

U t + u2ux + Uxxx = O. (4.2) 

(iii) One dimensional sine-Gordon (sG) equation: 

Utt - Uxx + sinu = O. (4.3) 

(iv) Cylindrical KdV (CKdV) equation: 

Ut + ul2t + 6uux + Uxxx = O. (4.4) 

(v) Boussinesq (B) equation: 

Utt - Uxx - 6(u2
)xx - U xxxx = O. (4.5) 

(3.25) (vi) Nonlinear Schrodinger (NLS) equation: 
with A = [KW + 2jf, cosh[(K€)1/2] = 1 + O. 

Now taking Eq. (3.25) as a new partial differential equa
tion in the variables; 1 ';2' and F with the following infinites
imal transformations, 

;; =;1 + €IS5' ;; = ;2 + €IS6' F' = F + €IS7' 
(3.26) 

the determining equations are 

S7 =0, 

4;2(S6)r;, + 2K(S6)r;, = 0, 

2(S5)r;, - S51;1 + (S2/;I)(Ss)r;, = 0, (3.27) 

4;1 (S6)r;,r;, + 4;2(S6)r;,r;, + 6(S6)r;, + K(S6)r;,r;, = 0, 

4;I(S5)r;,r;, + 6(S5)r;, + K (Ss)r;,r;, + 4;2(S5)r;, = O. 

The infinitesimals are 

(3.2S) 

where a and k are constants. Then the similarity variables 
are 

;=;I-;Uk, (jJ=F(;) (3.29) 

so that the reduced equation becomes 

4;(jJr;r; + 4(jJr; + m2 sin(jJ = O. (3.30) 

By making the substitution 

Eq. (3.30) reduces to the form 

d
2
w =J..(dUJ)2 _J.. dw + J..(aw2 +/3), (3.31) 

d~2 w d~ ~ d~ ; 
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iUt + uxx + u2u* = O. 

(vii) Derivative NLS (DNLS)19: 

iUt = Uxx - 4iu2U~ + SIuI 4 u. 

(viii) Lund-Regge (LR) system: 

. (tan
2
UI2) 

Uxt + smu - . Vx Vt = O. 
smu 

(4.6) 

(4.7) 

(4.S) 

(ix) One-dimensional Heisenberg's ferromagnetic sys
tem under sterographic projection (equivalent to NLS 
equation): 

2u* u2 = 0 iUt + Uxx - x 
1 + uu* 

(4.9) 

B. Higher-spatial-dimensional versions 

(i) Kadomtsev-Petviashville (KP) equation: 

(u t + 6uux + uxxx)x + 3a2uyy = 0 . (4.lO) 

(ii) Two dimensional sine-Gordon (2sG) equation: 

Utt-UxX-uyy+m2sinu=0. (4.11) 

(iii)(a) Ernst equation for axially symmetric gravitation-
al field (Ernst): 

(uu* - 1)[upp + (I/p) up + uzz ] = 2u*(u~ + u;). (4.12) 

(b) Stationary axially symmetric Einstein-Maxwell 
(E-M) equation: 
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(uu* + vv* - 1)V2u = 2Vu·(u*Vu + v*Vv) , 

(uu* + vv* - l)V2v = 2Vv·(u*Vu + v*Vv) , (4.13) 

( 
2 a2 

1 a a2) 
v = ap2 + p ap + az2 . 

(iv) Stationary axially symmetric Heisenberg's ferro
magnetic continuum spin chain (AHS): 

(uu* + 1)[ upp + (lip) up + uzz ] = 2u*(u! + u;). (4.14) 

C. Other equations 

(i) Generalized KdV(GKdV) equation: 

(ii) KdV Burger's (KdVB) equation: 

(iii) Benjamin-Bona-Mahony (BBM) equation: 

u t + Ux + uUx - Uxxt = 0 . 

(iv) Fisher's equation: 

Uxx - u, + u - un = 0 . 

(v) Phi-four (974
) equation: 

u" - Uxx + U - u3 
= 0 . 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

For the above equations we have found the infinitesi
mals of one-parameter point transformation groups. From 
these infinitesimals we have obtained the corresponding in
variant variables and the invariant forms of the solutions. In 
terms of these similarity variables the invariant ordinary dif
ferential equations (ODE's) are obtained. We have further 
reduced the ODE's with proper substitution to see whether 
they lead to one of the 50 canonical Painleve types of equa
tions as enumerated by Ince.2 We have also adopted the algo-

rithm proposed by ARS18 in the case ofthe invariant equa
tionsof(4.15), (4.17), and (4.18) for the critical point analysis, 
and this analysis is given in Appendix A. 

In the following, we present our results in tabular 
forms. Tables I, II, and III denote the same classification of 
equations as above. Tables lA, I1A, and IlIA contain the 
infinitesimals of the transformations and the corresponding 
finite transformations (denoted by primed variables) of the 
variables involved in the equations. Tables IB, lIB, and IlIB 
contain the invariant variables, invariant forms of the solu
tions, and their reduced forms after suitable transformations 
and further these tables contain the results whether the re
duced equations belong to Painleve type or not. 

In Tables IA and IlIA, the symbols 5, T, and TJ denote 
the infinitesimals of the variables x, t, and u, respectively, 
and in Tables IB and IIIB the symbols; and/(; ) denote the 
invariant variables associated with the values of 5, T, and TJ. 
Since the Lund-Regge system (4.8) contains one more de
pendent variable v, we have used the symbols (7' and 97(; ), 
respectively, to denote the corresponding infinitesimal and 
the invariant variable. The expressions for (7' and 97(; ) are 
written along with the results for; and/(;). 

In Table IIA, 5., 52' 53' and 54 denote the first set of 
infinitesimals for the variables x, y, t, and u for the KP and 
2sG equations and ;., ;2' and F(;.';2) denote the invariant 
variables associated with the above infinitesimals. The sym
bols 55' 56' and 57 denote the second set of infinite sima Is for 
the new partial differential equation in terms of the new "in
dependent" variables;. and; 2 for the dependent variable 
F (;. ';2), and; and 97(; ) denote the invariant variables for the 
infinitesimals 55' 56' and 57' In the same table,s, T, and TJ 
stand for the infinitesimals of the variablesp, z, u in the cases 
of Ernst and HS equations (4.12) and (4.14) and; and 

TABLE lA. lnfinitesimals (5,11, and 1") and finite transformations for Eqs. (4.IH4.9). 

lnfinitesimals 
Eqs. 

1" 

KdV ax/3 + Pt + y at + fJ - 2au/3 +P 

MKdVax/3 +P at+fJ -au/3 

sG at+p ax+fJ 0 

CKdV' ax + pxt 1/2 3at + 2fJt 3/2 px/12t 112 - 2au 

+yt I/2 +fJ _ 2fJut 1/2 + y/12t 1/2 

B a P 0 

NLS ax+pt+y 2at+fJ -au + ~ipux 
+ ;Au 

DNLS 2ax+P 4at+ fJ -au 

LR ax+y -at+fJ 11 =0, u=p 

HS ax+p 2at+fJ yu2 +;AU + r 

Finite transformations 

x' t' U' 

A I i3x + (3P /2a)(A - A 1I3)t At + (ll/ a)(A - I) A -2/3U 

+ [(3y/a)(A 1/3 - I) + (3P8/2a2)(A - I) - (3P /2a)(A -2/3 - I) 
_ (9PfJ/2a2 )(A 1/3 _ I)] 

A 1/3X + (3P /a)(A 1/3 - I) 

(x + fJ/a)coshA 
+ (t + P /a)sinhA 

Ax + (fJ/a)(A - I) 

x+a 

Ax + l/J/a)(A 2 -A)t 
+ [(y/a)(A - I) 
+ (,8fJ/2a2 )(A _ 1)2] 

A2x+(,8/2a)(A2-1) 

Ax + (y/a)(A - I) 

Ax + (,8/a)(A - I) 

At+(ll/a)(A-I) A- 1/3u 

(t + P /a)coshA u 
+ (x + ll/a)sinhA 

A 3t A -2U 

t+P u 

A 2t + (fJ/2a)(A - I) e-Ia+uIE u 

A4t+(8/4a)(A4_1) A-Iu 

A -It - (fJ/a)(A -I - I)u' = u, 
v'=v+P 

A 2t + (fJ/2a)(A 2 - I) (au + b)l( - b *u + a*), 
lal 2 + Ib 12 = I 

a,fJ,r,fJ,a,b, A., and r are arbitrary constants; a, b, r are complex. A = eEa . 
• Finite transformations are given for the case P = 0 in the infinitesimals. 
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TABLE lB. Invariant variables (~), the invariant form of solutions, and reduction of invariant equations to Painleve types of equations for the evolution equations (4.1 H4.9). 

Eqs, Invariant variables ( ~) 

KdV I" 1!3a -S/3(at + 15)-'13 

X [2a'x - 3fJ (at + b) 
+ 6(ar - fJb )] 

MKdV 3-' /3(x + 3fJ la)(t + b/a)-'/3 

sO _ (l/2aJna(x' - t') 
- fJx + bt - W - fJ')l2a] 

CKdV' (x + bla)t -1/3 

B x -at/fJ 

NLS(i) (x + b 12a)(t + bl2a)-'12 
(/3=A = 0) 

(ii) (- P 115 )'/3[X 
(a =A =0) - Pt'/2b - bt /15 

+ (b'/2<5')(bIp)213] 

DNLS (x+P/2a) 
(2t + 8/2a)'I' 

LR (x + yla)(t - bla) 

HS (x + P la)(t + 812a)'/2 

(y=A=O) 

Invariant form of 
solutions (u) 

3fJ /2a - 3 -2I3a '/3 

X (at + b)-'/3f(~) 

3-'/3f(~)(t + 8Ia)-·/J 

f(~) 

f(~)t -2/3 

f(~) 

- f(~ )(t + 812a)-'I' 

( - P /8)·/Jexp[(iP /2<5)(xt 
- pt 3/38 - bt 2/2<5)] p(~) 
Xexp[ifq(~) d~] 

p(~)exp[iSq(~)d~ 1 
(2t + 812a)'/4 

u=f(~) 

v = L log (x + ria) 
2a t - 81a 

+({J(~) 

p(~ )exp[ifq(~) d~] 

a,fJ,r, and 8 are arbitrary constants. c, C. and C, are integration constants. 
a Finite transfonnations are given for the case fJ = 0 in the infinitesimals. 

Invariant equations 

r = 2f + if' - ff' 

r = f + if' - f'f' 
if' + I' + sinf = 0 

6r + 36ff' - lif' - f= 0 

- I'm + ( ;: - 1)1" 
- 12ff" - '21" = 0 

I" + f2f* - i!(ifl' = 0 

P 
Reduced forms type 

F" -~F II 
-F3/18=0 
(/'=F'-F'/6) 

I" + f' /3 - if + C = 0 II 

w" = (l/w)w" III 
- (l/~)w' - (1/2~)(W2 - I), 

(w = elf) 

d 2w/dr + w' - zw = 0 II 
[f= 12-2I3w', 
z = 12-'/3~] 

w' = 6w' + C.~ + C2 

[w =f + 12(1 - a 2/fJ2)] 

same as the 
invariant equation 

no movable 
critical points 

2p'q + pq' + (b 18)(/318)-1/3 p' = 0, w" = 2w3 + 2w + 2ci -1' II 
p' _pi - (b/8)(/3/8)-'/3pq p2 = - (w' + W2+!~) 
+ ~p/2 - (b 2/482)(/3 /8)-2/3p + p3 = 0 

q = p' _ !~ + c/p', 

p' _ pq' _ (4p3 + ~p)q 
+8ps=0 

({J' = (c/~ )eo!,f /2, 

if" + I' + sinf 

+ (1/ ~sinf)[(/3 '/ 4a2)tan2f /2 
+ c'eo!'f /2] = 0 

_ (I + p2) c(1 + p')' 
q--2-2-+ , ' 

:p p 

p' _ pq _ pq2 _ [2pl(1 + p2)] 

X[p" - p2q'] = 0 

w· - w'/2w + 6w' 

+ 4~W2 + ( - 12c + ~2/2)W 
- 2c2/w = 0 (w = p2) 

IV 

W· = [_1- + _,_ W'2 V 
2w (w-I) 

x.!.w' +(W-I)2(~+bW)] 
~ ~2 w 

(/= 2icoth-'w· /2 , 
a = ifJ 2/8a', b = ic'/2) 

d 'w (I 1)( dw )' 
dz' = 2w + w _ I dz V 

_.!. dw + (w _I)' (aw+!!....) 
z dz z' w 

[w=p',z=e',a= -2c', 
b = 2(c' + c + ill 



                                                                                                                                    

f(t) = p(t )exp[i S q(t ) dt] denote the corresponding invar
iant variables. For Eq. (4.13), in addition to the above, a 
stands for the infinitesimals corresponding to v and 
9'J(t) = K (t )exp[iS T (t ) dt] denotes another invariant vari
able. 

In finding the finite transformations, and invariant var
iables in some cases, certain parameters in the infinitesimals 
are taken to be zero either to avoid lengthy expressions or 
due to the difficulties encountered in solving the associated 
Lagrange characteristic equation (2.12). This is indicated at 
the proper places in the tables. 

It might be noted that partial results on some of these 
equations in class I have appeared already in the literature, 
and we give references to these results wherever necessary. 

Finally, we might add that, although we have found in 
the present paper all the Lie-point symmetries of the evolu
tions equations under consideration, we have presented only 
some of the reduced equations that can be obtained using 
these symmetries. A further group theoretical analysis is 
necessary in order to find all the similarity variables. To ap
preciate this, we may consider the case of the KdV equation 
discussed here. We find that the use of the full four-param
eter group (3.3) leads to the second Painleve equation (3.12). 
On the other hand, Fokas and Ablowitz33 have shown re-

cently that a proper combination of the Galilean and time
invariance groups, cf. (3.3), of the KdV equation leads to the 
first Painleve equation. We hope to carry out a systematic 
analysis of such combinations for the equations considered 
in this paper in the near future. We thank the referee of this 
paper for insisting on the necessity of this paragraph and 
pointing out Ref. 33 to us. 

V. DISCUSSION 

From our results, in general, it appears that 1ST -solv
able one-dimensional systems and their higher-dimensional 
versions on reduction to ordinary differential equations can 
be identified with one of the Painleve types of equations with 
no movable critical points. The results seem to corroborate 
the conjecture by ARS I

6-19 on the interconnection between 
soliton and Painleve equations. Further, ARS 19 extend the 
scope of inverse scattering methods to the Painleve type of 
ordinary differential equations. They do this by postulating 
that the linear integral equation 

K(x,y) = F((x + y)!2) + L'" K(x,z) N(x,z;y) dz, y;;.x, (5. 1) 

where N (x,z;y) assumes different forms involving F's for dif-

TABLE I1A. Infinitesimals and finite transformations for the higher-dimensional equations (4. IOH4.l4).' 

Eqs. Infinitesimals Finite transformations 

KP First set of transformations 
Sl = ax/3 + pt + P + by + dy t ford = 0 
S2 = 20/3 + c - 6a2bt - 3a2 dt 2 x' =Ax + (3b/a)A (A - l}y +A (A - 1)[(3p/2o)(A + I) 

- (27a2b 2/a2)(A - I)]t + (3P /a)(A - I) + (9bc/202)(A - 1)2 
+ (3p~ /202)(A 3 - 3A + 2) _ (27a2b 2~/a3)(A _ 1)3 

S3 = at + ~ y' = A 2y _ (18a2b /a)A 2(A - I)t + (3c/2a)(A 2 - I) 
_ (9a2b6/a2)(2A 3 _ 3A 2 + I) 

S4 = - 2au/3 + p/6 + d /6 t' = A 3t + (~/a)(A 3 - I), u' = uA -2 _ (Jl/4a)(A -2 - I) 
(A = e,aI3) 

Second set of transformations 
S,=B~2+C ~ i = ~l + E(B~2 + C) - ~a2B2c 

S6 = - 9a2B ~2 =~2-9a2BE 
S7 = n(B~2 - C) F' = F + (E!18)(B~2 - C) -la2B 2c 

2sG First set of transformations 
Sl =At+ Cy, S2 =Bt- Cx, [x',y',t ',u'f = A [x,y,t,uf, 
S3 =Ax + By, S4 =0 where A is as in Eq. (3.25) 
Second set of transformations 
S, = a~2' S6 = Ka/2, S7 = 0 ~ i = ~l + Ea~2 + icKa2, 

~ i = ~2 + EKa/2, F' = F 

Ernst S = ap, 'T = az + p, '" = yu2 + ipu - r* p' = Ap, z' = Az + .l!....jA - I), 
a 

u' = (au + b )/b *u + a*), (aa* - bb * = I) 

AHS S = ap, 'T = az + p, '" = yu2 + ipu + r* p' = Ap,z' =Az+~(A -I), 
a 

u' = (au + b )II - b *u + a*),laa* + bb· = I) 
E-M S = ap, 'T = az + p, p' = Ap, z' = Az + (p /a)(A - I), 

'" = au
2 + ibu + iav + yuv - a* , ' allu + a12v + a" 

U = , 
a" u + a32v + a33 

x = yu2 + i/Ju + iav + buv - y* v' = a21 u + a22v + a23 

af-:;:"a;' r 
where a2l a22 a23 is an arbitrary SU(2,1) matrix 

a" a32 a33 

tlA = eEa
• 
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TABLE liB. Invariant variables and invariant equations for higher-dimensional systems (4. lOH4. 14) and their reduction to Painleve type. 

Eqs. 

KP 

2sG 

2sG 

Invariant variables 

First set of transformations 

t, = (a- 5I '/2(at + 8)'1') 

X [2a2x - 6aby - 3(J1 + lSa2b la) 

x(at + 8) - ISb(6a2b8 + ac)la 

+ 6(afl - .u8)] 
;2 = (a- 4/'/2(at + 8)'/2) 
X [2a2y + 36a2b (at + 8) 
+ 3(6a2b8 + ac)] 

Second set of transformations 

; = - 9a2B;, - ~Bt~ - C;2 

Special case: For a = fL = fl = c = 8 = 0 

in the infinitesimals (cf. 

Table IIA) and a 2 = 1/3 in KP 
[Eq. (4.10)] t, = t, t2 = X + i-lit 
First set of transformations 

;, = t 2 - x 2 
- r. 

t2 = Ct - Bx + Ay 
Second set of transformations 

;= (;, _ t;)I(C 2 -A 2 _ B2) 

Ernst t = [(z + flla)2 + p2]'/2lp 

- (z + flla)lp 

Invariant form 
of solutions 

F(;";2) 

<)2/3 
3(at + u (J1/6 _ 2014/3) 

= 20513 

q:>(;) = ( - 1 62a2B )F 

- !B;~ - Ct2 

F(;";2) = 14 

F(;";2) = U 

F(;";2) = q:>(t) 

For Y =fl= 0, 

14 =/(t) =p(t) 

X exp[iS q(;) d;] 

Invariant equations 

3aF + (; ISF) J2F 
a;, ,+ a;~ 

lS( aF )2 2'" J2F 
+ a;, +!>2 a;,a;2 
_ 30'F _ 9a2J2F = 0 

a;i a;~ 

21S7(a2B )'q:> ,m 

+ (; + q:»q:>" + (q:>')2 

+ 2q:>' + 1 = 0 

( aF +.£. + 6F aF 
a;, 2;, at2 

CfF) 
+ a'"' =0 !> ;, 

[same as CKdV 
Eq. (4.4)] 

Reduced equations 

same as the 

invariant 

equation 

d 2 

--K=6X2 + AZ dr 
[x = - (q:> + n (6K)'/2Z 

= (; + qlp).K = 4374(a2 B)' 
A = 6.6p Jl2, wherep,q 
are arbitrary const] 

cf. Table I B 

4; J2F +4;2 J2F +6 aF +(C2_A2_B2) J2F 
'a;~ a;,a;2 a;, at~ 

+ m2sinF = 0 w = e''''. a = - fl = - m 2/S, 

4tq:> " + 4q:> , + m2sinq:> = 0 

q = C(p2 _ 1)21p2t, 

p" - [2pl(2p2 - I )](p'f 

+L +c2(p2_1)3(p2+ I)/p';2=0 
; 

d 2W I ( dw )2 Idw 
dt 2 = -;; d; - ;d; 

1 + -(aw2 +fl) ; 
w" =(_1 +_1 )W'2 

2w w-I 
w' (w - 1)2 

--+--; ;2 
X( aw w+

fl
) 

(a = - fl = - 2c\ w = i) 

p 
type 

II 

III 

v 
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ferent evolution equations, is reducible to the corresponding 
PDE for assumed linear PDE's for the F's. The ordinary 
differential equations are then obtained by a suitable ansatz 
for the function F(x,y) 19 in terms of self-similar solutions, 
and these ordinary differential equations are transformed 
into a Painleve type. 

In our approach we consider group-theoretic or geo
metric aspects to reduce the 1ST-solvable equations to ordi
nary differential equations of Painleve type. Further, we 
note that the IST-nonsolvable equations that we have ana
lyzed are reduced, in terms of invariant variables, to ordi
nary differential equations with movable critical points in 
general. It is interesting to note that the Fisher equation 
(4.18) can be reduced to first and second Painleve types for 
the cases n = 2,3, with specific values of parameters in the 
invariant variables. This leads to biologically interesting 
wave solutions of Fisher equation with specific wave speeds 
5/6 1/2 in the case34 ofn = 2 and 3/21/2 in thecase35 ofn = 3. 

Also our analysis leads to physically interesting classes 
of solutions in some important problems. The Ernst equa
tions with electromagnetic fields corresponding to the coup
led Einstein-Maxwell system are explicitly solved for special 
solutions in terms of elementary functions with a minimal set 
of integration constants. 36 These solutions are of solitary 
type and are bounded everywhere. We have also obtained 
new solutions for the Heisenberg ferromagnetic spin system 
in its continuous limit with circular, spherical, planar and 
axial symmetries. 37

•
38 These solutions exhibit point singular

ities of defect type in radial variables and so are of physical 
interest. A model biochemical reaction-diffusion system 
proposed by Prigogine in one-dimensional unbounded me
dia is reduced to one of Painleve type for a special value of a 
parameter in the similarity variable. 39 This study enables us 
to present a class of one-parameter solutions of simple nature 
satisfying conditions of biological interest. 

ACKNOWLEDGMENTS 

P. K. would like to thank the Principal and the manage
ment ofN. G. M. College, Pollachi, for granting study leave, 
and the University Grants Commission, New Delhi, for fi
nancial assistance under the Faculty Improvement Pro
gramme. The work of M. L. forms part of a research scheme 
supported by the Uuniversity Grants Commission, India. 

APPENDIX A 

In this appendix, we describe briefly an algorithm pro
posed by ARS 18 to find certain necessary conditions for an 
ordinary differential equation to be ofPainleve type and then 
apply this algorithm to test for the invariant equations of the 
GKdV and BBM equations (cf. Table IIIB) to be ofPainleve 
type, or not. 

Let us consider an nth order ODE: 

dnw = F(Z,w, dw, ... , d
n 

- IW). 
dzn dz dzn - I 

(AI) 

For Eq. (AI) to be ofPainleve type, it is necessary that it 
should have no movable branch points, either algebraic or 
logarithmic. Such necessary conditions may be obtained as 
follows. 
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TABLE IlIA. Infinitesimals and finite transformations for Eqs. (4.14H4.19).· 

Infinitesimals Finite transformations 
Eq. 

S T 1] x' t' u' 

GKdV ¥Zx+P at+8 - 2au/3n A 1/3X + (3p/a)(A 1/3 - I) At+(8/a)(A -I) A- 213"U 

(n>2) 

KdVB -p,Pt+8 a P 
C 

x + r:p,Pt + r:8 - - ap,p t+r:a u+r:P 
2 

BBM 8 at +P -au-a x+r:8 At+ (p/a)(A - I) A -IU 

Fisher P 
+(A -I_I) 

a 0 x+ar: t+Pr: u 
'1'4 at+p ax+8 0 (x + 8/a)coshA (t + P /a)coshA u 

+ (t + P /a)sinhA + (x + 8/a)sinhA 

aA =eaE
• 

TABLE IIIB. Invariant forms and equations with movable critical points for the nonsolvable systems (4.14H4.19). 

Invariant 
Eqs. variables (t) 

GKdV (x + 3p/a)(a +P) 1/3 
(n>2) 

BBM ax - 8ln(at + P) 

Fisher px - at 

'1'4 - (1/2aIB a(x2 _ t 2) 
+px - 8t- W _P2)/2a] 

Invariant form 
of solutions (u) 

pt/a +f(t) 

fIt )/(at + P) - I 

f(t) 

We shall assume that the dominant behavior of the 
function w in a sufficiently small neighborhood of a movable 
singularity zo, is algebraic. In other words, 

w-a(z - zoY' as z-+zo, (A2) 

where Re(p) is negative. We can find the possible sets of val
ues of a and p by requiring that two or more terms in (A I) 
may balance each other. The terms that balance each other 
are called leading terms. We may have several choices of p. 
We require the following two cases to be considered in our 
discussion. 

If all the p's are not integers, then (A2) represents the 
dominant behavior of w near the algebraic branch point Zo 

and so the function w will have a movable branch point. In 
such a situation, the expansion (A2) should further be proved 
to be asymptotic near zoo 

If all the possible p's are negative integers, then (A2) 
may represent the first term of the Laurent series of the solu
tion, for each p, valid in a deleted neighborhood of ZOo In this 
case a solution for w is 

804 

w = (z - zoY' ! aj(z - zo)j, 0 < Iz - zol <R. 
j=O 
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(A3) 

Invariant equations Reduced forms P type 

r + f"f' - (2f /n + f') = 0 same as the no 
invariant [App.A] 
equation 

avr-arl" d
2
W =6W2 not in 

dZ 2 
general 

- (ap,f + 8)[' + P = 0 + {KI - K21n[ ( ~~~ f2Z ]) [App.B] 

I 
X-4 ' (KI,K2 = const.) 

Z 
r+l"+ff' same as the not in 
-A(f+f') =0, A = 82/a2 invariant general 

equation [App.A] 
P 21" + af' + f - f" = 0 same as the not in 

invariant general 
equation [App. C] 

~. + f' + f - f3 = 0 same as the not in 
invariant general 
equation [App. D] 

Apart from the arbitrary constant zo, if there are n - I 
aribitrary coefficients aj, then we have the n constants of 
integration for Eq. (A I). The powers at which the arbitrary 
constants enter are called resonances. To find the reson
ances, substitute 

w = a(z - zoY' + /3 (z - zoY' + , (A4) 

into Eq. (AI), retaining only the leading terms. The reduced 
equation (to leading order in /3) will be 

Q (r)(z - zo)q·/3 = 0, q>p + r - n, (AS) 

where Q (r) is a polynomial in r. The roots of Q (r) = 0 will 
determine the resonances. Let r\<r2< .. ·<r. denote the posi
tive integral roots of Q (r) = 0 (rs <n - I). Substitute 

" w = a(z - zo)P + I aj(z - zo)P+j (A6) 
j=l 

in the given equation. Requiring that the coefficient of 
(z - zoY' + j - n (where n is the order of the equation) should 
vanish, we have the condition 

Q(j)aj - Rj(zo,a,a1, ... ,aj _ 1) = O. (A7) 

For j < r, Eq. (A 7) determines aj • At the resonance 

M. Lakshmanan and P. Kaliappan 804 



                                                                                                                                    

r = r1, Q (r1) = O. If R r, = 0, ar, is an arbitrary constant of 
integration, and we can proceed to find the next coefficient. 
If R r, #0, then there is no solution of the form (A6). In this 
case we have to introduce logarithmic terms as follows: 

(r~1I 
W = a(z - zoY' + L aj(z - zoY' +j 

j= I 

+ [ar, + hr, log(z - zo)](z - zoY' + r + '" . (A8) 

The coefficient hr, can be determined by the condition that 
the coefficient of (z - zoY' + r, - n should vanish, and it can be 
seen that ar is arbitrary. Continuing the expansion (A8) to 
higher orde'rs, we introduce more and more logarithmic 
terms. But the introduction of logarithmic terms in (A6) 
means that w has movable logarithmic branch points. Thus 
the condition that R r, = 0 is a necessary condition for Eq. 
(AI) to be ofPainleve type. 

Now we shall apply the above procedure to the invar
iant equations ofGKdV and BBM (cf. Table IIIB) to see 
whether these equations meet the necessary conditions to be 
of Painleve type. 

Invariant equation of GKdV 

The invariant equation (cf. Table IIIB) ofGKdV is 

/''' = -rl' + (21n)f + if' (n > 2). (A9) 

Substitute 

f-a(; - ;0Y' (AlO) 

in (A9). We find that there is only one possibility 

p = - 21n, a = [ - (2/n + l)(21n + 2)] lin (All) 

with leading terms!'" and - f "f'. Since n > 2, Eq. (A9) will 
have a movable branch point of order - 21 n provided (A 10) 
is asymptotic near ;0' To see this asymptotic nature, we 
define 

f= V -12Inl. 

The equation for v is 

2 2., 6 (2 1) ,,, 2 --vv +- -+ vvv--
n n n n 

- ~v' - ~V3 + l:£vv =0. 
n n n 

(A12) 

There is a regular solution of (A12), that is, regular at ;0' if 
v(;o) = 0, v'(;o) + (2/n + 1)(21n + 2)[v'(;oJr = 0, v"(;o) is a 
finite quantity, and v"'(;o) is finite. Then v(;) is analytic at;o 
and so (AW) is asymptotic near ;0' Thus Eq. (A9) is not of 
Painleve type. 

Also it may be noted that the KdV (or MKdV) satisfies 
the necessary conditions for Painleve type as discussed 
above. One can easily verify that p = - 2 (or p = - 1) and 
the resonances are r = 4,6 (or r = 3,4) for KdV (or MKdV) 
and no logarithmic terms be added at the resonances. 

Invariant equation of BBM 
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Invariant equation (cf. Table IIIB) ofBBM is 

1''' = -f" -.If' +..1, (/+1'). 
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(Al3) 

Substituting 

f-a(;-;oY' (A14) 

in (A 13), we find a = - 12 and p = - 2 with leading terms 
fm and.lf'. By puttingf = a~ - ;0Y' + /3 (; - ;0Y' + r in 
f'" = -.If', we find that Q(r) = r 3 - 9r 2 + 14r + 24. By 
solving Q (r) = 0, we find that the resonances are 
r = - 1,4,6. So we have r l = 4 and'2 = 6. Suppose that 

6 

f- - 12(; - ;0)-2 + L aj(; - ;oY'+j; (A15) 
j=1 

using condition (A 7), we find that 

a l = 12/5, a2 = ..1,+ 1/25, a3 = ..1,+ 11125. (AI6) 

But whenj = r l ( = 4), we have R r, (;0,a l ,a2,a3) = 0, which 
means that we have to introduce logarithmic terms in (A15). 
Thus we find that, at the resonance r 1 = 4, 

f- - 12(; - ;0)-2 + (1215)(; - ;0)-1 + (A + 1/25) 

+ (A + 1/125)(; - ;0) 

+ [a4 - (6..1, /25) log(; - ;0)](; - ;0)2 

+ .... (A17) 

Sincef contains logarithmic term, Eq. (A13) is not of Pain le
ve type, in general, if the expansion (A 14) is asymptotic near 
;0' which one can prove as in the previous case. 

APPENDIXB 

The invariant equation for the KdVB equation (4.16) is 

av/"' - ayf" - (aJ.lf + 8)1' + {3 = 0. (Bl) 

Integrating once, we have 

f" - (ylv)1' - {J.i./2V)f2 - 8f lav 

+ ({3 lav); + C1 = 0, (B2) 

where C I is the integration constant. Now making the 
transformations 

Z = (25J.lv/12y)l!2exp(y; 15v), (B3) 

and 

f= W(Z)exp(2y; 15v) - (1IJ.l)(6Y/25v + 8Ia), (B4) 

Eq. (B2) can be rewritten as 

d 2~ = 6W2 + IKI - K 2In[(12Y/25J.lv)1/ 2Z II ~ a Z 
(B5) 

where the constants 

KI = (625/12y4)v(6y/25v + 8/a) 

X (3y 125v - 8/2a) + C (B6) 

K2 = (3125/12) {3J.l vlaY; , 

and 

C = - 625J.lp3C J 112y4. 

It is known that an equation of the form (Ref. 2, p. 324) 

~~U; = 6W 2 + S(Z) (B7) 

is free from movable critical points only when 

S (Z) = pZ + q (p,qconst), 
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corresponding to the first Painleve transcedents. Hence Eq. 
(Bl) has movable critical points, in general [see below Eq. 
(Cll)]. 

APPENDIXC 

The invariant equation for the Fisher's equation (4.18) 
is 

(CI) 

where a and,8 are arbitrary parameters. It is necessary that n 
should be less than or equal to 3 for the equation (C I) to be of 
Painleve type (Ref. 2, p. 326). For n = 2, Eq. (CI) becomes 

,82f" + a/, + 1-12 = O. (C2) 
By making the transformations 

W= A (;)f + Il(;), 
Z = q:> (;), 

(C3) 

where 

A = _ &p'2 

q:>' = exp( - a; 15,8 2), 

Il = + (3a2/25,82) +!, 
equation (C3) reduces to 

d
2w 2 1 [( 3a

2)2 1] I 
dZ 2 = 6W + fj2 25,82 -"'4 Aq:> ,2 . (C4) 

This equation is not in general of Painleve type. But for the 
choice al,8 = 516 112, Eq. (C4) reduces to 

d
2
W = 6W 2• (C5) 

dZ 2 

This is ofPainleve type. For n = 3, Eq. (CI) becomes 

,82f" + a/, +1-f3 =0 (C6) 

or 
f"= -a/'I,82-fl,82+/3IfP. (C7) 

Making a scale transformationf -2.8 2J, we get 

f"= -a/'I,82-11,82 + 2f3. (C8) 

This equation is not of Painleve type in general. But for 
al,8 = 3/2 1

/
2, the above equation can be written as 

I" = - 3q(;)/' - [q'(;) + 2q2(;)]1 + 2/3
, (C9) 

where q = 1/21/2,8. Now Eq. (C9) can be transformed into 

d
2

W = 2W 2 (ClO) 
dZ 2 ' 

with the following transformations (see Ref. 2, p. 334): 

W = I exp( 1/21 12,8; ), 
Z = - 21/2,8exp[ - (1/2112,8);]. 

(CII) 

Equation (ClO) is ofPainleve type. 
We might also point out that in the case of KdVB equa

tion, even though the general invariant Eq. (B 1) has movable 
critical points, the special case,8 = 0 and C1 = 0, Eq. (B2) is 
similar to (C2) and therefore the results of n = 2, Fisher's 
equation, hold here also. 

APPENDIX 0 

The invariant equation for the q:>4 equation (4.19) is 

;1"+/'+1-/3 =0. (Dl) 
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By making the transformationsz = 2; 1/2 and w = 21/2/in 
(DI), it reduces to 

d
2

1 = _ ~dl -w+2w3• (02) 
dz2 2z dz 

For Eq. (02) to be of P type, it should be expressible in the 
form (see Ref. 2, p. 328) 

d 2f dw 
-2 = - 3q(z) - + 2w3 

- [q'(z) + 2q2(Z)]W. (03) 
dz dz 

Since this is not possible, Eq. (01) is not of P type. However, 
when a = 0, in the infinitesimals of the q:>4 equation (cf. Table 
IlIA), the solution is of the elliptic function type. 
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We analyze some geometric aspects of Kaluza-Klein theories under the assumption that the 
(4 + d)-dimensional space is a bundle over space-time M with fiber G / H. We formulate the most 
general metric in the bundle which leads, upon dimensional reduction of the Ricci scalar, to a G
gauge invariant Lagrangian. We find that the treatment of Brans-Dicke-like scalars given by 
some authors is inconsistent with the bundle-theoretic interpretation. 

PACS numbers: 02.40. - k 

I. INTRODUCTION 

An important progress in Kaluza-Klein (KK) theories 
has been the discovery of Luciani, 'later emphasized by Wit
ten,2 that the same four-dimensional G-Yang-Mills Lagran
gian could be obtained if instead of assuming that the extra 
dimensions belong to the group manifold G, they are realized 
as a coset space G / H. In this way, considerable economy can 
be achieved in the number of dimensions needed to realize a 
given G gauge symmetry, and, furthermore, the number of 
possible geometries is greatly enlarged. An extensive review 
on the subject has appeared recently3; our purpose here is to 
fill two gaps: the bundle-theoretic description of the coset 
space case and the generalization of this theory to include 
Brans-Dicke-like scalars. 

Most of the current literature on the subject of "more 
dimensions" tends to emphasize that (4 + d)-dimensional 
space-time E is "close" to a product (in metrical sense) of 
Minkowski space M and some compact d-dimensional space 
B, and hence all quantities have to be expanded in eigenfunc
tions of differential operators on B to yield the full spectrum 
of the four -dimensional theory. In our opinion, there are 
some objections to this viewpoint: to start with, even the first 
nonzero eigenvalue of these operators will be of the order of 
Planck's mass and so will all masses in the theory. (We disre
gard for the moment the ingenious constructions of Ref. 4). 
It is well known that a particle with Planck's mass is a very 
problematic object, and we feel that it is safer to restrict 
ourselves purely to the zero mass sector, at least as long as we 
do not have a meaningful theory of quantum gravity. An
other related shortcoming of this viewpoint is that it makes 
sense only in a perturbative approach; for instance, if the 
Wheeler-Hawking5 space-time foam picture has some 
physical reality, then it would be inappropriate to approxi
mate space-time M by Minkowski space because the extra 
dimensions are supposed to have exactly the same scale as 
the fluctuations in the metric.6 For these reasons, it seems 
that, at present, a consistent treatment of KK theories can 
only be done classically. In this framework, there is no a 
priori reason to prefer the product structure E = M X B: Let
ting M be any pseudo-Riemannian manifold and E a nontri
vial bundle over M with fiber B would do equally well.7 

StUdying these more general possibilities is also a prelimi
nary step to any future nonperturbative quantum treatment 
of the subject. 

The use of bundles is not only relevant in the discussion 
of global problems. Even locally, say on an open set UC M, 
there is a distinction between saying that E is a locally trivial 
fiber bundle or a Cartesian product U X B. The point is that a 
bundle space over U is isomorphic to U X B but the isomor
phism (local trivialization) is not given a priori, while in the 
case of U X B the isomorphism is canonically given. Thus 
one says that U XB is a trivial bundle over U, while E need 
only be trivializable over U. 8 Since trivializations corre
spond in physical language to gauges, requiring E to be a 
bundle embodies the concept of gauge symmetry into the 
geometry. This has been discussed several times in the litera
ture, and we need not insist on it.9 The important point is the 
following: Given M and B, the requirement that E be a bun
dle and that all fields have the canonical dependence on the 
coordinates of B which is prescribed by bundle theory will 
yield the gauge invariant sector of the KK theory. 

Sections II-VII contain an account of the geometry un
derlying KK theories on bundles with homogeneous fibers. 
These sections generalize previous works on the case of prin
cipal bundles. '0 The reader who is not so interested in geo
metrical details should start from the metric (7.1) or (7.2) and 
will find in Sec. VIII the dimensional reduction of the Ricci 
scalar of E. We have done this by taking into account a possi
ble dependence of the fiber metric on the base point, so that 
Brans-Dicke scalars appear, their number varying between 
1 and ~ d (d + 1), according to the choice of G and H. These 
scalars tum out to be singlets under G, and their Lagrangian 
is similar to that of a nonlinear sigma model. All our results 
can be specialized to the case of a principal bundle by putting 
H = ! eland making the appropriate changes in the indices. 
The scalar Lagrangian has been obtained previously in this 
special case (Refs. 4 and 11) but our results are different, as 
we discuss in Sec. IX. 

We give here a summary of our notation. As a rule, 
tildes are used for quantities referring to a principal bundle 
and bars for quantities referring to an associated bundle. The 
abstract Lie algebra @ has a basis T;, i = 1, ... ,n = dimG; The 
first m = dimH generators span s;, and the remaining 
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d = n - m span a complementary space~. We use indices 
7,), ... running over 1, ... ,m to label the generators of Hand 
a, /1, ... running over 1, .. . ,d to label the generators of G lying 
in~. The coordinates onM arexiL with It = 0,1,2,3 and those 
on G /H areya with a = 1, ... ,d. We do not need to make 
distinctions between holonomic and anholonomic indices. 

II. HOMOGENEOUS SPACES 

For us, a homogeneous space X is a differentiable mani
fold on which a Lie group G acts transitively and effectively 
on the left12; the group action is a differentiable map L: 
G XX---+X and fixing aEG we obtain maps La: X---+Xby La (x) 
=:L (a, x). IfOisapointofXandH = :!aEG ILa (0) = 0 lis 
the isotropy group of 0, then X is diffeomorphic to G / H, the 
space of left co sets gH. In particular, if H = [ e l, then X is 
diffeomorphic to G itself; in this case the left action us de
notedL: G X G---+G and consists ofleft multiplication. On G 
there is also a right action R: G X G---+G which commutes 
with L and consists of right multiplication. If we denote by It: 
G---+G / H the canonical projection which maps gEG to the 
coset gH, then 

It°R h =It V hEH (2.1) 

and 

itO Lg = Lg 0lt V gE G. (2.2) 

Let @ be the (abstract) Lie algebra of G and S) be the Lie 
subalgebra of H. We will assume that G / H is a reductive 
homogeneous space, I3 which means that there exists a linear 
subspace ~ of @ such that 

@ = S)al ~ (2.3) 

and, denoting by Ad® (H) the restriction of Ad( G ) to H, 

Adl~ (H) ~ ~ ~. (2.4) 

This condition is very weak (for instance, it is always satis
fied if H is compact); it is useful because it allows us to identi
fy the tangent space To( G / H) with ~ and hence to transport 
properties of the algebra to the coset space. Choosing the 
basis Ti of @ as explained at the end of the previou,s section, 
the only non vanishing structure constants are C;/, C;/3, 

Caf/· 

III. VECTOR FIELDS ON HOMOGENEOUS SPACES 

The Lie algebra @ of G is by definition the algebra of 
left-invariant vector fields over G; since every left-invariant 
vector field is determined by its value at e, @ is isomorphic as 
a vector space to Te G. In a similar manner, Te G is isomor
phic to the space of right-invariant vector fields. Let Xi be a 
basis for Te G; then we define the vector fields e~ and e~ by 

eft g) = : Lg.X" 

e~(g) = :Rg.X;. 

The following relations hold (VaEG): 

808 

La. e~ = ef (left-in variance), 

Ra. e~ = e~ (right-invariance), 

Ra.e~ = Ad(a--I)\e~, 

La.e~ = Ad(a)\e~. 
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(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Furthermore, at each gEG 

e~(g) = Ad(g-I)kie~(g). 

In infinitesimal form, (3.5) and (3.6) read 

[ R R] C k R e; ,ej = ij ek' 

[ 
L L] C k L ei ,ej = - ij e k , 

and (3.3) and (3.4) read 

[e~,e~] = O. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

Equation (3.9) may seem strange at first sight; it can be de
rived by direct computation from (3.8) and (3.7), but we give 
here an alternative simple proof: LetI:G---+G by I (g) = g- I; if 
u is a left-invariant vector field, I. u is right-invariant and 
furthermore, I. (u(e)) = - ute). Thus I. ef = - e~ and 
[e~,e;] = [I.ef,I.ef] =C/I.e~= -C/e~. 

The vector fields e~ generate the left translations and 
the e~ generate the right translations l4 

e~(g) = dd LexPltT,1 (g) I ' 
t t~O 

(3.11 ) 

e~(g) = dd Rexp(tT,1 (g) I . 
t t~O 

(3.12) 

On the coset space G / H there are vector fields K,- generating 
the left action L: 

d - I Ki(y) = dt Lexp(tT,I(Y) t~o' 

From (2.2) it follows that 

K; =It.e~·. 

Also, from (2.1) it follows that 

It. ef = ° for TiES), 

(3.13) 

(3.14) 

(3.15) 

while It. e~ is not defined. The Ki transform under L as fol
lows: 

La.Ki = Ad(aYiKj; 

hence from (3.9) and (3.14) 

[Ki,Kj] = - C/Kk • 

(3.16) 

(3.17) 

There are no G-invariant vector fields on G / H, but the linear 
combinations of vector fields K; with TiES) are invariant un
der Lh with hEH. These vector fields vanish at 0; on the 
other hand, the vector fields Ka (with TaE~) are all nonzero 
in a neighborhood V of 0 and in fact are linearly indepen
dent; thus they may be taken as a basis for vectors on V. In 
particular, at 0 the Ka can be identified with the generators 
Ta in the canonical isomorphism ~-To(G /H). From(3.17), 
we obtain the Lie brackets of this basis 

(3.18) 

Here Ki r denote the components of the generator Ki on the 
basis! Ka l; in particular, Ka Y = 8a rand Ki r are certain 
functions of y vanishing at O. 

We now derive a formula which will be needed later. 
Leto-:G /H--;;}. V---+Gbe a local section of It, i.e., a choice ofa 
representative group element in each coset. Then from (3.16) 
we have Ki(Y) = LajYI' (Ad(o-(y)--lYiKj(O)) 
= Ad(o-(y)-lfiLajYI.Kp(O); ifweputi = a, we have a rela

tion between the bases at y and 0, which is invertible. Ifwe 
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denote by [Ad(a( y) - I)] - IP a the inverse of the d X d matrix 
Ad(a( y) -I t P' then Lo{ y). (Kp(O)) 
= [Ad(a( y)-I)] -IYpKy( y). Introducing this in the pre
vious relation, we have 

K/(y) = Ad(a(y)-Ifi [Ad(a(y)-I)] -IYp, (3.19) 

which implies 

[Ad(a(y)-I)]-IPy = Ad(a(yWyK/. (3.20) 

IV. RIEMANNIAN STRUCTURES ON HOMOGENEOUS 
SPACES 

In the following we will need some results on the exis
tence of group invariant metrics on homogeneous spaces. 
We merely quote them and make some comments; the inter
ested reader may find more details in Kobayashi and No
mizu. 13 It is convenient to start from the case of the group 
manifold. 

Proposition 4.1: There is a one--one correspondence 
between left-invariant Riemannian structures on the group 
G and inner products in the Lie algebra (@); there is a one
one correspondence between bi-invariant Riemannian struc
tures on G and Ad(G j invariant inner products in @. 

Let us denote by r the inner product in @; r defines a 
left-invariant metric h in the following way: If X, YETg G, 

(4.1) 

where we have used the canonical isomorphism @--+Te G. 
Notice that the left-invaraint metric has constant compon
ents in the basis of left-invariant vector fields 

(4.2) 

but not in the basis of right-invariant vector fields (genera
tors ofleft translations) 

(4.3) 

It may sometimes be desirable to have a bi-invariant metric; 
in this case Proposition 4.1 says that r has to satisfy 

(4.4) 

The Cartan-Killing form in @ has this property, but it is not 
necessarily the unique choice. 

In the case of a nontrivial isotropy group we have 
Proposition 4.2: There is a one--one correspondence 

between left-invariant Riemannian structures on G /H and 
Ad<p (H j invariant inner products in the subspace ~ of @. 

Because of (2.4), the matrix Ad(aj~ for aEH is block
diagonal. The condition of the proposition then means 

raP = Ad(ajYaAd(4pry.5 V aEH, (4.5) 

raP being the components of r<p' The reason for this condi
tion is easily understood. If u:G / H--+G is a local section of fl 
andX,YETy G /H, wedefinetheleft-invariantmetrichonG / 
H in analogy to (4.2) 

(4.6) 

The element a( y) is not unique; one could choose another 
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local section 0"'( y) = a( y)h (y) with h:G / H--+H; then 

r<p(L ;;!).x,L ;;!). Y) 

= r<p(L h(~).L ;;'y\.xX h(~).L ;;,~. Y) 

= r<p(Ad(h (y)-I)L ;;')).X,Ad(h (y)-I)L ;;'y\. Y), 

where we have used (3.16). Thus definition (4.6) is indepen
dent of the section 0" iff r~ is Ad(H) invariant. In the case 
when H = ! e I this condition becomes void and we are led 
back to Proposition 4.1. 

Finally, we want to point out the existence of averaging 
procedures for inner products in the Lie algebra. If r is an 
inner product in @ and h is given by (4.1), then denoting by 

1]L (g) the left-invariant Haar measure $ d "g, we have from 
(4.3) [VG = S G1]L(g)]: 

rij = :G L 1]L(g)hg(e~,ef) = :G L 1]L(g)rij' (4.7) 

On the other hand, from (4.4) 

rij = :_1_ r 1]L(g)hg(e~,e;-) 
VG JG 

= :G L 1]L(g) Ad(g-I)\ Ad(g-I)/jYkI (4.8) 

is different from rij' unless r is Ad(G )-invariant. However, 
even if r is not, r' is Ad(G )-invariant: 

Ad(a)ik Ad(aYlrij 

= _1_ r 1]L (g)hg (Ad(arke~(g), Ad(aYle;(g)) 
VG JG 

= _1_ r 1]L (g)hg (La. (et(a -lg)),La. (e~(a -Ig)) 
VG 1 

= _1_ r 1]L(g)ha-'g(et(a-lg),e~(a-lg)) 
VG JG 

= rkl V aEG. (4.9) 

We will say that r' is the G average of r. From (4.8) it follows 
that r' is really an inner product: r'(X,Y) = 0 V YqX = 0 
and r'(X,x»O, V XE@. 

V. BUNDLES WITH HOMOGENEOUS FIBERS 

Let (P,1T,M;G) be a principal bundle over M with struc
ture group G. Pis locally trivializable, i.e., VxEM there exists 
an open set Ur;,M, with XEU, and a diffeomorphism 
",:UXG--+1T- I(U). Since we are mostly interested in the lo
cal structure, in the following we will always refer to this 
particular open set U. If Ra :G--+G is the right multiplication 
in G by aEG, there is a right action Ra :P--+P, which in any 
trivialization is given by 

(5.1) 

To every trivialization '" there is related a preferred local 
sections:U--+Pwhich is defined by sIx) = ",(x,e); conversely, 
every local section defines a trivialization (a gauge). Let sand 
s' be two sections related by 

s'(x) = Ra(x) (s(x)), (5.2) 

where a: U--+G is the "gauge function." If p = tP(x,g), then, 
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in the trivialization tl/ defined by s', p = ¢'(x,a-Ig). We will 
interpret gauge transformations passively as changes oflocal 
trivialization. We define the diffeomorphisms rpx :G-1T- 1(X) 
by rpx (g) = ¢(x,g). Then we have 

rp ~ = rpx oLa(x)' (5.3) 

It is well known that (G,p,G / H;H) is a principal bundle. 
Let (E,1/,M;G /H) be the fiber bundle with fiber G /H asso
ciated with (P,1T,M;G); by a well-known theorem 13 E is the 
quotient of Pby the right action of H (as a subgroup of G); we 
denote by r:P--E the canonical projection. Then (P, r,E;H ) is 
a principal bundle and, V xEM, (1T- I(x),r,1/-I(x);H) is a prin
cipal bundle isomorphic to (G,p,G / H;H). 15 If t/J is a local 
trivialization of P over Vas above, then there is a local trivia
lizationofEover V¢:V X G /H---*1/- I( U), which is defined as 
follows: Ifw = rIp) and P = ¢(x,g), then w = ¢(x,p(g)). Ifwe 
construct the diffeomorphisms ~x:G /H---1/-I(X) out of¢ in 
the same way o/x was constructed out of til, then we have a 
commutative diagram 

cb, 

P :2 1T .. I(X) +- G 

71 (5.4) 

E :2 1/ - I (x) <-- G / H 

If w = ¢(x,y) for YEG / H, ¢' is the trivialization of E derived 
from the trivialization t/J' of P given by (5.2), then 
w = /i/(x,La ,( ~)). The map s = rOs: V---*E is a local section 
of E and sIx) = ¢(x,O), where ° = pte) = eH is the "origin" of 
G / H. It should be noted, however, that while G acts freely on 
itself, the action on G / H is assumed to be only effective and 
hence the assignment of the section s is not sufficient to spe
cify completely the local trivialization of E: The section sis 
unchanged by the gauge transformations a: V-H. Hence, to 
have a complete description of the gauge structure, we will 
always need to refer to the principal bundle. 

Let r be a connection (a distribution of horizontal 
spaces) in P; then a connection F is defined in E in the follow
ing way: A vector in E is horizontal if it is the image under r. 
of a horizontal vector in P (this is the definition given in Ref. 
13, specialized to the case when the left action of G on the 
typical fiber of the associated bundle is transitive). 

VI. BASES 

In the principal bundle P it is customary 10 to assume as 
a basis for the vertical vectors the so-called fundamental vec
tor fields, which are the generators of the group action R on 
the space P: 

ef(p) = dd ReXPIt[,I(P)i . (6.1) 
t I ~ 0 

On the associated bundles there is no group action, and 
hence there are no fundamental vector fields; therefore, the 
basis has to be chosen in some other way. 

To this end let us first remark that the vector fields ef 
can be defined in a given trivialization by 

(6.2) 

if P = rpx (g); this follows easily from (5.1) and (6.1). That this 
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definition does not depend on the trivialization follows from 
the left invariance of the vector fields e~: From (5.3) 

¢ ~. er == tPx* oLa(x). e~ = r/Jx. ef· 

The e~ are not the only possible choice, however: Any basis, 
for instance a coordinate basis on G, can be transported to 
1T- I( V) by means of the diffeomorphisms rpx' The other 
choice which will be used in this paper are the right-invariant 
vector fields 

e~(p) = rpx.e~(g). (6.3) 

Since the O/X are diffeomorphisms, all of the relations (3.3)
(3.10) will be satisfied by the fields e~ and e~ in each fiber; in 
particular their Lie brackets are given by 

[
-L -L] C k-L ei,ej = - ij ek , 

[ -L-R] ° e;,ej = . 

(6.4) 

(6.5) 

(6.6) 

The same type of construction can be applied to the case of 
the associated bundles. 

Given a basis on G / H, one can induce a basis for verti
cal vectors on Tf-I(X) using the diffeomorphism ~x as in (6.2) 
and (6.3). However, due to the nonexistence of G-invariant 
vector fields on G / H, this basis will always depend upon the 
choice of the trivialization. We will always use what we will 
call the Killing basis for vertical vectors: If w = ¢(x,y), we 
define 

(6.7) 

As in Sec. III, the subset of vector fields lea J is then the 
desired basis; its Lie brackets are obtained by acting with 4>x. 
on Eq. (3.18): 

(6.8) 

In a different trivialization 

e;,(w) = ¢ ~.K(l(y) = ~x.oLa(xl.Ka(Y) = Ad(a);;ej(w). (6.9) 

In view of (3.14) and (5.4), we have 

(6.10) 

In the complementary directions, there are two convenient 
choices. If the open set V is a coordinate patch for M and 
1 all I is a natural basis for vectors on V, then we may con
struct on 17'· I (U) either the vector fields tangent to the sec
tions Sy: V---*r,- I( V) defined by Sy (~) = ¢(x,y), or their hori
zontal parts. At a given point w = ¢(x,y) = Sy (x), the vectors 
tangent to the submanifold Sy (V) and projecting upon the 
vectors ai' on V will be denoted by aJ.l; their horizontal parts 
with respect to the distribution Fwill be denoted ell' Similar
ly, in the principal bundle we denote by aJ.l the vectors tan
gent to the constant section Sg: U---+TT-

I
( V) defined by 

Sg (x) = ¢(x,g) and by eJ.l their horizontal parts with regard to 
r (the covariant derivatives); then we have 

(6.11) 

Let W be the connection form on P; in a given trivializa
tion UI we may decompose 

- id-" T ({) - WI' X ® i' (6.12) 

where dxl' are the duals of the a". The components depend 
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on the coordinates by 

w~(x,g) = Ad(g-'rkw~(x,e). (6.13) 

The gauge potential on M is (in the gauge defined by the 
trivialization t/J) 

A =s*w, 

and hence we may identify 

A ~(x) = w~(x,e). 

(6.14) 

(6.15) 

Similarly, let il = hor dw be the curvature form on P; we 
may decompose 

il=!il!-,/dx!-' /\ dxY®Tj • (6.16) 

The components depend on the coordinates by 

il!-,yi(x,g) = Ad(g-'Yjil!-,/(x,e). (6.17) 

The field strength on M is (in the gauge defined by the trivia
lization t/J) 

F=s*il, 

and hence we may identify 

FI"/(x) = il!-,yi(x,e). 

The horizontal basis vectors are given by 
- a- i -R e!-, = I'- -wI'- ei , 

(6.18) 

(6.19) 

(6.20) 

or, using the vertical vectors (6.3) and applying relation (3.7), 

(6.21) 

From (6.10) and (6.11) we then obtain the form of the hori
zontal vectors in E: 

e!-, =JI'- -A~ ei 

(6.22) 

where in the second line we have used the linearly indepen
dent vectors only and have defined 

A- a_Ai Ka-A a +A; Ka 
I" - I" i-I" I" i' (6.23) 

We need the Lie brackets between the basis vectors. In P 

and 

[JI",en =0, 

(el",ef] = 0, 

[JI'-,e~] = 0, 

[el",e~] = AI" kCk/et· 

Furthermore, using (6.17) and (3.7), 

[e;,e~] = - il!-,/ef 

= _Fl"yie~. 

InE 

where 

dl"a P = A ~ckajKf = A ~(CkaP + ck/K1), 
and 
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(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

where 

d a - F iK a - F a + F jKfl 
flV - J.1-V i - JLV IJV j • (6.33) 

VII. GAUGE-INVARIANT RIEMANNIAN STRUCTURES 

According to our general scheme explained in the In
troduction, we need to find the most general metric g on the 
bundle space E which is compatible with the gauge struc
ture, in the following sense: 

(i) g is defined in a trivialization independent way; 
(ii) g makes the horizontal and vertical spaces ortho

gonal to each other. 
The first condition guarantees that the theory will be 

gauge invariant, while the second constitutes the link 
between the gauge structure and the Riemannian geometry 
ofE. 

The most general metric which satisfies these require
ments can be fixed at a point w by assigning the inner pro
ducts in the vertical and horizontal subspaces of TwE separ
ately. 

Let g be a (pseudo-) Riemannian structure in M; we 
require g to be such that 17- maps the horizontal space at 
each point w isometrically onto TTt(w) M. Concerning the ver
tical spaces, one usually requires that the diffeomorphisms 
¢x be isometries when G IH is given some metric h. This 
defines a trivialization independent metric in each fiber 
17-'(x) iffh is left-invariant, because then V X,YEver TwEwe 
have under (5.3): 

li4>~ '(W)(¢:;-'X,¢:;-Iy) 

- h- (L- - loA: - 'xL - loA: - 'Y) - L;- I 0 'J, x t(w) a* If' .K* 'a* t.p x· 

-(I -I*h) (A: -IXA: -'Y) 
- a ~;- I(w} If' x· 'Y-' x. 

= h4>x' '(W)(¢ x-;' 'X,¢ x-;' I Y). 

We will be more general than that because conditions (i) and 
(ii) allow to vary the metric Ii from fiber to fiber within the 
class of left-invariant metrics. This can be properly forma
lized in the following way. Let! To: I be an oriented basis for 
ll5 as usual; all other bases with the same orientation are 
related to this by the action of an element of the group 
GL +(d,R); the space of all inner products in ll5 is then 
GL + (d,R)lSO(d ). This space is diffeomorphic to Rd(d + 1)/2 

and taking as a chart this diffeomorphism, the coordinates of 
a point r in GL + (d,R)lSO(d ) are nothing but the compon
ents raP = r(T",Tp )' By Proposition 4.2 the space ~ ofleft
invariant metrics in G I H is the algebraic submanifold of 
GL + (d,R)lSO(d ) defined by Eq. (4.5). 

Now let r:M-':t be a smooth map and let Ii (x) denote 
the left-invariant metric on G IH corresponding to y(x) 
through Proposition 4.2. We require g to be such that the 
diffeomorphism¢x:G IH-17-'(x)beanisometrywhenG IH 
is given the metric 11 (x). The components raP will be seen in 
the next section to behave like scalar fields on M; the number 
of independent fields, however, equals the dimension of ':t 
and has to be found case by case by computing the rank of the 
algebraic system (4.5). Furthermore, it is clear from this geo
metric definition that the fields r ,,/3 are completely unaffect
ed by changes of trivialization; in other words, they must 
behave like singlets under gauge transformations. 
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We now look for the components of the metric g at a 
point WEE. If ~ is a local trivialization such that W = ¢1x,y) 
and lea ,ejl J is the "horizontal lift basis" given by Eqs. (6.7) 
and (6.11), then 

gjlv(w) =gw(ejl,ev) = :g(1J.ejl,1J.ev)/'1(WI 

gaP(W) = gw(ea,ep) = :h (1J(w))(¢ x-; lea,¢ x-; lep)/~ x- '(wl 

= h (x)(Ka,Kp)/y = :haP(x,y). 

Thus the metric g has components 

=g(ajl,av)/x =gjlv(x), (
gl'vo(X) 0) - (7.1) 

hap (x,y) . 

gjla(w) =gw(ejl,ea ) = 0, Transforming to the basis (ea,JI' J, we obtain 

(
gI'V(X) + haP(x,y)Kf(y)K f(y)A ~(x)A~(x) A ~(X~f(Y)hap(X,y)), 

haP (x,y)A ~(x)Kf(Y) haP (x,y) 
(7.2) 

when we have explicitly indicated the coordinate dependence of all quantities in order to emphasize that this is precisely the 
ansatz of Ref. 1, with the generalization of the x dependence ofh. It is easy to specialize to the case when H = {e J (principal 
bundle); in this case ~ = ®, the indices a,f3,. .. are replaced everywhere by the indices iJ,. .. and the quantities K; a reduce to a/. 
The metric (7.2) then reduces to the usual "ansatz" for theories with spontaneous compactification. It should be observed that 
the use of A ~ (x) in (7.2) is compatible with the bundle structure only if the basis ii~ is used; had we used the fundamental vector 
fields ii~ as basis for the vertical directions, then the quantities (U~ (x,g) given by (6.13) and (6.15) would appear in (7.2) (as in Ref. 
10). 

VIII. DIMENSIONAL REDUCTION OF THE RICCI SCALAR 

We start from the metric (7.1) in the horizontal lift basis [ea,ejl J, whose structure functions are given by (6.8), (6.30), and 
(6.31), and, using well-known formulae, we compute the Ricci scalar of its Riemannian connection. We give the intermediate 
steps of our computation. The connection coefficients are [the quantities d were introduced in Eqs. (6.30) and (6.32)]: 

l'pya = Fpya(x,y) = ~ h at;(hyECt;/ + hpEct;/)K 7 - ! cP/K f , 
- a - ali: - - at;- y a 
Fpjl = ~ h el'hpt; + ! (h hpydt;1' + dpl' ), 
- a - ali: - - at;- y a 
F!'-fJ =! h el'hpt; + ~ (h hpydt;1' - dpl' ), 

1'I'V
a = ~ dl'v

a 
, 

- A A.....t - P 
ral' = Fl'a =! 15 PhaPdpl' ' 

l'py A = _! gAPephpy + ! i'P(hpt;dpy t; + hyt;dpp t;) , 
- A A 
rjlV = Fl'v (X). 

The partially contracted Ricci tensor is (here VI' VA = el' VA + Fl'v A VV): 

? Rpt; = (RG /H + ! g"vg'17haPdl'p advuP - ! h pt;V p VPhpt; + h pt;V "lg'Ph!;Edpp E) 
v-aP-yt;- - - - v-ay-pt;- - - - v-ay- - p 

-!g" h h (el'haP)(evhyt;) +!g" h h (el'hap)(evhyt;) -g" h (el'hay)dpv 

+ g"vh pt;(el' ht;y )tipv y - g"v dal' adp/ , 

~vRjlv = R M - ! g"vg'uhapdl'p ad",/ - V I'g"V(! h a~vhaP + dav
a) - ! g"vh aYh pt;(el' haP )(evhyt;) 

_ g"vh pt;(el'ht;y)dpv y - ! g"vdpl' adavP - ! g"vh at;hpydaI'Pdt;v y . 

After some manipulations we finally obtain 

R =?Rpy +~vRl'v 

= RM + RG/H - !g"vg'uhapd/'-P ad",/ - el'g"V(h a~vhap + 2dav
a) - Fl'pl'g"V(h a~vhaP + 2dav

a) 

_ ! g"V(h aPh yt; + h aYh pt;)(ejl haP )(evhyt;) - g"vh aY(e" hay )dpvP - g"vh pt;(el' ht;y )dpv y 

(8.1) 

(8.2) 

(8.3) 

_ g"vdal' adp,/ - ! g"V(dpl' adavP + h at;hpydaI'Pdt;v Y) . (8.4) 

So far we have not used the condition that the metric h be left invariant; this enters in (8.4) through formula (6.22): 

el'hap = Jl'haP - A ~e;hap . 
For a left-invariant metric [.2" = Lie derivative; use Eq. (6.8)]: 

e;hap = .2" e, (h (ea ,ep)) = (.2" e, h )(ea,ep) + h (.2" e, ea ,ep) + h (ea,.2" e, ep) = - C;/K Jh yp - C;/K Jh ay . (8.5) 
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Introducing in (S.4), we find 

R = RM + RG/H -! glwg:"'hapKfKfFl-'piF •. ,/ 
- -P--

- VI-'(gI'""h a J"haP) 

_ ! gI'""(h a{J"h yo + h aYh fJO)(a)iaP )(a)iyo )' (S.6) 

where VI-'if = al-'if + rl-'v 4V". The last step in the dime?
sional reduction is the integration over the fibers. To this 
end, we first need the y dependence of hap. This follows 
from (4.6) and (3.16) 

hap(x,y) = Ad(a(y)-I)~ Ad(O"(y)-I)~hyo(x,O) (S.7) 

and hap(x,O) = YaP(x). The y dependence of haP is by the 
matrix inverse to Ad(a( y)-I)~, which in our basis is given by 
Eq. (3.20): 

h aP(x,y) = K;aK/ Ad(a(y))~ Ad(O"(y)Yoh YO(x,O) (S.S) 

and h ap (0) = ~P (x). Since the y dependence is factored, the 
terms containing avhap have no dependence on y; thus we 
may replace h by Y there. The Ricci scalar RG/H is y inde
pendent because.2' e, RG/H = 0 V i; since it is a function ofy, 
it will act as a kind of potential for the scalar fields. The term 
containing F Z is y dependent through hap. 

We now make some definitions. First, it is convenient to 
write y:M-+GL + (d,lR)/SO(d ) as y = 8·rp, where 8:M-+lR + 

and rp:M-+SL(d,lR)/SO(d). In components 
YaP (x) = 8 (x)·rpaP(x) with (8(x))d = det(YaP(x)) and 
det(rpaP(x)) = 1. ~imilarly,_we may scale the metric 
h:hap(x,y) = 8(x)kaP(x,y), kaP being related to rpaP through 
(4.6): kap(x,O) = rpa/3(x). Then 

V(x)=: ( dd y [h(x,y)]l/z=8dIZ(x)VG/H, (S.9) 
JG/H 

VG/H=: ( ddy[k(x,y)]I/Z, (S.lO) 
JG/H 

Aij(X) = :_1_ ( dd y [k (x,y)] I/Zkap(x,y)Kf(y)Kf(y), 
VG1H JGIH 

(S.11) 

Aij is the G averageofkij(x,y) on G IH, analogous to (4.10). It 
is a function of rpap, but not of 8. 

A calculation similar to (4.9) shows that Aij is a (sym
metric) Ad(G I-invariant tensor in @. If G is simple, the ad
joint representation is irreducible and a basis in @ can be 
chosen so that the Cartan-Killing form is proportional to the 
Euclidean inner product. Therefore, applying Theorem 1, 
Appendix 5 of Ref. 13 (Vol. I), we find Aij = c8ij for some 
c,t:O. 

After some manipulations and discarding a total diver
gence, we obtain 

i d 4xd d ygl/ZR = VG/H JM d 4x Jg {8d/2RM 

_1 "p.VnP"8dI2 + IA-.F ;F j 
40; c5 lj I-LP va 

_ !glw 8d/2(rpaPrp yo + rpCLYrpPO) Jl-'rpapJ"f/Jyo 

- 1 8d/2 ~ l".u" J 8m aPa m 
Z IS I-'"r v"rap 

+! d (d - 1) gl'"v8d
/2 ~ zal-'8av8 + W [8,rp n, (S.12) 
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where 

W [8,rp ] = - 8d 
/2 - Irp up U C,,/C(3D l' + Ca/C(J/ 

C YC {) + 1 <<PC YC "] + 01' (30 4 rpy/jrp a€ (Jcp . 

IX. DISCUSSION OF THE FOUR-DIMENSIONAL 
THEORY 

(8.13) 

The Lagrangian (8.12) and (8.13) describes the low-en
ergy behavior of a KK theory with homogeneous fibers. Its 
gauge in variance is evident from the fact that the scalars 8, 
rpa(3 are singlets under G and from the Ad-invariance of A.. 
There are some surprising aspects in this Lagrangian. The 
first is the fact that a full G-Yang-Mills field becomes dyna
mically active, in spite of the fact that the fibers are not the 
full group; it might be expected that part of the information 
contained in the connection r in the principal bundle P gets 
lost when it is projected to the connection r in the associated 
bundle E by means of 7. This has been discussed, e.g. i~ Ref. 
16. However, this is not so, and it can be proven that r 
contains exactly as much information as r if the group G 
acts effectively on the fibers. 17 If G does not act effectively on 
G I H, the kernel of the action (i.e., the subset of elements 
which leaves G I H fixed) is a normal subgroup Go of G and 
G' = GIGo acts effectively on G I H. If H' = H IG(), then 
G I H can also be written G 'I H '; in this case the gauge group 
which becomes dynamically active is G '. 

The other surprising aspect is the role of the scalars. 
They have a complicated nonpolynomial Lagrangian and 
their interactions with the other fields lie only in the Brans
Dicke-like 8d 

/2 factor in the gravitational kinetic term and 
8d/2 + IAij in the Yang-Mills term. If the scalar degrees of 
freedom were frozen, then the Lagrangian would reduce to 
an Einstein~ Yang-Mills one with a cosmological constant 
coming from W. 

We have already mentioned in Sec. VII that the number 
of independent scalar fields has to be worked out case by 
case. In the case of a principal bundle, it is the maximal 
number! n(n + l)(n = dimG )butwhenHisnontrivial, con
dition (4.5) has to be satisfied in addition. This can be written 
as A(a(J) (YO)y yo = 0 with A1a(3) (1'8) = A

1
(3a) (yo) = A(a(3) (81') and 

the bi-indices (af3 ) run from 1 to ! d (d + 1); the number of 
independent scalars is then! d (d + 1) - rank A. In some 
cases it is possible to obtain more general information in 
other ways. For instance, in the case of the sphere 
S" = SO(n + l)/SO(n), the linear isotropy representation of 
SO(n) on \l5::::: To(sn) is just the standard action of SO(n) on 
JRn and the only inner product which is invariant under this 
action is the Euclidean one. Hence for sphere bundles there 
will be only one scalar field, corresponding to scale transfor
mations of the fibers. The same result holds for projective 
space IF pn, where IF is either JR, C, or lHl. The isotropy groups 
are, respectively, SO(n), U(n), Spin) and they act in the stan
dard manner on \l5::::: lRn 

, en, lHl n 
; in each case there is a 

unique invariant inner product. In each case when there is a 
unique independent scalar, this can be assumed to be the 
scale factor 8 and (8.12) simplifies: The third and fourth 
terms in curly brackets vanish and in the second term A.;] 
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becomes fixed. In these cases the only interaction between 
the scalars, gravity, and the Yang-Mills fields is in the form 
of varying coupling constants, as in Brans-Dicke theory. 
Concerning the term W, it should be stressed that it cannot 
be simply interpreted as a potential, because the kinetic term 
for the scalars is nonpolynomial. For Sd = SOld + 1)/ 
SO(d), fPa/3 = 0a/3 and Cijk = Eijk' so W[o] = !(d 4 

- ~d 3 

_ !d 2 + d ) od 12 - I. 

The most unexpected feature of the scalars is perhaps 
the fact that they behave like singlets under the group G. 
This is in contrast to all previous calculations, at least to our 
knowledge, but it is absolutely necessary if the theory is to be 
interpreted in terms of fiber bundles. It is a direct conse
quence of the fact that the Riemannian structure in the bun
dle space is required to be trivialization-independent. The 
relaxation of this condition would lead to the results of Refs. 
4 and 11. 

In the case when H = [e J, the bundle E reduces to the 
principal bundle P, and in this special case the existence of 
the right action R of G on P and of the fundamental vector 
fields (6.1) and (6.2) allows a direct check of the singlet nature 
of the scalars. Namely, if we use the basis ! e~,el' J and if 
P = ¢(x,g)EP, we get from (4.2) 

gij(P) = gp(e~,er) = h (x)(¢ x-; le~,¢ x-; ler)[g 

= h (x)(e~,er)[g = rij(x) 

independently of g, because h is left-invariant and the vector 
fields e~ are left-invariant. Since the vector fields e~ are tri
vialization-independent, the result is itselftrivialization-in
dependent, and the r ij are singlets. 

The dimensional reduction discussed in this paper is 
obtained by substituting the generalized KK ansatz into the 
action. This should be distinguished from the mechanism of 
spontaneous compactification, 18 whereby one assumes that 
the bundle structure discussed in this paper is realized as the 
ground state of some (4 + d)-dimensional theory. Indeed, it 
is known that an Einstein-Yang-Mills theory in (4 + d) di
mensions with the gauge group H will always admit such a 
bundle structure as a solution of the equations of motion 
provided G / His symmetric. 19 

Finally, we wish to give a geometric basis to a statement 
made by Witten in Ref. 2. The group G X G acts on G transi
tively and effectively from the left by (a,b )g = agb -I. The 
isotropy group of this action at e is ..1G, the diagonal in 
G X G, i.e., the set of all pairs (a,a). Therefore, G can be 
thought of as a coset space G = (G X G)/..1 G. Given a princi-

pal G-bundle P, we may form the fiber product P X P, which 
G 

is a principal bundle with fiber G X G, and then use the action 

above to form an associated bundle E = (P X P ) X G. AI-
G (GxG) 

though this bundle has fiber G, it is not a principal bundle. 
We can then apply the main result of the present paper to 
conclude that a Yang-Mills field with group G X G will be
come dynamically active. This is a nice illustration of the fact 
that the nature of the gauge group does not depend only on 
the choice ofthe fiber, but also on the choice of group action 
on the fiber. 
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Stochastic differential equations are considered. Estimates in terms of statistical properties are 
given for the difference between the solutions and solutions of the mean of stochastic differential 
systems. For this purpose necessary theorems are developed and sufficient conditions are given to 
obtain error estimates. A few examples are worked out to demonstrate the usefulness of the 
results. 

PACS numbers: 02.50.Ey 

1. INTRODUCTION 

Mathematical modeling of several real world problems 
lead us to differential equations. In formulating the math
ematical model one can ignore the randomness in the system 
and obtain a deterministic model. Such a deterministic mod
el of a dynamic system can be described by systems of deter
ministic differential equations. However, if one incorporates 
the inherent randomness of a system into the mathematical 
model, then the dynamic of the system will be described by a 
stochastic differential equation with random parameters. In 
general, the laws governing the random phenomena, and the 
corresponding parameters, are not precisely known. There
fore, one is interested in approximating a stochastic model 
by means of a deterministic model. Such an approximation 
will lead us to the study of estimating the error response 
corresponding to stochastic and deterministic models. 

The objective of this paper is to estimate the error be
tween the solution and the solution of the mean of a random 
differential equation. Very recentlyl,2 problems of this na
ture with regard to roots of random polynomials have been 
investigated. Furthermore, certain relationships between 
the random eigenvalue problem and its corresponding mean 
problem have been discussed in Ref. 3. The present study 
provides a tool that verifies to what extent the deterministic 
mathematical model differs from the corresponding stochas
tic model. The mathematical conditions are given in terms of 
statistical properties of rate coefficients and the initial data 
of the system. In addition to this, we have obtained some 
sufficient conditions to guarantee the boundedness of solu
tion with probability one (w.p. 1). The purpose of obtaining 
such a result is to develop suitable and more feasible condi
tions to estimate the difference between the solution of the 
mean and the solution. Several remarks and examples are 
given to indicate the usefulness of the result. Some related 
deterministic results can be found in Refs. 4-6. 

We organize our article as follows. In Sec. 2 we prove a 
few auxiliary results. In Sec. 3 some results for the bounded
ness of the solutions with probability one are developed. 

-IResearch partially supported by U. S. Anny Research Grants Nos. 
DAAG29-80-C-0060 and DAAG29-81-G-0008. 

b1post-Doctoral Research Fellowship support by the Government of India, 
No.6-2l/79-Ns-S. 

Main theorems are proved in Sec. 4, and to illustrate the 
theory a few examples are worked out in Sec. 5. 

2. GENERALIZED VARIATION OF CONSTANTS 
FORMULA 

For our discussion we consider the initial value problem 

y'(t,w) = F(t,y(t,w),w), y(to,w) = Yo(w) (2.1) 

and the corresponding mean system of differential equations 

m'(t) = f(t,m(t)), m(to) = mo = E (Yo(w)) , (2.2) 

wheref(t,z) = E[F(t,z,w)]. From (2.1) and (2.2) we have 

y'(t,w) = f(t,y(t,w)) 

+ R (t,y(t,w),w), y(to,w) = Yo(w) , (2.3) 

where 

R (t,y(t,w),w) = F(t,y(t,w),w) - E [F(t,y(t,w),w)] . 

In our presentation we will be using the following initial 
value problem also: 

x' = f(t,x), x(to'w) = Yo(w) = xo(w) , (2.4) 

wherefis as defined in (2.2). 
Hereafter the notations and definitions are adopted 

from Ref. 7. Without further mention we assume that all the 
inequalities and relations involving random quantities are 
valid with probability 1 (w.p. 1). Now we assume the follow
ing hypotheses. (HdReM[R+ XR n,R [n,R n]] and R is al
most sure sample continuous in x for fixed teR +; 
fEC [R+ xR n,R n] ./X exists, andfx EC [R+ XR n,R n']. 
(H2) The random function Fin (2.1) satisfies suitable regular
ity conditions so that the initial value problem (2.1) has sam
ple solution process existing for r~to' 

The above conditions imply that x(t,w) = x(t,to,xo(w)) is 
a unique solution of (2.4), and further that x(t,w) is sample 
continuously differentiable with respect to (to'xo)' 

Let <P (t,to,xo(w)) be the fundamental solution of the vari
ational system associated with (2.4). Further assume that 
(H3) V(t,x)EC [R+ XR n,R m] and Vx exists and is continu
ous for (t,x)eR + XR n. 

We now state and prove a few lemmas. 
Lemma 2.1: Let the hypotheses (HIHH3) be satisfied 

and x(t,w) = x(t,to,xo(w)) be the sample solution of (2.4) and 
y(t,w) = y(t,to,yo(w),w) be the sample solution of(2.3) for t;>O. 
Then 
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V(t,y(t,w)) = V(t,x(t,w)j + L Vx{t,x(t,s,y(s,w)) 

X <P (t,s, y(s,w))R (s, y(s,w),wjds. (2.5) 

Proof Let x(t,s, y(s,w)) be the sample solution processes 
of (2.4) through (s,y(s)), and y(s,w) = y(s,to'yo(w),w) be the 
sample solution processes of (2.3) through (to,yo)' From the 
hypotheses (H()-(H3) and Ref. 7, Theorem 2.6.4, we obtain 

.- (t,x(t,s,y(s,w))) = Vx (t,x(t,s,y(s,w))) - x(t,s,y(s,w)) + - x(t,s,y(s,w)) - y(s,w) dV [d d d] 
~ ~ ~ ~ 

= Vx (t,x(t,s,y(s,w)))<P (t,s,y(s,w))R (s,y(s,w),w) w.p. I. (2.6) 

Integrating (in the sample sense) both the sides from to to t, and noting that x(t,t,y(t,to,yo(w),wj) = y(t,to,yo(w),w), we obtain 

V(t,y(t,w)) = V(t,x(t,w)) + J: V, (t,s(t,s,y(s,w)))<P (t,s,y(s,w))R (s,y(s,w),w)ds. 

This completes the proof of the lemma. 
Some particular cases of Lemma 1.1 will be illustrated in the following remarks. 
Remark 2.1: Let V(t,x(t,w)) = x(t,w). Then in Lemma 2.1, (2.5) reduces to 

y(t,w) = x(t,w) + F <P (t,s,y(s,w))R (s,y(s,w),w)ds . 

This gives the result of Theorem 2.7.3. 7 

Remark 2.2: If V(t,x(t,w)) = Ilx(t,w)11 2 then in Lemma 2.1, (2.5) reduces to 

Ily(t,w)11 2 = Ilx(t,w)11 2 + 2 F x(t,s,y(s,w))<P (t,s,y(s,w))R (s,y(s,w),wjds . 

Now we prove another lemma which gives the expressions for the difference between the solutions of the unperturbed 
system (2.3) and the initial value problem (2.4). 

Lemma 2.2: Suppose all the hypotheses of Lemma 2.1 hold. Then 

V(t,y(t,w) - x(t,w)) = V(t,O) + F Vx [t,x(t,s,y(s,w)) - x(t,s,x(s,w))]<P(t,s,y(s,w))R (s,y(s,w),w)ds. 

Proof By following the proof of Lemma 2.1 we have the relation 

dV 
- (t,x(t,s,y(s,w)) - x(t,s,x(s,w))) = Vx [t,x(t,s,y(s,w)) - x(t,s,x(s,w))] <P (t,s,y(s,w))R (s,y(s,w),w) w.p. 1. 
ds 

(2.7) 

Integrating (2.7) from to to t, and noting that 
x(t,t,y(t,to,yo(w),w)) = y(t,to,yo(w),w), we complete the proof of 
the lemma. 

The next lemma gives the expression for the difference 
between the solution of the perturbed system (2.3) and the 
solution of the mean system of equations (2.2). 

Lemma 2.3: Suppose that all the hypotheses of Lemma 
2.1 are satisfied. Then 

V(t,y(t,(v) - m(t)) = V(t,x(t,w) - m(t)) 

+ L Vx [t,x(t,s,y(s,w)) - x(t,s,m(s))] 

(2.8) 

X <P (t,s,y(s,w))R (s,y(s,w),w)ds , 

where mIt ) = m(t,to,mo) is a solution of (2.2). 
Proof By noting the fact that x(t,s,m(s)) = mIt ), the 

proof of the lemma follows from Lemma 2.2. 
A particular case of Lemma 2.3 is illustrated in the fol

lowing remark, which will be very much useful in studying 
the statistical properties of solution processes. 

Remark 2.3: If V(t,x) = Ilx11 2
, then from (2.8) we obtain 
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IIY(t,w) - mIt )11 2 = Ilx(t,w) - mIt )11 2 + L [x(t,s,y(s,w)) 

- x(t,s,m(s))] <I> (t,s,y(s,w))R (s,y(s,w),w)ds . 

3. BOUNDEDNESS SOLUTIONS 

In this section we consider the boundedness of the solu
tion process w. p. 1 of (2.1). The obtained result will justify 
some of the assumption that will be made in the following 
sections in order to obtain estimates of the difference be
tween the solution of the mean (2.2) and the solution of(2.1). 

Assume that Fin (2.1) satisfies assumption (H2). Then 
the differential system (2.1) is said to be: 

(SBd bounded w.p. 1 (or almost surely sample bounded) 
if for each a>O,toEJ there exists a positive function 
/3 = /3 (to,a) which is continuous in to for each a such that the 
inequality 

I 1Y0(w)l I <a, w.p. 1 

implies 

IIY(t,w)l1 </3, w.p. 1, t>to , 
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(SB2) uniformly bounded w.p. 1 ifP in (SB I ) is indepen
dent of to' 

Consider the following random comparison differential 
systems: 

u'(t,w) = g(t,u(t,w),w), u(to,w) = uo(w) , (3.1) 

where geM [J XRm,R [n,Rm]] is such thatg(t,u,w) satisfies 
the Caratheodory conditions in (t,u) w.p. 1 and g(t,u,w) is 
quasimonotonic, nondecreasing in u for fixed t w.p.I. 

The differential system (3.1) is said to be: (SBT) bounded 
w.p. 1 if given a>O, to61 there exists a positive function 
P = P (to,a) such that 

m 

L u!O(w)<a, w.p. 1 
;=} 

implies 
m 

L ui(t,w) <p, r>to, w.p. 1 ; 
;=1 

(SB!) uniformly bounded w.p. 1 ifP in (SBT) is independent 
ofto· 

We now prove the following theorem, which is a proba
bilistic version of Ref. 8, Theorem 3.13.1. 

Theorem 3.1: Assume that 
(i) geM [J X R m,R [n,R m]] and g(t,u,w) is sample 

continuous and quasimonotone nondecreasing in u for fixed 
t6l, 

(ii)VeC [J XR n,R [noR m]] satisfies a local Lipschitz 
condition iny w.p. 1 and for (t'y)61 XR n 

D IiI) V (t.Y(t,w))<g(t, V (t.Y(t,w))) , 

(iii) for (t'y)6l XR n, V(t,O)=O and 

f V; (t.Y(t,w))>b IIlY/i), 
i=1 

where be/( on the interval O<u < 00 and b (u)-oo as U-oo. 
Then 

(SBTl=>SB I . 

Proof Let a>O and to61be given and let IlYo(w)/i <a. 
From the hypothesis on V(t.Y(t,w)), there exists a number 
a l = al(to,a) such that 

IlYo(w)li<a and V(to.Yo(w))<a l 

are satisfied, simultaneously. From the equiboundedness of 
(3.1), we have 

if 

f 'i(t,to,uo(w),w) <PI' t>to 
;=1 

m 

L u!O(w)<al . 
i=l 

(3.2) 

Further as b (u)- 00 as u_ 00 we can choose a P = P (to,a), 
such that 

b If3 »PI(to,a) . (3.3) 

Now let 

uo(w) = V(to.Yo(w)) . 

Then from Ref. 7, Theorem 2.8.1, we obtain 

V(t.Y(t,w))<r(t,to,uo(w)) , t>to (3.4) 

where r(t,to,uo(w),w) is the maximal solution of (3.1). 
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Suppose that there exists a solutiony(t,to'yo(w)) with 
IlYo(w) II <a,nl en,p(n l ) > O. and t>to such that 

IlY(t l,tO'yO(w),w)/i = P, fl>EJJ 1 

and 

IlY(t,to'yo(w),w)il <p, te(to,tl )· 

Then from (iii), (3.2H3.4), we obtain 
m 

b 1f3)< L V; (t.Y(tl,tO.Yo(w),w)) 
i= 1 

m 

< L 'i(tl,tO'UO(W),w) <PI(to,a)<b 1f3) . 
;=1 

This establishes the fact that SB1 holds. 

4. MAIN RESULTS 

To develop theorems on the estimations of solutions we 
assume the following: 

(H4)/I Vx [t,x(t,s,y(s,w)) - x(t,s,m(s))) 

X(/) (t,s'y(s,w))R (s.Y(s,w),w)/i 

<C (llY(s,w) - m(s)II)g(s,w), 

where CeC[R+,R+] and nondecreasing on 
R +,geM [R +,R [n,R +11 and is sample Lebesgue integrable. 

(Hs) b (IIx/l)< V(t,x)/I <a(/lx/l), 

where a,beC [R +.R +]; a is differentiable on R +; b -I exists 
and it is nondecreasing and continuous on R +. 

Theorem 4.1: Suppose the hypotheses (HIHHs) are sat
isfied. Then 

b (/I y(t,w) - mIt )/I)<H -I [Lg(s,W)ds + H(N(t,w))], w.p.1 

where 

N(t,w) = a(/lx(t,w) - m(t)/I), 

dH(s) 1 --=--, 
ds his) 

and 

h (s) = C (b -I(S)). 

Moreover, if H -I is a concave function, then 

E [b (ijy(t,w) - m(t)/I)] 

<H -I [E U: g(S,W)ds) + E (H (N (t,W)))] . 

Proof From Lemma 2.3, (H4 ), and (Hs) we obtain 

b (llY(t,w) - mit )/1) <a(ilx(t,w) - mit )/1) 

+ fC('lY(S,W) - m(s)/I)g(s,w)ds. (4.1) 

Let 

r(t,w) = s.: C IIlY(s,w) - m(s)/I)g(s,w)ds. 

Therefore 

r(t,w) = CIIlY(t,w) - m(tlll)g(t,w). (4.2) 
From (4.1) we obtain 

b lIlY(t,w) - mit )II)<N (t,w) + r(t,w). (4.3) 
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From (4.2) and (4.3) we obtain 

r'(t,w)<.h (N (t,w) + r(t,w))g(t,w). 

Let 

N (t,w) + r(t,w) = u(t,w). 

Differentiating (4.5) on both the sides we obtain 

N'(t,w) + r'(t,w) = u'(t,w), 

u(to,w) = N (to,w). 

Using (4.6) in (4.4) we get 

u'(t,w)<.N'(t,w) + h (u(t,w))g(t,w). 

Now we consider the following comparison differential 
equation: 

v'(t,w) = N '(t,w) + h (v(t,w))g(t,w), 

with 

v(to,w) = u(to,w). 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Since h H is nondecreasing and g(t,w) is non-negative, by an 
application of Ref. 5, Corollary 2.1, we obtain 

v(t,w)<.H -I [Lg(S,W)dS + H (N(t,W))]. (4.9) 

From (4.5)-(4.9) and an application of a comparison theorem 
(Ref. 7, Theorem 2.5.1), (4.7) reduces to 

r(t,w)<. - N (t,w) + H -I [Lg(S,W)dS + H (N (t,W))]. 

(4.10) 

From (4.3) and (4.10) we obtain 

b (Ilv(t,w) - m(t )IIlH -I [Lg(S,W)dS + H (N(t,W))]. 

(4.11) 

This proves the first part of the theorem. 
If H - 1 is concave, then taking expectation on both the 

sides of (4.11), and using Jensen's inequality,7 we obtain 

E(b (1Iy(t,w) - m(t )II))<.H -I [E Lg(S,W)dS + EH(N(t,W))]. 

This proves the second part of the theorem. 
In the following corollary we prove another inequality 

which gives the estimates in terms of the initial conditions 
for (2.2) and (2.4). 

Corollary 4.1: Suppose that all the hypotheses of Theo
rem 4.1 are satisfied and 

II f/> (t,s,y(S,w)) II <.K, 

where K is a positive constant. Then 

b (lIy(t,w) - m(t )l1l<.H -I [H(N)(to,w))+ Lg(S,W)dS], 

(4.12) 

where N (to,w) = arK IIxo(W) - moll). 

Moreover, if H -I is concave then 

E (b (Ilv(t,w) - m(t )Ill) 
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<.H -I [E (H (N (to,w))) + E C(g(S,W)dS) ]. (4.13) 

Proof We prove the first part of the corollary only. The 
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second part follows from Theorem 4.1. 
Application of Theorem 4.1 gives 

b (Ilv(t,w) - m(t )11)<.a(llx(t,w) - mIt )11l 

+ LClIlv(S,W) - m(s)II)·g(s,w)ds. 

From Theorem 2.7.4,7 we can derive 

x(t,to,xo(w)) - x(t,to,m(to)) 

= f f/> (t,to,ma + s(xo(w) - mo))ds(xo(w) - mol· 

Using this inequality and the hypotheses of the corollary, we 
obtain 

Ilx(t,to,xo(w)) - x(t,to,mo)11 <.K Ilxo(w) - moll. (4.14) 

From (4.14), and an application of Theorem 4.1, the proof of 
the corollary is complete. 

To illustrate the feasibility of assumption (H4)' and the 
fruitfulness of the above result, we present a particular 
example. 

Illustration 4.1: Let 

V(t,x) = IIxl12 and II f/> (t,s,y(s,w))11 <.K. (4.15) 

Note that (H4) is feasible provided that the solution processes 
of (2.1) are bounded w.p.I. This can be tested by using the 
boundedness results in Sec. 3. From (4.15) we obtain 

IlVx (t,x)11 ';;;21Ixll· (4.16) 

From the boundedness assumption on the solution pro
cesses (2.1), together with (4.15) and (4.16), one can find g 
such that 

II VX (t,x(t,s,y(s,w)) - x(t,s,m(s)))f/> (t,s,y(s,w))R (s,y,(s,w ),w )11 

<.21Ix(t,s,y(s,w)) - x(t,s,m(s))llg(s,w), (4.17) 

where g(s,w)EM [R+,R [n,R]]. Now by an application of 
Corollary 4.1 , we get 

b (Ilv(t,w) - mIt )11 )<.H -I [K Ilxo(w) - moll + Lg(S,W)dS] 

= [K(IIXo(w) - molll + Lg(S,W)dSr, (4.18) 

since H (s) = SI /2. By noting the fact that b (u) = u2 = a(u), 
(4.18) reduces to the following form: 

Ilv(t,w) - m(t )11 2,;;; [K Ilxo(W) - moll + Lg(S,W)dS r 
(4.19) 

Taking expectation on both sides of (4.19) we get 

E Ilv(t,w) - m(t )11 2 ';;;E [K lIlxo(w) - molll + Lg(S,W)dS r 
= E [K2I1Xo(W) - mol1 2 + 2K Ilxa(w) - moIILg(S,W)dS 

+ C(g(s,W)dSY]· (4.20) 

Remark 4.1: We remark that by selecting various condi
tions on the processg(s,w) and Ilxo(w) - moll one can obtain 
more attractive estimates. For example: 

(i) Taking the square root and then expectation on both 
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the sides of (4.19) we obtain 

E Ily(t,liJ) - m(t )11 <E [K Ilxo(liJ) - moll] + E [{g(S,liJ)dS]. 

(4.21) 

(ii) When Ilxo(liJ) - moll andg(s,liJ) are independent ran
dom processes, from (4.20) we get 

Elly(t,liJ) - m(t)1!2<K 2EUlxo(liJ) - mol1 2 

+ 2KE(llxo(liJ) - moll)EU:g(S,liJ)dS) 

+ E [1: 1: (g(s,liJ)g(u,liJ))dsdu ]. (4.22) 

Further, if g(s,liJ) is any stationary Gaussian process and 
Eg(s,liJ) is a constant (which we can take to be zero) then 
E (g(s,liJ)g(u,liJ)) depends only on s - u. Therefore, if 
Eg(s,liJ) = 0 then in this case (4.22) reduces to 

E IIY(t,liJ) - mIt )11 2<K 2E Ulxo - moll)2 + 1: 1:C(U - s)duds, 

where E (g(s,liJ)g(u,liJ)) = c(u - s). 
So far we considered the right-hand side of (H4) to be a 

product of two random functions. If the right-hand side of 
(H4) is a product of a deterministic function and a random 
function we get another interesting inequality which we state 
in the following corollary. 

Corollary 4.2: Suppose that all the hypotheses of Theo
rem 4.1 are satisfied; and instead of (H4) we assume the 
following: 

(H6 )11 Vx (t,x(t,s,y(s,liJ)) - x(t,s,m(s)))<1> (t,s,y(s,liJ))R (s,y(s,liJ),liJ) II 

<w(s)g(s,liJ), 

where w(s)EC[R+,R+l. Then 

E (b (llY(t,liJ) - mIt lil))<E [a(llx(t,liJ) - mIt )11)] 

+ [1:w2(S)dS r2E [1:g2(S,liJ)dS r2

• (4.23) 

Moreover, if 11<1> (t,s,y(s,liJ)) II <K, then 

E (b IIY(t,liJ) - m(t lIIl<E (a(K Ilxo(liJ) - moll)) 

+ [1:w2(S)dS r2 

E [1:g2(S,liJ)dS r2

• 

Proof From (H6)' an application of the proof of Theo
rem 4.1, Corollary 4.1, and Holder's inequality, the proof of 
the corollary follows. 

Now we present another illustration to exhibit the feasi
bility of (Ho)' as well as the applications of Corollary 4.2. 

Illustration 4.2: Let 

V(t,x) = Ilxll and 11<1> (t,s,y(s,liJ))11 <K. (4.24) 

Then 

IlVx (t,x)11 < 1. 

Again by the boundedness assumption of the solution pro
cess of (2.1) it is easy to see that 

Vx (t,x(t,s,y(s,liJ)) - x(t,s,m(s)))<1> (t,s,y(s,liJ))R (s,y(s,liJ ),liJ) 

<g(s,liJ), (4.25) 

where gEM [R +,R [n,R n. Now take b (u) = a(u) = u. From 
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(4.27), (4.28), and an application of Corollary 4.1 we have 

IlY(t,liJ) - m(t!ll <K IIxo(liJ) - moll + fg(S,liJ), (4.26) 

since H (s) = s. Taking expectation on both sides we get 

E II (t,liJ) - mIt )11 <KE (1Ixo(liJ) - moli) + E U:g(S,liJ)dS). 

(4.27) 

Remark 4.2: We remark that from (4.26) we can also get 
the mean square estimates. For example, squaring (4.26)and 
using the known inequality (a + b )2<2(a2 + b 2) and taking 
expectation on both the sides we get 

E IlY(t,liJ) - mIt )11 2 

<2[K2E Ilxo(liJ) - mol1
2 + EU~g(S'liJ)ds)1 (4.28) 

From the estimates (i) (4.21), (4.27) and (ii) (4.20), (4.22), 
(4.28) one can immediately note the role of different types of 
functions V. 

In the next theorem we consider the right-hand side of 
(H4) to be a function of V(·). Its immediate application is 
illustrated in Remark 4.3. 

Theorem 4.2: Let the hypotheses (HI)-(H3) be satisfied. 
Further assume that 

(H7) Vx [t,x(t,s,y(s,liJ)) - x(t,s,m(s))].<1> (t,s,y(s,liJ)) 

xR (s,y(s,liJ),liJ) II <C [V( y(s,liJ) - m(s))]g(s,liJ). 

Then 

V(t,y(t,liJ) - mIt ))<H -I [1:g(S,liJ)dS + H (M (t,liJ))], w.p.l 

(4.29) 

where 

M(t,liJ) = V(t,x(t,liJ) - mIt)) and H(s) = f~. 
CIs) 

Moreover, if H - 1 is a concave function then 

E [ V (t,y(t,liJ) -. mIt )) 1 

<H -I (E J:g(S,liJ)dS + E [H (M (t,liJ)) 1 J. (4.30) 

Proof From Lemma 2.3 we obtain 

V(t,y(t,liJ) - m(t)) = V(t,x(t,liJ) - m(t)) 

Let 

+ L Vx [t,x(t,s,y(s,liJ)) - x(t,s,m(s))] 

X <1> (t,s,y(s,liJ))R (s,y(s,liJ),liJ)ds 

< V(t,x(t,liJ) - m(t)) 

+ J:c [V(t,y(s,liJ) - m(s))]g(s,liJ)ds. 

(4.31) 

r(t,liJ) = J.:e [V(t,y(s,liJ) - m(s))]g(s,liJ)ds. (4.32) 

Differentiating (4.32) on both sides we get 

r'(t,liJ) = e [V(t,y(t,liJ) - mIt ))]g(t,liJ). 

Now the proof of the theorem follows by applying the meth-

G. S. Ladde and M. Sambandham 819 



                                                                                                                                    

od used in Theorem 4.1. 
Remark 4.3: Suppose V(t,.x) = IlxliP. Assume that solu

tion processes of (2.1) are bounded w .p.l. Then one can com
pute that 

II Vx(t,.x(t,s,y(s,w)) - x(t,s,m(s)))4> (t,s,y(s,w))R (s,y(s,w),w)1I 
<pllx(t,s,y(s,w)) - x(t,s,m(s)) liP - Ig(S,W) 
= C [V(t,.x(t,s,y(s,w)) - x(t,s,m(s))] pg(s,w), (4.33) 

where C(r) = ~-l)Ip. Application of Theorem 4.2 gives 

ILv(t,w) - m(t)IIP<H -I[p Fg(S,W)dS + pllx(t,w) - m(tlll] 

< [fg(S,W)ds + IIx(t,w) - m(t)1I r (4.34) 

Taking expectation on both sides of (4.34) we obtain 

E ILv(t,w) - mIt )IIP<E [Fg(S,W)dS + IIx(t,w)- m(t)1I r 
(4.35) 

Using the known inequality (a + b JP<2P(aP + bPI, 
(4.35) reduces to 

E ILv(t,w) - mIt )IIP 

(4.36) 

5. EXAMPLES 

In this section we present a few simple and illustrative 
examples. 

Example 5.1: Consider the following differential 
equation: 

(5.1) 

where aEM [R,R [n,R ]] and satisfies enough regularity con
ditions for existence of a solution process for t>tf): 

y'(t,w) = E (a(t,w))y(t,w) + [a(t,w) - E (a(t,w))] y(t,w), 

y(to,w) = Yo(w), (5.2) 

m'(t) = E (a(t,w))m(t)), m(to) = E (Yo(w)), (5.3) 

x' = E (a(t,w))x, x(to,w) = xo(w), (5.4) 

withyo(w) = xo(w). 
Solving (5.4) we get 

x(t,w) = xo(w)exp [ f E (a(S,W))dS] (5.5) 

and 

4> (t,to,.xo(w)) = exp[ f E (a(S,W))dS]' (5.6) 

(i) Suppose that V(t,x) = x and let a(z) = b (z) = z. Then 
we get 

I Vx (t,.x(t,s,y(s,w)) 

- x(t,s,m(s)))4> (t,s,y(s,w))R (s,y(s,w),w) I <g(s,w), (5.7) 

where 

g(s,w) = la(s,w) - Ea(s,w) I exp [ L Ea(U,W)du) . 

From Theorem 4.1 we get 
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ly(t,w)-m(t)I<H-I[fg(s,W)+H(N(t,W))], (5.8) 

where 

H (x) = H -I(Z) = z , 

N(t,w) = Ix(t,w)- m(t)l. 
From (5.5), (5.6) and an application of(5.7) and (5.8), we 

have t 

Iy(t,w) - mit II < Ixo(w) - molexp [ 1 Ea(S,W)ds] 

+ L {Ia(s,w) -E(a(s,w))lexp[ L Ea(U,w)dU]dS}. 

(5.9) 

Taking expectation on both sides we get 

E Iy(t,w) - m(t)1 <E (lxo(w) - mollexp[ f Ea(S,W)ds] 

+ E r {Ia(s,w) - Ea(s,w)lexp f' E (a(U,W))dU}dS . 
to J. (5.10) 

If 14> (t,s,y(s,w))I<K, from (5.10) we obtain 

E Iy(t,w) - m(t) I 

<X [E Ixo(w) - mol + E L la(s,w) - Ea(s,w) Ids ] . 

(5.11) 

(ii) Suppose V(t,.x) = x2 and let a(z) = Z2 = b (z). Then 
from (4.17) we get 

I Vx (t,.x(t,s,y(s,w)) - x(t,s,m(s)))4> (t,s,y(s,w))R (s,y(s,w),w) I 
(5.12) 

<2Ix(t,s,y(s,w))- x(t,s,m(s))lg(s,w) , 

where 

g(s,w) = la(s,w)- E (a(s,w)) I exp f E (a(u,w))du . 

From Theorem 4.1 we get 

Iy(t,w) - m(tW<[lx(t,w) - m(t)1 + f g(S,W)dSr· 

(5.13) 

Taking expectation on both sides of (5.13) we obtain 

E Iy(t,w) - mIt W<E [IX(t,w) - m(t)1 + .c g(s,w)ds r . 
(5.14) 

If 14> (t,s,y(s,w)) I <K, (5.14) reduces to 

E Iy(t,w) - mit W 

<E [K Ixo(w) - mol + F la(s,w) - E(a(S,W))ldSr 

(5.15) 

If the random processes Ixo(w) - mol and 
la(s,w) - Ea(s,w)1 areuncorrelatedand la(s,w) - Ea(s,w) I isa 
stationary Gaussian process then (5.15) reduces to 

E Iy(t,w) - mIt W 

<[K2E Ixo(w) - mol
2 + F F CIs - U)dSdu] , 

where Cis - u) = E I (a(s,w) - Ea(s,w))(a(u,w) - Ea(u,w))1 . 
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Note that from (5.13) and (5.14) we can get estimates 
similar to (5.11) and (4.21). 

In the next example we consider a nonlinear equation. 
Example 5.2: Consider the following differential 

equations. 

y'(t,W) = - a(t,w)y3(t,w), y(to,w) = Yo(w) , (5.16) 

wherea(t,w)EM [R,R [n,R +11 and satisfies enough regularity 
conditions for the existence of a solution process for r>to' 

y'(t,W) = - E (a(t,w)lY3(t,w) + [E (a(t,w)) - a(t,w)] 

Xl(t,w), y(to,w) = Yo(w) , (5.17) 

m'(t) = - E (a(t,w))m3(t), m(to) = E (xo(w)) , (5.18) 

x' = - E (a((t,w))x3, x(to,w) = xo(w) , (5.19) 

with xo(w) = Yo(w). 

We assume that the solution of(5.16) is bounded w.p. 1. 
That is, we assume thaty2(t,w)<a-2 w.p. 1, a#O. From 
(5.19) we obtain 

x(t w) = xo(cu) . (5.20) 

, [1 + 2x~(w) L Ea(s,w)ds fl2 
From (5.20) we get 

<P(t,to,xo(w)) = 1/[ 1 + 2x~(w) L a(s,W)r
2

. (5.21) 

From (5.17) and (5.21) we get the following inequality: 

I<P (t,s,y(s,w))R (s,y(s,w),w) I 

< la(s,w) - Ea(S,W)il[ a2 + 2 f EA (u,w)du r2

, (5.22) 

sincey2<a-2, w.p. 1. Further, we note that a 2 > 0 and 
2f~ a(u,w)du is positive. Therefore, (5.22) reduces to 

I<P (t,s,y(s,w))R (s,y(s,w),w) I <K1Ia(s,w) - Ea(s,w) I , (5.23) 

where Kl is a suitable positive constant. 
Now we obtain a few inequalities for a different choice 

of V(t,x). 
(i) Let b (z) = z = a(z) and 

V(t,x) = x . (5.24) 

Equation (5.24) together with (5.22) verifies the assumption 
(H6)' Moreover, we note that I<P (t,s,y(x,w)) I < 1 andH(s) = s. 
From (4.25), (4.27), (5.22), and (5.24) we get 

E Iy(t,w) - m(t)1 

<E Ixo(w) - mol + E { it la(s,w) - Ea(s,w) Ids }. 
to [a2 + 2 f~ Ea(u,w)du )3/2 

(5.25) 

In the above discussion, if instead of(5.22) we use (5.23) we 
get 

E Iy(t,w) - m(t)I<E Ixo(w) - mol 

+ E {E la(s,w) - Ea(s,w) IdS} . 

(ii) Let b (z) = r = a(z) and 

V(t,x) =x2. 

(5.26) 

(5.27) 

Equation (5.27) together with (5.22) verifies the assumption 
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(H4)' Since 1<P(t,s,y(s,w))l<l and H(s) = sl/2, from (4.17), 
(4.20), (5.22), and (5.27) we obtain 

E Iy(t,w) - mIt )1 2 

E [I () I it la(s,w) - Ea(s,w)ldu ]2 
< XoW - mo + . 

to [a 2 + 2 S! Ea(u,w)du]312 
(5.28) 

In the above discussion ifinstead of(5.22) we consider (5.23), 
we get 

E Iy(t,w) - mIt W 

<E [Ixo(w) - mol + Kl L la(s,w) - Ea(s,w)ldu r . 
(5.29) 

In particular, if the random processes Ixo(w) - mol and 
la(s,w) - Ea(s,w) I follow certain additional conditions we get 
the following interesting inequalities. 

(a) If Ixo(w) - mol and la(s,w) - Ea(s,w) I are indepen
dent processes, then (5.29) reduces to 

E Iy(t,w) - mIt W<E [xo(w) - mof + KIE Ixo(w) - mol 

XE [L (Ia(s,w) - Ea(s,w)l)dU] 

+ K2E L L (Ia(s,w) - Ea(s,w)lla(u,w) - Ea(u,w)l) 

x duds . (5.30) 

(b) If la(s,w) - Ea(s,w) I and Ixo(w) - mol are uncorrelat-
ed and la(s,w) - Ea(s,w) I is a stationary Gaussian process, 
(5.29) reduces to 

E Iy(t,w) - mIt W<E (xo(w) - mo)2 

+ K2 L L cIs - u)duds, (5.31) 

where cIs - u) = E la(s,w) - Ea(s,w)lla(s,w) - Ea(s,w)l. 
(iii) Let 

V(t,x) =x p
• (5.32) 

The V(t,x) in (5.32) together with (5.22) verifies (4.33) with 
C (r) = ,; P - II/p. Application of (4.35) and (5.22) gives 

E Iy(t,w) - mIt W 

E [I ( ) I it la(s,w) - Ea(s,w) I d ]P 
< Xo W - mo + s . 

to [a2 + 2 J~ Ea(u,w)du ]3/2 
(5.33) 

In the above discussions, if in the place of(5.22) we use (5.23) 
we obtain 

E Iy(t,w) - mIt W 

<E [Ixo(w) - mol + KI L la(s,w) - Ea(s,w) Ids y . 
(5.34) 

Using the known inequality (a + b Y'<2P(aP + bP), (5.34) can 
be further simplified to the following form 

E Iy(t,w) - mIt W 

<2P[E Ixo(w) - molP + K~ E {L la(s,w) - Ea(s,w)ldsYl . 

(5.35) 
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Presented in this paper is a set of explicit prescriptions for associating with a given map of R n, 

which is C 2 -isotopic to the identity, a time-dependent vector field whose time-l map is the given 
one. Also shown is how to apply additional restrictions to the vector field including that it be (1) 
periodic in time, (2) Hamiltonian, and (3) of potential form; several examples show numerical 
verification of the theory. 

PACS numbers: 03.20. + i, 02.90. + P 

I. INTRODUCTION 

In this paper I am concerned with an inverse problem in 
dynamics; namely, given a map, find a time-dependent dyna
mical system whose time-one map is the required map. Giv
en a map on a manifold of dimension n, it is easy! to con
struct a vector field on a manifold of one higher dimension, 
called a suspension, which has the given map as a cross sec
tion. The standard construction! is not very useful in appli
cations because the manifold is constructed as a quotient and 
can thus, in general, only be embedded in a (2n + 2)-, or 
higher-, dimensional Euclidean space. As a result, an equiva
lent Euclidean vector field can be globally defined only in 
2n + 2, or higher, dimensions for many cases; this high di
mensionality, together with a lack of prescription for embed
ding, makes this construction impractical for applications. 

In this paper I will restrict my attention to maps of 
finite-dimensional vector spaces. By doing so, I can con
struct, explicitly, the required vector fields. It is usually de
sired to have the vector fields satisfy certain additional con
straints; for example, one may require the vector fields to 
have a periodic time dependence. For some applications it 
may be necessary for the vector fields to be in Hamiltonian 
form, assuming of course that the map is symplectic. In addi
tion, it may be necessary for a Hamiltonian system to be in 
potential form. Additional requirements, of course, make 
the suspension problem harder, but in this theory it remains 
tractable. 

In the next section, I present the general theory and 
consider the requirement that the vector fields be periodic in 
time. In Sec. III of this paper, I consider linear maps to eluci
date the general theory, to point out its generality, and to 
present alternative conditions for periodicity. In Sec. IV, I 
consider symplectic maps with the requirement that the vec
tor fields be Hamiltonian and of potential form. In the last 
section, I discuss my results and make general comments on 
the mathematical questions that this work raises. 

II. GENERAL THEORY 

Let us assume that we are given a C 2 -diffeomorphism of 
Euclidean n-space R n; 

f: Rn_Rn. (1) 

We want to construct a vector field 

(2) 

so that the solutions of the vector differential equation 

dx 
dt=X(x,t) (3) 

satisfy 

x( 1) = J[x(O)] . 

To construct X, let us first construct a function 

¢J: RnXR_Rm, 

(4) 

(5) 

where, in general, m mayor may not be equal to n. Let us 
require that ¢J be a constant on each trajectory ofEq. (3). This 
condition gives 

a¢J + dx . V¢J = 0, 
at dt 

(6) 

where the gradient, or Jacobian, is with respect to the first n 
arguments of ¢J and where the dot indicates the dot product. 
At a fixed (x,t), V ¢J (x,t ) is a linear map 

V¢J (x,t): R n _ R m • (7) 

This map wiII have a unique inverse only if m = n or unless 
additional conditions are applied (as in Sec. III). Let us, how
ever, consider a generalized (nonunique) inverse M (x,t ), so 
that 

V¢J(x,t) ·M(x,t) = IdR " • 

We then find that 

dx=_a¢J. M . 
dt at 

(8) 

(9) 

We must now apply the condition that the solutions of 
Eq. (9) satisfy Eq. (4). Let us denote ¢J (x,l) by ¢JI(X). Our con
dition then becomes 

¢J [x(O),O] = ¢J II J[x(O)] 1 . (10) 

Let us now restrict our attention to maps,/, C 2-isotopic to 
the identity. Such an isotopy is a map 

F: RnxR_Rn, 

so that 

F(x,O) =f(x) 

and 

F(x,l) = IdR " , 

(11) 

(12) 

(13) 
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and so that F is a C 2 -diffeomorphism for each t. Given <P I and 
F we can define <P by 

<P (x,t) = <P1[F(x,t)] . (14) 

This definition of <P satisfies Eq. (10). Thus, we have reduced 
our problem to that of finding a C 2-isotopy F. The most gen
eral form for such an isotopy in vector spaces is 

F(x,t) = HI(t) ·f(x) + H 2(t). x + H 3(x,t) , (15) 

where 

Hi(t): R n ---->- R n, i = 1,2, 

H3: RnxR---->-Rn 

and where 

H 2(1) = IdRn , H 3(x,0) = H 3(x,l) = O. 

( 16) 

(17) 

Of course, the Hi'S must all be C 2. The map H3 can be set 
equal to zero unless there are additional restrictions such as 
the ones we consider subsequently. 

Let us now make a few comments on non uniqueness. 
First, although we have required that Eq. (4) be a solution of 
Eq. (10), it need not be unique, especially if m < n. This non
uniqueness is related to the non uniqueness of the map M in 
Eq. (8). Thus, for m < n, additional conditions must be ap
plied to ensure Eq. (4). We will see subsequently that this is 
sometimes possible. A second source of non uniqueness lies 
in the map <PI' which does not enter in any vital way. The 
final source of non uniqueness lies in the functions Hi' which 
are determined only at t = 0,1. In fact, our problem cannot 
have a unique solution and the nonuniqueness in the Hi'S is 
useful because in practical problems it is usually necessary to 
apply realizability constraints in addition to those already 
mentioned. Variations in the H;'s can allow one to satisfy 
these additional conditions. 

We have now given a procedure for constructing X (x,t ). 
Because X is C I, our differential equation has unique solu
tions; sometimes it may be necessary to require that 

X(x,t + 1) = X(x,t). 

To do this, we simply define 

! t 1 = fractional part of t 

and let 

X(x,t) - Xix, !t j). 

(18) 

(19) 

(20) 

The vector field X is now continuous and periodic and is C I 

everywhere except at t = n, where n is any integer. If, how
ever, we require that 

aHJ(O) = aHJ(l) = aH2(0) = a 
at at at ' 

(21) 

aH3(x,0) = aH3(x,l) = 0, 
at at 

(22) 

then it is easy to check that X is Lipschitz at t = n and, thus, 
that our equation still has unique solutions. 

Thus, Eqs. (20)-(22) suffice to define a periodic vector 
field. We will see in the next section that these conditions are 
not necessary and that periodicity can result in other ways. 

Lest our previous considerations seem too abstract, let 
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us end this section with a particular example of an isotopy 
that satisfies Eqs. (17), (21), and (22). 

F(x,t) = ~ (1 + cos 1Tt )f(x) + ~ (1 - cos 1Tt) x. (23) 

III. LINEAR MAPS 

In this section, as an illustration of the general theory, 
let us consider linear maps; that is, we assume 

fix) =A ·X, (24) 

where A is an n X n matrix. 
Let us first consider the case m = n. We can then as

sume, though it is not required, that 

<P (x,t) = <P(t)·x, (25) 

where <P (t ) is an n X n matrix. The differential equation (9) 
then becomes 

alx 1 . dt = - <P(t)- . <P(t)· x; (26) 

that is, it is a linear equation. The dot indicates a time deriva
tive. It is clear that the function <P (t) must be nonsingularfor 
all t. 

Let us now observe that the conditions given in Sec. II 
for periodicity were sufficient, but not necessary. Ifwe re
quire that Eq. (26) be periodic, then 

if> (t ) = <P (t ) . G (t ) , (27) 

where G (t ) is some periodic n X n matrix. By the Floquet 
theorem2 the general solution of Eq. (27) is 

<P (t) = eBtl[l (t) , (28) 

where 1[1 is a periodic n X n matrix and where B is a constant 
matrix. Conversely, any <P of the form ofEq. (28) will gener
ate a periodic differential equation, but will, in general, not 
satisfy Eqs. (21) and (22). This is fortunate since it turns out 
that Eqs. (21) and (22) are usually inconsistent with the addi
tional requirement that a Hamiltonian system be of potential 
form. 

Let us now consider the case m = 1. We now assume, 
though again it is not required, that 

<P(x,t) =! [x. <P(t) ·x], (29) 

where <P (t ) is again an n X n matrix that can be chosen to be 
symmetric. 

Ifwe additionally require that the differential equation 
be linear, that is, 

X(x,t) = Y(t)·x, 

then Eq. (6) becomes 

! (x. if> .x) + [Y(t) ·x]· [<P(t) ·x] = O. 

Because Eq. (31) must hold for all x, we find 

! if> + (<P . Y)s = a , 

(30) 

(31) 

(32) 

where the subscript s denotes the symmetric part of the pro
duct matrix. 

We note that by assuming both a quadratic invariant 
and a linear differential equation we have obtained a unique 
specification of the differential equation in the case m < n. 

Note that in the case m = n, that is, Eq. (25), the matrix 
<P is simply related to the transformation matrix A by 
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CP(O) =A. (33) 

In the case m = 1, however, the relation between cP and A is 

AT. cP(I).A = cP(O) , (34) 

where superscript T denotes the transpose. 

IV. HAMILTONIAN SYSTEMS 

Let us now assume that the space is even dimensional, 
n = 2/, and that R 21 is equipped with the standard3 symplec
tic 2-form. We denote a point of R 21 by (ql"'" ql' PI"'" PI)' 

Ifwe define 

( 

0 
J-

- - IdRi 

then/is said to be symplectic4 if 

[f'(X)]TJf'(X) = J, 

(35) 

(36) 

wheref'(x) is the Jacobian matrix off at x. A vector field is 
said to be Hamiltonian5 if there exists a function 

H: R2/XR_R, 

such that 

dx 
- = J . V H (x,t) , 
dt 

(37) 

(38) 

where V denotes the derivatives with respect to the first 21 
arguments, that is, the q's and p's. 

Ifwe henceforth assume that/is symplectic, then it is 
natural to require that the generating vector field be Hamil
tonian. Combining Eqs. (9) and (38), we find 

V H = J . M. a¢ . (39) 
at 

This substantially restricts the possible isotopies in Eq. (15) 
because relatively few vector fields are gradients of a func
tion. A further restriction results if we require that 

H = ~p2 + V(q,t) , (40) 

that is, that it be of potential form. 
To illustrate these ideas and to develop some useful ex

amples, let us restrict our attention to linear Hamiltonian 
systems of potential form with I = 1. The Hamiltonian can 
then be written as 

(41) 

With this set of restrictions our problem reduces to that of 
finding the single function K (t ). 

Our map is of the form ofEq. (24) and the condition of 
Eq. (36) becomes simply 

det(A ) = 1 , (42) 

that is, area preservation. The cases m = 2 and m = 1 are 
quite different, and we consider each in turn. 

Let us first consider m = 1. Equation (32) is then the 
appropriate one, and, when combined with Eqs. (38) and 
(41), we find 

d (a 
dt b 

b) = _ (- 2bk 
c a -ck 

a -Ck) 
2b ' 

(43) 

where we have defined 
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(44) 

Equation (43) is the same as the three differential equations 

a = 2bK(t) , (45) 

b =K(t)c -a, 

c= -2b. 

(46) 

(47) 

The function K (t ) is easily calculated once a, b, c are known, 
but, becauseK (t) appears in both Eqs. (45) and (46), there is a 
consistency condition that can be written as 

! cc = ca + ac . (48) 

Equation (48) has an immediate first integral 

1 c2 = ca + D , (49) 

where D is a constant. We now observe that we have only one 
arbitrary function at our disposal, which we take to be crt ). 
Givenc(t), wecancalculateb (t ) from Eq. (47) anda(t lis then 
easily calculated from either Eq. (46) or Eq. (49). 

In many applications, especially related to particle ac
celerators, it is more convenient to work directly with the 
phase-space ellipse parameters, that is, the matrix cP, rather 
than with thetransformationA. Ifso, then there is no need to 
solve Eq. (34). Thus, the function crt ) must be chosen so that 
aft ),b (t ),andc(t ) assume the desired values at t = Oandt = 1. 
Note that cP (0) and cP (1) are not completely independent be
cause area is preserved and so we have five conditions to 
apply. Because we have the constant D in Eq. (49) at our 
disposal, the function crt ) must contain at least four arbitrary 
constants to satisfy all the conditions. 

Let us consider a particular example. Let us assume 
that 

c(t) = CI + C2 sin 1Tt + c3 cos 1Tt + C4 sin2 1Tt , (50) 

where the c;'s are constants. It is then easy to see that 

c i = [c(O) + c(I)]/2 , 

C2 = [b (1) - b (0)]/1T, 

c3 = [c(O) - c(I))/2, 

C4 = [ - b (0) - b (I ))/21T , 

D = a(O)c(O) - b (0)2 . 

(51) 

(52) 

(53) 

(54) 

(55) 

In Fig. l(a) we show an example, for the choice of c(t) in 
Eq. (50) of initial and final ellipses; that is, ¢ (x,O) = const 
= ¢ (x, 1), and a single trajectory which started on the initial 

ellipse and obeyed the Hamiltonian equations with K (t ) as 
prescribed above. As can be seen, the trajectory does arrive 
at the correct final ellipse. In Fig. 1 (b) we show the K (t ) that 
produces the trajectory of Fig. l(a). 

Though only four constants in crt ) were required to sa
tisfy initial and final conditions, it may be convenient to 
choose a crt ) with more arbitrary constants if additional con
straints are to be applied. 

Let us now consider the case m = 2. Equation (26) is 
now the relevant one, and, combining it with Eqs. (38) and 
(41), we find 

d (a b) = (bK - a), (56) 
dt c d dK-c 

where we have now defined 
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(a) (b) 

t 

-+- ~---f 

t 

FIG. I. (a) The initial and final ellipses and typical trajectory from one to the other for Eqs. (45)-(47). (b) The function K (t). which produced the trajectory in 
Fig.l(a). 

<P = e :). (57) 

Equation (56) is a set off our first-order differential equa
tions, and we notice that the top and bottom rows decouple. 
It is then easy to obtain the two equations 

ij + K (t )b = 0 , 

d +K(t)d= O. 

(58) 

(59) 

Again it turns out that we have a single arbitrary function, 
which we take to be d (t). Given d (t ), K (t ) follows immedi
ately from Eq. (59) and e(t) is simply 

e(t) = - d(t). (60) 

The function b (t ) is then determined as the solution of Eq. 
(58) and a(t) is given by 

a(t) = - b (t). (61) 

Note that b (t) and (d (t) satisfy the same second-order 
equation, and thus, if d (t ) is given, b (t ) can be immediately 
written as 

It dt' 
b (t ) = ad (t ) --2 + f3d (t ) , 

d(t') 

where a and f3 are constants. 

(62) 

The function d (t ) must have enough arbitrary constants 
to fit the initial and final conditons, which in this case are 

<P(O) =A, (63) 

(0) 

<P (1) = Id . (64) 

It is, of course, convenient to choose d (t ) in such a form 
that the indefinite integral in Eq. (62) can be done. As a spe
cific example, let us choose 

d (t) = (do + d l sin 1Tt + d2 cos 1Tt + d3 sin2 1Tt + d4 

X cos2 1Tt + d5 sin3 1Tt )-1/2. (65) 

If we use the notation 

A = (All A I2), (66) 
\A21 A22 

then the constants dj , a, f3 can be determined from Eqs. (63) 
and (64) to be 

do= -A12/A22+A21/2rA~2' 

d l = ~ (1TA12/A22 - 13A 21 /361TA ~2)' 

d2 = ~ (lIA ~2 - 1), d3 =A21/21TA ~2 , 

d4 =!(lIAi2 + I)-do, 

d5 = A 2/31TA ~2 - d/3, 

a = 1, f3 = O. (67) 

Because of the negative power in Eq. (65), this choice of d (t) 
tends to result in functionsK (t) that can take on large values. 
A typical phase trajectory and K (t ) for this example are 
shown in Figs. 2(a) and 2(b). 

(b) 

/ 

FIG. 2. (a) A typical trajectory for K (t) given by Eq. (59). (b) The corresponding K (t). 
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FIG. 3. 1100 iterations of a single initial condition with the map, Eq. (68). 
The parameters were a = 1.5, (J = 1.6, Xo = 0.4, Yo = 0,35. 

V. MATHEMATICAL DISCUSSION 

The examples in the previous section were linear. To 
give an example that is nonlinear we consider the symplectic 
mapping 

Xl = (cos O)x + (sin O)y, 
(68) 

Yl = - (sin O)X + (cos O)y +! axt , 
where 0 and a are constants. If a = 0, this map is simply a 
rotation by the angle 0. In Fig. 3 we show the result of 1100 
iterations ofEq. (68) starting from a single initial point. The 
map is clearly nonintegrable. 

We tested our theory in the case m = 2 using Eq. (9) 
with tP equal to the F(x,t) in Eq. (23). Though the map, Eq. 
(68), is not a diffeomorphism except near the origin, our the
ory gave an equation that integrated to give the correct map 
for the region shown in Fig. 3. 

This example raises a difficulty in that we have, by de
fining 

~ (x,t ) = tP (x, It j) , (69) 

as in Sec. II, a seeming constant for a system that is clearly 
nonintegrable. The resolution of this difficulty lies in a subtle 
mathematical point that we glossed over for pedagogical rea
sons in Sec. II. With the substitution t - It j, and, with the 
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choice ofEq. (23), we do indeed satisfy Eqs. (21) and (22) and 
produce a periodic differential equation. However, we note 
that tP is not continuous, nor even defined at t = integer, 
because 

tP (x,l - €)~, tP (x, 11 + €j )~f(x) . (70) 

Thus, atP / at is not defined at t = integer, and the differential 
equation is not defined there. However, if we require Eqs . 
(21) and (22), we find 

dx dx dt (1 - €)~O, dt (11 + €})~O, (71) 

and thus we can define 

dx (t = integer) = 0 , 
dt 

(72) 

and not only have a continuous equation but one that is Lips
chitz as well. The function~, however, is no longer constant 
as t crosses integer values. Thus, we have not, in fact, con
structed constants of the motion, but only an equation that 
produces the required map. 

The general problem of uniquely specifying M in Eq. (8) 
for nonlinear systems for m < n has not been solved and may 
not have a solution in many cases. It is not even known what 
conditions on the map and on M would suffice to insure a 
unique M in the general case. 

In summary, we have given a set of prescriptions for 
explicit suspensions of diffeomorphisms of vector spaces C 2_ 

isotopic to the identity. The theory applies to nonlinear sys
tems and to systems with the additional constraints of peri
odicity, Hamiltonian form, and potential form. The 
nonuniqueness of the solutions provides sufficient flexibility 
to allow one to impose additional realizability constraints in 
practical applications. 

I Z. Nitecki, Differentiable Dynamics (MIT Press, Cambridge, MA, 1971), p. 
6. 

2R. Bellman, Stability Theory of Differential Equations (Dover, New York, 
1969), p. 28. 

3R. Abraham and I. E. Marsden, Foundations of Mechanics (Benjamin/ 
Cummings, New York, 1978), 2nd ed., p. 176. 

4R. Abraham and I. E. Marsden, Ref. 3, p. 177. 
'R. Abraham and I. E. Marsden, Ref. 3, p. 187. 
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Inverse problem for the reduced wave equation with fixed incident field. III 
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(Received 28 August 1981; accepted for publication 8 January 1982) 

The inverse problem for the reduced wave equation Li u + k 2 n2(x)u = 0, XE R 3, is examined for 
the case where measurements of the amplitude of the scattered field (produced by a fixed 
incident field at a single frequency) are obtained at a finite number of points. A strategy is given 
for the recovering of the phase data through the minimization of a quadratic form involving 
comparison data. The problem is then reduced to the problem treated in previous papers where 
the complex-valued quantities US(x,) are known at a finite number of points. A relationship 
between the smallest eigenvalue of the "measurement" matrix and IIKI12 is given. 

PACS numbers: 03.40.Kf 

I. INTRODUCTION 

The inverse problem for the reduced wave equation 

Li u + k 2n 2(x)u = 0, XE R 3, (1) 

associated with time dependence exp ( - iwt ) was exam
ined 1.2 for the case where measurements of the scattered field 
US (produced by an incident field u i generated by a fixed 
source) were obtained at a finite number of points {xj }j"= 1 • 

The index of refraction was taken to be unity outside and on 
the surface of a compact region D (enclosing the scattering 
object). 

Here we not only simplify some of the previous notation 
and analysis, but amplify the previous results for the case 
where the real and imaginary parts of the scattered or total 
field are measured. Most important, however, we extend the 
results to include the case where only the amplitude (modu
lus) of the scattered or total field is measured. 

Because the inverse problem with the sparse data as 
treated here is not well posed (there are infinite numbers of 
solutions), we need to impose additional constraints. With 
this in mind, we need to specify an a priori known compari
son valuen. (x) for the index of refraction, which is used to 
restrict the class of scatterers under consideration. For al
most transparent objects, a natural choice of n. would be 
unity. If, however, one has from other knowledge a rough 
guess for nix), then this could be used as the value for n. (x). 
The iteration techniques to be presented in the later section 
of this paper would then yield a correction to this initial 
approximation. 

It is convenient to replace the unknown quantity nix) by 
v(x) where 

v(x) = n2(x) - 1 (2) 

with a corresponding connotation for v.(x). 
The set of scattered field measurements at the points 

{xj }j"= 1 outside D, then gives rise to the system of N nonlin
ear equations in the unknown quantity v(x), 

(3) 

The complex numbers bj correspond to the difference of the 
measured values of the total field u(Xj) = u(Xj ;v) and the cal
culated values (comparison data) of the total field 
u. (Xj) = u(xj , v.) associated with the index of refraction 
n.(x). 

For the problem where only the amplitude 

lu(xj)1 =Pj (4) 

of the total field is measured at the points {xj }j"= 1 , the non
linear equations corresponding to (3) are given by 

lu.(xj ) - bj I = Pj' j = 1,2, .. . ,N. (5) 

(Note if the amplitudepj of the scattered field is measured, 
then in Eq. (5), u.andpj are replaced by u~ andpj, 
respectively. ) 

To make the problem well posed, an additional con
straint that corresponds to finding the solution that is closest 
ton.(x) will be imposed. The required constraint will be giv
en initially by the following condition: 

min L (n 2 
- n~ f dx. (6) 

However, for practical purposes (as will be seen), certain 
modifications of this condition, such as 

(6a) 

will be examined in more detail. 
For the problem where only the amplitude is measured, 

additional constraints have to be imposed along with (6) or 
(6a). These will be given in a later section. 

The assumptions that will be imposed on nand n. are 
the same as given in Paper 11,2 namely that nix) be real 
bounded and continuous everywhere in D except for a finite 
number of surfaces across which n is discontinuous. In addi
tion, n. must be such that the total field I u.1 is bounded from 
zero in D, and the Green's function G (x,y;v.) exists, and as a 
kernel of an integral operator maps .!.t' 2(D ) into C (D ). 

With the application of the Green's function the set of 
nonlinear functional equations (3) involving the data has the 
explicit form 

k 2 L G (xj,y,v.)[v(y) - v.(y)] u(y,v) dy = bj , (7) 

withj = 1,2, .. . ,N, where the total field u(x,v) satisfies the 
integral equation 

u(x,v) = u(x,v.) + k 2 i G (x,y,v.)[ v( y) - v.( y)] u( y,v) dy. 
D (8) 

The inverse problem for the case where the real and imagi-
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nary parts of the total or scattered field is measured reduces 
to solving system (7) and (8) subject to constraint (6) or (6a). 

For the case where only the amplitude of the field quan
tities are measured, the complex quantities {bj}f= 1 are not 
explicitly known; the only information on them is given by 
Eq. (5) where the known quantities are {pJf= 1 (obtained 
from measurements) and {u",(xj)}f= 1 (obtained from calcu
lations). The approach to the inverse problem for this case 
will be to impose an additional natural constraint (specified 
in a later section), and to use this coupled with Eq. (5) to 
obtain {bj}f= I' Thus the inverse problem (where only the 
field amplitude is measured) is thus reduced to the case 
where the real and imaginary parts of the field quantities are 
known. 

II. THE INVERSE PROBLEM ASSOCIATED WITH PHASE 
AND AMPLITUDE MEASUREMENTS 

The inverse problem associated with the measurements 
of the real and imaginary parts of the field quantities is treat
ed first. With a change in some of the notation for simplifica
tion, a review of the previousz procedure and results are giv
en. At the same time some additional results are presented. 

The system of N nonlinear complex equations (7) is re
duced to a system of 2N real linear functional equations 
through the introduction of the real functions lP(x) and ¢(x) 
defined by 

(v - v",)u(x,v) = ['I' (x) + i¢(x)] u",(x). (9) 

(Note that 'I' and !/J are defined slightly differently than in the 
previous work. 2 With (u,v) = fDu(x)v(x)dx, system (7) 
becomes 

2N 

(H"lP) = L eij(Hj,!/J) + B, (10) 
j=1 

with i = 1,2, .. . ,2N. Here Bj corresponds to the real and 
imaginary parts of the data bj through the relation 

bj=Bj+iBj + N, j=1,2, ... ,N, (11) 

and Hj ( y) corresponds in a similar manner to 

Hj(Y) + iHj+N(Y) = kZG(xj,y,v.) u.(y, v.) (12) 

with Xj corresponding to the points where the measurements 
were made. The numbers eij are related to the Kronecker 
delta by 

e .. = {O(i+ NIj' i = 1,2, .. . ,N, (13) 
IJ -OiV+Ni' i=N+1, ... ,2N. 

By noting that v(x) is a real quantity, integral equation 
(8) is decomposed to yield two real expressions. One expres
sion, relating 'I' and ¢ through a quadratic integral equation, 
is given by 

¢=S(¢,lP), 
(14) 

S(¢,lP) = !/J(LI ¢ - LRlP) + 'I' (LR ¢ + LllP), 

where LR and LI are the real and imaginary parts of the 
integral operator with kernel 

k
2
G(x,y,v.) u. (y)/u. (x), x,yElJ. (14') 

The second expression 

v(x) -v.(x) = 'I' (x)/[l + LRlP - LI!/J] (15) 
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relates v(x) to 'I' and ¢ and allows one to recoup the value of 
v(x) from knowledge of 'I' and ¢. 

It will be assumed that the measured position {xj}f= 1 

will be selected so that {Hj}J~ I forms an independent set, in 
which case we will let vii denote the subspace of !f z(D ) 
spanned by {Hj}J~ I' 

Let H be the real symmetric matrix with elements H ij 
given by 

(16) 

and denote its inverse by ii with associated elements ii ij' i.e., 
2N _ 

L H;k H kj = oij. 
1<=1 

Note that the matrix H is positive definite, since if 
a = (al,az,' . . ,a2N )E R 2N, the quadratic form 

ij~1 a;Hijaj = L(~I a;H;(Y)Y dy>O 

vanishes only if 0==0. Hence the eigenvalues A; of H can be 
ordered as follows: 

0<,11<,12'" <A2N • 

If we set 
2N _ 

Si(X) = L Hij Hj(x) 
j=1 

and note that 

(SoHj) =oij' 

(17) 

(18) 

the system ofEq. (10) can be solved (nonuniquely) for 'I' in 
terms of ¢, giving 

'I' (x) = <P (x) + K¢ + lPl(x), 

where the data term is given by 
2N 

<P (x) = L Bj Sj(x), 
j=1 

and 
2N 

K!/J = L Sj(X)ejdHk,!/J)· 
j,k = I 

(19) 

(20) 

(21) 

The unknown function 'I' I(X) belongs to viiI the orthogonal 
complement of vii. As a consequence, note that 

(<P,lP 1) = (lK¢'lPl) = o. 
The operator lK has the property that 

2N 

- K2u = I Sj(x)(Hj,u) = Pu, 
j= 1 

(22) 

where P is the projection operator on the subspace spanned 
by {HJ. The norm IiKllz, which plays an important role in 
subsequent analysis, depends upon the measurement posi
tions {Xj}J~ I' through the smallest eigenvalue of the mea
surement matrix H = {H ij}. The precise relationship is giv
en as follows. 

Lemma: IIlKliz = (,11)-112, whereAt is the smallest ei
genvalue of the matrix H. 

Proof Setu = l:~~ 1 c;s;(x) + u1(x), whereu1 isorthogo
nal to the space vii. It then follows that 

2N 

Ku = I Sj(x)ejk ck· 
j,k= 1 
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Using the result that (S;,Sj) = Hij, it is seen 

(Ku,Ku) = cT E T HEc, 

(u,u) = cT Hc + (u\u1
), 

wherecisthe2nx 1 matrix with componentsc(,c2, .. ·andE 
is the matrix with coefficients e ij' Since H is a symmetric 
positive definite matrix, there exists a nonsingular transfor
mation Q such that Q T HQ = I. Hence, setting c = Qa, the 
following is obtained: 

(Ku,Ku)/(u,u)<aT TalaTa, 

where the matrix T = Q T E T HEQ is similar to the matrix 
H = H - ( and hence has the same eigenvalues. Thus 

(Ku,Ku)/(u,u)< largest eigenvalue of H = VAl' 

The result follows. 
The inverse problem is now reduced to solving a single 

nonlinear equation, namely Eq. (14) [with qJ replaced by ex
pression (19)] 

I/J = S(I/J,l/J + KI/J + qJ1) 

for the two unknowns I/J and qJ1. This yields a solution of the 
form I/J = !/J(qJ1). As was pointed out, a constraint is needed to 
give an additional relationship between I/J and qJ1. The con
straint (requiring n close to n.) given by Eq. (6) reduces to the 
form 

min r qJ 2 dy. 
9:,1,;1 ' JD (1 + LRqJ - LII/J)2 

Because of the complications arising from the denominator 
in this integral, a simpler and more useful version of this 
constraint, employed and examined in detail previously,2 is 
given by 

min L (n 2 - n~)2 (R e ulu.)2 dy = min L qJ 2 dy. (6b) 

An alternative choice, which may be of more physical 
interest, is given by Eq. (6a), which reduces to 

Since all three choices of constraints have the form 

min r F(qJ 1) dy, 
({"eeR! JD 

(6a) 

the minima (or minimum) are found by selecting the station
ary solutions (given by setting the first Gateaux derivative to 
zero): 

8 L F(qJ 1) dy = ° 
In all cases, the problem of finding the stationary solution 
reduces to solving a nonlinear integral equation of the form 

qJ1= -(I-P)S:! (I-S:)-I V (I/J), (23) 

{
K *(l/J + KI/J) + I/J for case (6a), 

where V(I/J) = K*(l/J + KI/J) for case (6b). 

Here P = - K2 is the projection operator on JI, and 
K*,S:!, andS: are the adjoint operators ofK, S({'l' andS",. 
Note that the explicit expressions given by Eqs. (26) and (27) 
of Paper II may be used for the latter two operators, except 
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that for this paper the appropriate kernels of the integral 
operator LR and LI are given by Eq. (14a) ofthis paper. 

The resulting system (14) and (23) of nonlinear integral 
equations for I/J and qJ1 has the important property that it 
possesses the trivial solution I/J = qJ1 = 0, when the data term 
l/J vanishes. Hence small norm 1II/J1I2 + IIqJlll2 solutions are 
sought. It is shown2 that the system corresponding to con
straint (6b) could be solved by the method of successive ap
proximations, starting from the initial approximation 
I/Jo = qJ~ = 0, and the solution yields a (local) minimum, pro
vided that the data term is not too large. To be precise, a 
unique local minimum is obtained if the data satisfies a con
straint of the form 

~ -L B; Hij Bj = (lil/J 112f ,0.0036 k -4(1ILJII + IILR 11)-2 
;,j= I 

where k = max[1,IIKII2] = max [ l,A, 1-
112

] and AI is the 
smallest (positive) eigenvalue of the matrix H. 

(24) 

It is interesting to note that the first iterated solution of 
system (14) and (23), starting from I/Jo = qJ1 = 0, is the same 
for either constraint (6a) or (6b), and, if we retain only terms 
up to second order in l/J, the corresponding value for v [ob
tained from Eq. (25)] is given by 

v- v. + l/J - l/JLR l/J + K(l/JL(l/J) + qJ t, 
where qJ i = - (I - P) [L r (l/JK*l/J) + (LI l/J )(K*l/J)]. 

This result is equivalent to using the modified Born ap
proximation solution of Eq. (8). 

III. PROCEDURE FOR RECOVERING PHASE FROM 
AMPLITUDE MEASUREMENTS 

Here, given data lu(xl)1 = PI' 1= 1,2, ... ,N, the prob
lem is to obtain the real quantities {B; }T~ I defined by Eqs. 
(3) and (11). With this in mind set 

yielding BI = 1JI - 1Jr, 1= 1,2, ... ,N. 
The relationship between the data PI and B I is given by 

the following expression: 

(BI + 1Jr)2 + (BI+ N + 1Jr+ Nf = p;, 1= 1,2, ... ,N, 

(25) 

where {1Jr} are known quantities obtained from calcula
tions. The problem reduces to the determination of the quan
tities {B I H~ I from system (25). Since the solution of this 
system is not unique, we need to impose an additional con
straint so as to select a unique solution. Here, the choice of 
this additional constraint will be one that automatically fits 
in with the theory and analysis for the inverse problem under 
investigation here. 

In the previous section, it was shown that the inverse 
problem where the real and imaginary parts of the field 
quantities are known ({B; }T~ I are given) has a unique solu
tion in a certain ball offunction space, provided that the data 
satisfies a condition of the form 'J,~1= I B; Hij Bj <const. 
This then suggests that a natural condition to impose for 
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uniqueness would be to select the solution that 
2N _ 

min L Bi Hij Bj . 
i.j= 1 

(26) 

For subsequent analysis we shall qualify this condition fur
ther. Rather than select the solution that gives the absolute 
minimum, we will investigate here the conditions for exis
tence of a local minimum in a neighborhood of the point 
Bi = 0, i = 1, ... ,2N, and develop a method to obtain this 
solution. 

The method that will be employed here will be to look 
for stationary solution of the quadratic form [given by ex
pression (26)] satisfying relations given by Eq. (25), and then 
check to see if and when stationary solutions in the neighbor
hood of the point Bi = 0 yield a local minimum. 

The stationary points off = I.T.~ = 1 Bi fI ij Bj subject to 
condition (2) are obtained by setting af laBi = 0, 
i = 1,2, ... ,N, where BiO i = 1,2, ... ,N, are treated as inde
pendent variables and BiO i = N + 1, ... ,2N, are treated as 
dependent variables as defined by relation (25). This yields 
the following system expressed in compact form: 

P(B)=O. 

Here P (B) is a vector-valued function of 
B = (B 1,B2, ... ,B2N ) with components 

(27) 

2N _ _ 
pi(B)= I [(Bi+ N +'TJr+N)Hij -(Bi + 'TJr)Hi + Nj ]Bj' 

j= 1 

(28a) 
for i = 1,2, ... ,N, 

for i = N + 1, ... ,2N. 

System (27) can be rewritten in the following form, demon
strating its quadratic nature: 

P(O) = P'(O)B +! P "(O)BB = O. (29) 

Here P '(0) is the Frechet derivative of P (B ) at B = 0, with a 
similar connotation for P "(0). The linear operator P '(0) map
ping R 2N into itself can be written in the matrix 

P'{O) = [F G][D2 -D1][D-
1 

0 J (30) o D DI D2 0 D -I ' 

where DI and D2 are diagonal N XN matrices with diagonal 
elements 'TJt, 'TJ~, ... , 'TJ':r and 'TJ':r + 1 ; ••• , 'TJ2N' respectively. 
The matrix D, defined by 

(31) 

is a diagonal matrix with diagonal elements (pt)2, ... ,( p':r)2 
[where lu. (XI W = (prf]' It is assumed that these diagonal 
elements are bounded from zero; hence the inverse matrix 
D - 1 exists. The N-square matrices F and G are defined by 

F= fD2 -Dd fI [~~J and 

G = [D2 - D 1 ] fI [~:]. 
(32) 

The importance of the block representation for P'(O) is 
that it can be easily deduced that sinceF - 1 exists (see Appen-
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dix), then [P '(0)] - 1 exists and is given by 

[ 
D DI][F-I [P'(O)] -I = 2 

-DI D2 0 

-F-IGD- 1
] 

D- 1 • 

The symmetric bilinear operator P "(0) mapping 
R 2N ® R 2N in R 2N takes the form 

Z = P "(O)O"a, 

(33) 

(34) 

wherez,O",a are vectors in R 2N. The components of the trans
formation are given explicitly for i = 1,2, ... ,Nby 

2N _ 
Zi= I Hij(ai+NO"j+O"j+Naj ) 

j=1 
2N _ 

- L Hi+Nj (ajO"j + O"jaj ) 
j= 1 

and for i = N + I, ... ,2Nby 

(35a) 

(35b) 

Equation (29) may now be placed in the following form: 

B=X(B) 
= - [P'(O)]-I P(O) - ~ [P'(O)]-I P"(O)BB, (36) 

which suggests that the method of successive approxima
tions may be used to solve it. In fact, from Rall,3.4 we can 
state the following. Provided that ho < l, where 

ho = II HP'(O)]-I P"(O)11z 'TJo (37a) 

and 

'TJo = II[P'(O)]-I P(0)1I2' 

the sequence 

B O =X(O), 

B n+ 1 =X(Bn) 

converges to solution B .. of Eq. (36), lying in the ball 

liB "112 < [1 - (1 - 4ho)I/2] 'TJoI2ho· 

(37b) 

(38) 

To check the condition ho < l, we should note that 
liP (0) 112 = U I.;'= I (pr2 - pi n 1 /2; hence, using the esti
mates for II [P'(O)] -111z and liP" (Olliz given in the Appendix, 
we obtain 

1 (1 + 4/,1. 2)1/2 
ho<- 12 [A.~N+(A.2NAIA.l+ 1]A2I1P(0)1I2' 

2 (max prJ 

where A = (maxprlminpr)2, and ,1.1 andA.2N are, respec
tively, the smallest and largest eigenvalues of the matrix H. 
This condition can be placed in the form 

N 

I (pr
2 
-pW < C(A.I.A.2N' maxpr, min prJ, (39) 

i= 1 

which says that the method of successive approximations 
starting from the indicated initial approximation converges, 
provided that the measured amplitude data set {Pj} is suffi
ciently close to {pr} as is expected. 

With the initial approximation B (0) = 0, the first and 
second iterates are given by 

B(I) = - [P'(O)]-I P(O), 
(40) 

B(2) = BO) -! [P'(O)]-I P "(0) BO) B (I). 
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We now need to determine the circumstance for which 
the stationary solution of Eq. (27) yields a minimum. Since 
we have assumed thatp; #0 for i = 1,2, ... ,N, it follows 
that from Eq. (25) that for each i (i = 1,2, ... ,N) one of the 
pair (B; + 1Jn (B; + N + 1Jr+ N) does not vanish. For the fol
lowing analysis only, we shall assume that 
(B;+ N + 1Jr+N)#Oforeachi, and will takeB I,B2, ••• ,RN as 
independent variables. (If one or more of B; + N + 1Jr + N van
ishes, then the corresponding independent variable will be 
changed to B; + N and the analysis can be suitably modified.) 

N _ 

In any event, setf(B I , ••• ,BN) = I B; Hij Bj and, using 
;.j~ J 

condition (25), 

aB, + N (Bi + 1Jr) 
---= =q., 

aBi (B;+N + 1Jr+N) , 

the resulting stationary points are given by (i = 1,2, ... ,N) 

I af 2N - -
--= I (H +q. H+N)B =0. (41) 
2 aB; j ~ I 'J " ) J 

In addition it follows for i,j = 1,2, ... ,N, 

la2f - - - -"2 aB;aB
j 

= Hij + qj Hij+ N
2

: qi H;+ Nj + H;+Nj+N q; qj 

- oij(l + q;) I H;+Nk Bk/(B;+N + 1Jr+N) , 
k=1 

where oij is the Kronecker delta. 
To show that the stationary solution is indeed a mini

mum, we need to demonstrate that the quadratic form 

1 N a2f - I x--x· 
2 i.j= I 'aB;aBj J 

is positive definite. If y is a vector in R 2N with components 
y; = Xi> Y; + N = qi X; for i = 1,2, ... ,N, then the quadratic 
form can be written in matrix notation 

(42) 

where R is a square 2N matrix with diagonal elements r; 
given by 

__ ~ iI;+Nk ~k 
r, =r;+N ~ 

k= I B;+N + 1J;+N 
(43a) 

2N iI;k Bk 

= k~1 B; + 1Jr' 
(43b) 

The last equality holds since {B k} is a stationary point satis
fying Eq. (41). Since iI is a positive-definite matrix, it is easily 
seen that the quadratic form (42) will be positive definite if 
the smallest eigenvalue of iI, namely l!A 2N , is greater than 

max; + I •. ..• N Ir; I· 
To estimate maxlri I. we will need to select from Eq. 

(43a) or (43b) that expression for which the term (Bi + -rJrj or 
(B; + N + 1Jr + N) is the larger. Hence, if (B; + n + 1Jr + N) is the 
larger of the two terms, it follows from equality (25) that 
(B; + N + 1Jr+ N f >! p;. Hence, using such an estimate, it fol
lows from Eq. (43a) 

Ir;l< I ~ iIi+NkBk 2112 \<\liI l\ZIlBII221/2 = 21/211BIIz. 
k=1 P; P; AlP; 
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If B; + 1Jr is the larger term, we obtain a similar estimate 
using Eq. (43b). Thus we obtain 

max Ir;1 < 21/2 liB 112/(AI minpJ 
;= 1. .. ,N 

Consequently, a sufficient (but not necessary) condition for 
the stationary point to be a minimum is that 

21/2 liB 112/(AI minp;) < l!A2N 

or that the solution lies in the ball center B = 0, with radius 

(44) 

Summarizing, if the measured data is sufficiently close 
to the comparison data, then the quadratic system of2NEqs. 
(36) may be solved for B I ... B2N by the method of successive 
approximations, yielding a local minimum of expression 
(26). The first two iterates are given by (40). The phase and 
amplitude are recovered from the amplitude measurements. 

IV. SUMMARY AND COMMENTS ON THE 
"MEASUREMENT" MATRIX 

The problem where only the amplitude of the scattered 
field I u'(x,)\ = p, is measured at a finite number N of points is 
reduced to the corresponding inverse problem associated 
with measurements of the phase and amplitude of the scat
tered field at these points. This is achieved by choosing the 
real and imaginary parts so as to minimize a quadratic form 
Eq. (26) in the 2N real variables Bj (representing the differ
ence between the real parts of the measured and comparison 
data, and the corresponding imaginary parts). Here, the 
comparison data is associated with a known or prescribed 
value of n •. The stationary solutions of the quadratic form 
give rise to a quadratic system of equations in R 2/1,'. This 
system, Eq. (27), is transformed to a simpler standardized 
form, Eq. (36). It is shown that if the measured data Pj is 
sufficiently close to the comparison datapt [see Eq. (39)], the 
method of successive approximations applied to Eq. (36) 
yields a solution in the neighborhood of the point B; = 0, 
this solution being a local minimum of the quadratic form. 
The first two iterates are given by Eq. (40). 

The previous approach2 to the inverse problem associ
ated with knowledge of both the real and imaginary parts of 
the scattered fields at a finite set of points is reviewed togeth
er with a simplification of method and a slight extension of 
the results. The second-order correction terms to v(x), aris
ing from the method of successive approximations of the 
resulting nonlinear system of equations, is given at the end of 
Sec. II. Again these results are valid provided that the mea
surement data are sufficiently close to the comparison data, 
as indicated by Eq. (24). 

The conditions that the measured data be sufficiently 
close to the comparison data, as expressed by Eqs. (24) and 
(39), contain the parameters Al and A2N the smallest (posi
tive) and largest eigenvalues of the "measurement" matrix 
H, whose elements Hi} are defined by Eq. (16). What this 
means [especially see Eq. (24)] is that the measurement posi
tions {Xl} must be judiciously chosen so that the matrix H 
does not become ill-conditioned, i.e., A I is too small. This 
will also imply that 1IlKib is not too large. 

Finally, there remains to be investigated the case where 
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the measured data is not close enough to the comparison 
data for the above results to hold. 

The application of the results in these studies to nondes
tructive testing (differentiating voids and cracks), and the 
consequences of these results on presently employed tech
niques, such as linearization of the problem, will be detailed 
elsewhere. 

APPENDIX 

LemmaA.l: 

II F-
1

1I2 < A2N L= ~~n. )pr)2] -I. 

Proof Let v and a be vectors in R Nand R IN, respective
ly, and set 

a= [~~J v. 

Then from Eq. (32) 

vT Fv/vTv = (aT iIa/aTa) (vT DV/VTv) 

>(A2N )-1 min (pr)2 > 0, 
i=l •...• N 

where (A2N ) - I is the smallest eigenvalue of the positive defi
nite matrix iI. Since, as is shown, F is positive definite, F - I 
exists, and, since IIFlb>(A,2N)-1 mini = I .. ... N(pr)2, the esti
mate for the norm IIF - 1112 follows. 

LemmaA.2: 

II~~I Dill = max pr 
D2 2 i=I •...• N 

Proof 

where z and yare vectors in R 2N. Then a quick calculation 
yields the results 

N 

(llzlb)2 = I (pr)2 [yi + yi + N ] 
;= 1 

LemmaA.3: 

II [P'(O)] -llb.;;;A [(A2N)2+ (A2N A/Ad2 + 1]1/2/maxpr 

where A = (max pr /min prt 

Proof Let A be the partitioned matrix 

[
F- I -F-I GD -I] 

A = 0 D-1 
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and y a column vector in R 2N partitioned into two vectors y I 
and Y2 in R N; then 

(fIAylb)2 
= (l1F -I YI - F -I GD -I Y2112)2 + (liD -I Y2 II 2)2 

<(lIF- 1 Yllb + IIF- I GD -I Y2lb)2 + (lID -I Y2112f 

<{(l1F- 11I2)2[1 + (lIGD- 1112)2] + (lID- 1112)2} IlyII2)2. 

Since D is a diagonal matrix, it is easily seen that 
liD -1/12 = lImini= 1 ..... N(prf It can be shown that the 
norms of the partitioned matrices [D2 D I ] and [DI D2] are 
bounded above by maXi = I .... . N pr; hence from Eq. (32) it 
follows that 

IIG 112«lIA I) (maxpr)2 . 

Thus we can obtain the following estimate: 

IIA /12< [(A 2N )2 + (A2N A IAl + 1]1/2/(minpr)2 

where A = (max pr /min pr)2. 

Hence from Eq. (33) we obtain the desired result. 
Lemma A.4: IIP"(Ollb«1 + 4/A i)1/2, where AI is the 

smallest eigenvalue of H. 
Proof Using the inequality for components of vectors a 

and b in R 2N 
N 2N 2N 
I (a i bi + ai + N bi+Nf< I a; I bJ = (lIallz lib 11z)2 
i= I i= I j= I 

it is seen from Eq. (35b) that 
2N 
I zi<(lla Il 2 Ilalb)2. 

i=N+I 
Using the triangle law for norms and the above inequality, it 
follows from Eq. (35a) 

N _ _ 

I zi«lIaIl2I1Halb + lIalb IIHa1/2)2 
i= 1 

«21IiII121IaI121Iallz)2 = [(2/A I)lIa I12I1aI/2]2. 

Thus we have 

(lIzllz)2«! + 4/ A ililall~ Ilall~. 
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The concept of a Fock-Stueckelberg space of quantum states and a procedure of an operator 
quantization using only Lagrangians (kinematical quantization) are introduced. A propagator 
operator Y, matrix elements of which are Green's functions, is used, and an equation of motion 
for it is derived. We prove that kinematical quantization is an operator (coordinate-free) form of 
the Feynman quantization technique. The Feynman path integral (FPI) is obtained as a spectral 
representation of the operator Yin a coordinate basis. The connection of a representation of 
commutation relations in this scheme, the domain of integration in FPI, and causality is 
mentioned. 

PACS numbers: 03.65. - w 

I. INTRODUCTION 

In recent years functional methods in quantum field 
theory were used very often. This technique is a very useful 
tool for going beyond perturbative calculations in many 
physically interesting situations such as spontaneously 
broken symmetries, 1 non-abelian gauge theories, 2 quantum 
gravity,3 etc. Using functional methods, we have Green's 
functions as basic constituents in the theory without men
tioning the Hilbert space of quantum states. Quantization, 
i.e., the way the vacuum expectation values are obtained, is 
supposed to be FPI quantization. This construction of quan
tum theory is suitable for functional calculations, but there 
are still some difficulties, connected with it, left. Let us point 
out three of them. 

A mathematically rigorous definition of FPI is missing 
due to the nonexistence of the corresponding functional 
measure. The usual definition is a perturbative one.4 

The second problem lies in the fact that Feynman quan
tization, unlike canonical quantum field theory (QFT), has 
not the important property of unitary invariance. In Dirac's 
theory the commutation relations of canonically conjugated 
field variables, the Hamiltonian H = H ( ep, 11'), and equations 
of motion are defined without the use of any special basis in 
the state space. It is described by the representation theory in 
quantum mechanics. The corresponding unitary in variance 
of the Feynman integral is not known. 

The last problem is somewhat hidden in the present 
state of the theory. The quantization based on FPI does not 
form a complete theory alone; it is rather a convenient auxil
iary computational tool.5 It needs well-established relations 
to canonical QFT. FPI does not give the physical interpreta
tion of Green's functions, it is completely based on canonical 
QFT (LSZ formulas). There are situations such as quantiza
tion on a general curved spacetime (global Poincare invari
ance is broken), quantization of the nonlinear (J' model and 
auxiliary fields 6 (the space of quantum states is not well de
fined), and others, where the corresponding canonical QFT 
does not exist. Then the notions like a state of a system, an 
observable, etc., are missing. 

In this paper, we introduce another quantization proce
dure which generalizes Feynman quantization. In this way 
we give a solution to the second problem, connected with 
FPI quantization and a possible recipe for curing the other 
two. The usual state space is too small for this new proce
dure. We introduced7 a larger Fock space called Fock
Stueckelberg space (FS space) fitted for kinematical quanti
zation. The FS space is the Fock extension of the space of a 
particle which is not constrained to be on the mass shell. 
FieldoperatorstPx,xEM (= Minkowskispace), whichcorre
spond to a classical field ep(x), are defined in the FS space. 
Then the quantum action operator d = S [ tPx ] and a quan
tum propagator operator JY = exp id are defined (S [ep (x)] 
is a classical action). This procedure depends on kinematics 
only, the conjugated momentum variable is not involved. 
The matrix element 

(1.1) 

of the operator JY is the usual Green's function. 
Let us point out now the connection of this procedure 

with FPI quantization. The operators tPx, xEM, commute 
one with another and form a complete set (in Dirac's sense) 
in FS space JY'. Hence we can find a basis (we call it Feynman 
basis) in which they are diagonal. Elements of this basis are 
parametrized by eigenvalues ep(x) of the operators tPx, xEM. 
Writing the formula (1.1) in the Feynman basis we obtain the 
expression for Green's functions in FPI representation. 

There still remain problems with a proper mathemat
ical definition of the operators tPx, d, JY, but they are the 
same as in canonical QFT (the regularization and renormal
ization are needed). Kinematical quantization is not more 
pathological than the canonical one. The substantial pathol
ogy comes only with the introduction of the Feynman basis. 
Hence a part of difficulties with FPI can be overcome by 
writing all formulas using the Feynman integral in the oper
ator form, which is independent of the concept of the func
tional integration. 

We want to stress here that our operator approach to 
quantum theory does not rely on the Hamiltonian descrip-
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tion of the dynamics as does Dirac's quantum theory. Kine
matical quantization is based (as FPI in final form) on classi
cal action, which is the most fundamental advantage ofFPI 
and functional methods. Relation of this "Lagrange" opera
tor quantization and canonical "Hamilton" quantum the
ory, and the construction of the physical subspace in the FS 
space, will be given in the forthcoming paper. 

The paper is organized as follows. In Sec. II we intro
duce the FS space and kinematical quantization. The Feyn
man basis, the vacuum wave function, and Feynman inte
grals are described in Sec. III. In Sec. IV the equation of 
motion for the operator % is derived. It is shown that the 
equation for % is a compact form of equations for Green's 
functions (the functional integration is not used in the deri
vation), and the standard perturbative expansion for their 
solution is established. The spectral or operator definition of 
FPI is given in Sec. V. In Sec. VI we discuss in briefthe 
problem of symmetry breakdown, a representation of com
mutation relations, causality, and the domain of integration 
in FPI in the framework of the proposed formalism. 

II. KINEMATICAL QUANTIZATION 

The Stueckelberg's space dY'1) is the set of complex 
functions defined on the Minkowski space M which are nor
malized to the 4-interval 

(2.1) 

The FS space J¥' is then the Fock space of dY'1); each 
element of it can be written in the form 

(2.2) 

where functions t/!n are symmetric (we shall consider for sim
plicity only one Bose scalar field). The scalar product is de
fined by 

(t/!It/!') = n~oJ t/!~(XI' ".,Xn) 

Xt/!~(XI' ""xn)d4xl· .. d4xn' (2.3) 

Let us introduce a (distributional) creation operatorS 
ax+ ,xEM, by 

aJ = Ld 4
X f (x)ax+. fEldM) 

aJ It/!) = !Sym[t/!n(x i .... , xn)f(xn + I)] J,~=o. (2.4) 

with the 4-dimensional commutation relations 

[ax, a/] = 8(4)(X - y). 

Thus we can write 

It/!) = n~oJ dx l,,·dxnt/!n(x l .. ·xn)(n!j-1/2 

xa+ ... a+IO) 
XI Xn ' 

(2.4') 

(2.5) 

where 10) is the Fock vacuum, ax 10) = 0, xEM. A function 
from dY'1i describes the I-particle state outside the mass 
shell. The physical states form a (distributional) subspace of 
dY'1) defined by the dispersion relation; it can be seen imme
diately from the Fourier decomposition of such a function. 
the 4-momenta used in it are not constrained to be on the 
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mass shell. Similarly vectors from the FS space describe vir
tual many-particle (many-time) states. These states are quan
tum field analogs of virtual trajectories qj(t) known from 
classical mechanics (they do not fulfill equations of motion). 
The operator ax+ is the creation operator outside the mass 
shell. The FS space is substantially larger than the usual 
Fock space. 

We shall present kinematical quantization for the scalar 
field with the Lagrangian 

!f =!fo +!f' + !fex 

= !(al' cpaI' '1' - m2cp 2) - (tt 14)'1'4 + J(x)cp (2.6) 

(other fields can be treated in a similar way. see Ref. 7). The 
procedure consists of the following steps. 

(i) To a classical field cp(x) corresponds an operator-val
ued function (distribution) ¢Ix with another operator-valued 
distribution 1T x satisfying the commutation relation 

[¢Ix' 1Ty] = i8(4) (x - y), x.yEM. (2.7) 

(ii) The representation of this commutation relation 
must be chosen; we choose the Fock representation (i.e .• no 
symmetry breakdown appears) 

¢>x = _1_ (ax + ax+-). xEM (2.8) 
(V 2),uo 

_ i,uo (+ ) ~II 
1T x - -- a x - a x' Xt::lO'l 

V2 
(2.8') 

where ax is the annihilation operator in the FS space and,uo 
is an arbitrary chosen scale of mass. The meaning of ,uo will 
be clarified below.9 

(iii) Substituting ¢Ix into the classical action, 10 we obtain 
a quantum operator s:{ and a propagator operator %: 

s:{ = J!f( ¢lx)d 4x, % = exp is:{. (2.9) 

(iv) We pick up the Fock vacuum 10) (defined by the 
condition ax 10) = 0) and define Green's functions as vacu
um expectation values 

(2.10) 

G n is the n-point unnormalized Green's function. The equiv
alent way to say it is that the matrix element 

(Ola · .. a %a + ,,·a + 10) Y. Y.. Xl Xn 

is the full un normalized transition amplitude of virtual parti
cles from points x I' .... Xn to points YI' .... Yn' 

The operator % is then S matrix outside the mass shell; 
the physical S matrix can be obtained by contracting % 
with appropriate plane waves. Formula (1.1) is the analog of 
the well-known expression (01 T [cP (x 1)"'cP (xn)S ] 10) from 
the canonical QFT (in the interaction representation). 

We shall now show by two different methods that kine
matical quantization gives usual Green's functions-using 
the "formal" functional integration (in the next section) and 
the correct operator method (in Sec. IV). 

III. THE FEYNMAN BASIS 

The most direct way to "calculate" the operator % is 
to diagonalize it. The Feynman basis Uust suitable for this 
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purpose) diagonalizes the complete set! ¢x; xEM J of com
muting operators. We shall denote by l.p) (.p is a function on 
M) their common eigenvector with the eigenvalues 

(3.1) 

The Feynman basis is hence parametrized by classical field 
configurations. The state 1l,lr)8Y' can be decomposed in the 
Feynman basis as 

Il,lr) = f d.p l,lr(.p )I.p), l,lr(.p) = (q; Il,lr)· (3.2) 

Phases of vectors Iq;) can be chosen in such a way that 

¢xll,lr) = f d.pq;(x)l,lr(q;)Iq;), 

1Tx Il,lr) = f d.p ( - i_O_l,lr(q; )llq;) 
8q; (x) 

hold. It follows from the commutation relation (2.7). 

(3.3) 

(3.4) 

The relation (3.4) gives the phases of Iq;)'s in the same 
way as in the usual coordinate representation in quantum 
mechanics. 

The Feynman representation is similar to the Schroe
dinger (or field) representation for a quantum field with one 
important difference, that q;'s are defined on the whole M 
instead of lie. The completeness relations have the form 

1 = f dq; l.p )(q; I, (q; Iq; ') = 8(q; Iq; '), (3.5) 

where a 8-functional is defined by the condition 
Sdq; '0 (.pl.p')l,lr(q;') = tf(.p). Let us find the wave function of the 
Fock vacuum. We have 

10) = f d.pl,lro(q; )\.p), l,lro(q;) = (.p 10). (3.6) 

The vaCUum is annihilated by the operators ax and thus in 
the Feynman representation we have the functional equation 

( q;(X) + f.lo- 2 _8_) tPo(.p) = O. 
oq; (x) 

The solution of it is 

tPo(.p) = e -1'~2 f .p 2(x)d 4X 

(3.7) 

(3.8) 

(where the normalization factor is supposed to be contained 
in the measure d.p). 

The quantum action is diagonal in this representation 
..cI1q;) = ..o1(q;)I.p), where ..o1(.p) is the classical action corre
sponding to the configuration .p(x). The same is true for the 
operator%: 

% = f dq; %(q; l\q; ) (q; I, 

%(IPI = exp i..o1(1P ). 

The Green's functions can be expressed as 

(Ol¢x, ···¢x.%IO) 

= f dIP (OI¢x .. ··¢x.%Iq; )(IP 10) 

(3.9) 

= f dlPlP(xt!"'IP(xn)%(lPlltPo(IPW (3.10) 

= f dIP q;(x\) ... .p(xn )exP[i..o1(IP) - f.l~ f 1P2(x)d4x J. 
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This is the well-known Feynman integral formula for the 
Green's function in which E = 2f.l6 plays clearly the role of 
the Feynman causal E. Thus the limit f.l6~0 should be per
formed after the calculation. 

IV. EQUATIONS OF MOTION 

In this section we shall use operator methods instead of 
the formal functional integrals. From formulas (2.4') and 
(2.8) we obtain the relation 

since the commutator 

[ + . #] _ i oY (-I. ) 
ax ,1. - - (v'2)f.lo DIP 'l'x' 

8Y (¢x) = - (0 + m2 )¢x -A.¢/ +J(x) 
o.p 

commutes with the operator ..01. 

(4.1) 

The formula (4.1) can be written in the equivalent form 

i(v'2luo(ax+ % + %ax ) 

= (0o!' (¢x) + 2if.l6¢x )%; (4.2) 

the right-hand side should be understood in the sense of dis
tributions. This is the equation of motion. Multiplying it by 
the operators ¢x" ... , ¢x. from the right and taking the vacu
um expectation value we obtain 

i i o(x - Xi)G n _ 1 (XI' ... , Xi_I' Xi+ I' ... , Xn) 
i= I 

= -(qX) +m2-2if.l~)Gn+I(X,XI, .. ·,Xn) (4.3) 

- A.Gn + 3 (X,X,X,XI, .. ·,Xn) + J(x)Gn(xp ... ,xn)· 

These are equations for Green's functions II already contain
ing the Feynman epsilon: m2~m2 - iE, E = 2f.l6; thus the 
right boundary conditions are satisfied and the complete 
equivalence with the canonical QFT is proved. 

Equation (4.2) (together with the condition [¢x, %] 
= 0) may be considered as the defining equation of the oper

ator % (instead of the formula % = exp i..o1). 
Equation (4.2) is in fact the operator form of the 

Schwinger equation. The operator % depends on the exter
nal field J (x) and we have 

o __ %=-1. % (4.4) 
M(x) 'l'x' 

Substituting this relation into Eq. (4.2) and taking the vacu
um expectation value we obtain the Schwinger equation for 
the Green's functional G (J) = (01%10), 

[ 8Y (_S_)+2if.l~_8_]G(J)=0. (4.5) 
OIP 8J(x) 8J(x) 

The standard perturbation expansion now follows easi
ly. We shall write the action (2.9) and (2.6) in the form 
..cI = ..010 + ..011 , ..010 = ..o1(A. = 0), and we have similarly 
% = %0%1' From the relation (4.4) we have 
% = (exp i..o1 / (0/8J(x)))%0 and thus the formula 

G(J) = eXP[i..cl I (_8_)]Go(J) (4.6) 
M(x) 
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holds for the Green's functional G. The free field Green's 
functional Go(J) = (01%010) is given by the standard for
mula (see Sec. V), where the right boundary conditions are 
ensured by the Feynman term 2iJ.l~ in Eq. (4.3). 

V. THE SPECTRAL DEFINITION OF THE FEYNMAN 
INTEGRAL 

Let us consider the Feynman integral in the form 

(5.1 ) 

The exponential term gives the regularization of the Feyn
man integral and defines, in a sense, the integration domain 
of it. The limit J.l~ -0 should be performed at the end of all 
calculations. Let us suppose that we are able to define the 
operator t/J(¢ ), where the operators ¢ x are replaced instead of 
91(x). Then we define the integral (5.1) to be equal to the 
vacuum expectation value of the operator t/J(I/J ): 

f t/J(91)e - "'~J'P'dxd91 =(Olt/J(I/J )10). 

As an example, we shall show how the Gaussian inte
gral can be obtained in this way. Let us suppose generally 
that t/A,(1) = exp id(1/J ) and that the operator d(91) can be 
defined. Then the relation (4.1) holds with the commutator 

[a id] = _i _ od (A.) (5.2) 
x' (V2)J.lo 091 (x) 'I' . 

The formula 

i(V2)J.lo(ax+ t/J(I/J) + t/J(I/J lax) 

= (o~) (¢ ) + 2iJ.l~¢x )t/J(¢ ) (5.3) 

[of the type of (4.2)] holds. Assuming that the functional 
d(91) contains the term S 91(x)J (x)dx, the Schwinger equation 

(:91~) (o~X)) + 2iJ.l~ O~X))(OIt/J(1/J )10) = 0 (5.4) 

can be derived. In the Gaussian case 

d(91) = ~ f 91(x)AXy91 Iy)dxdy + f 91 (x)J(x)dx, (5.5) 

and the Schwinger equation reads 

(f (Axy + 21j.l~ oxy) _0_ dy + J(x))(OIt/J(1/J )10) = O. (5.6) 
oJIy) 

The matrix (Axy + 2iJ.l~Oxy) can be inverted (because of the 
regularization term 2iJ.l~Oxy) and then this functional equa
tion can be easily integrated to 

(Olt/J(¢ )10) = N exp [ - f ~J(x).1xJIy) dXdy ] , (5.7) 

where..::l is the inverse of the mentioned matrix and N is an 
integration constant. 

We conjecture that all meaningful calculations using 
the Feynman integral can be "translated" into the operator 
language in a similar manner to the spectral definition of the 
Feynman integral. Moreover, we conjecture that if the cor
rect meaning of the corresponding operator t/J(¢ ) cannot be 
given, the Feynman integral cannot be defined in any rigor-
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ous way. Thus in this approach the Feynman integral is only 
a representation of the operator % (or its matrix elements) 
in a special coordinate basis, as is the Schroedinger equation 
in quantum mechanics. 

From our point of view the question of the existence of 
the "correct integral" (5.1) is, in fact, that of the existence 
and the meaning of the Feynman basis! 1(1)}. and this is a 
very interesting but difficult mathematical problem, which 
we do not solve here. 

VI. DISCUSSION AND CONCLUSIONS 

In this paper we have proposed a possible operator for
malism leading to the functional calculus and to FPI. The 
basic ingredients in this approach are operators ¢x' 1Tx with 
commutation relations (2.7). The conjugated momentum 1Tx 
is only an auxiliary object serving for defining the operator 
character of I/Jx' i.e., ¢x and 1Tx define in some combination 
the creation and the annihilation operators of virtual states 
of a quantum field (that define Hermitian conjugation on the 
FS space). Kinematical quantization represents then a tran
sition from a classical virtual field to an operator field ex
pressed in a combination of the creation and the annihilation 
operators on the FS space. Specifying the combination [e.g., 
by Eq. (2.8)) we pick up the representation of the relation 
(2.7) or a subspace of the whole functional space, i.e., we 
choose the integration domain in FPI. The choice of a repre
sentation of (2.7) and the domain of integration in the func
tional space are related by the definition of the vacuum state 
since the vacuum is annihilated by the operator a x and 
1 (0191) 12 defines the weight of the functional measure in Eq. 
(3.10). 

Freedom in a representation of the relation (2.7) gives 
one a possibility to incorporate quantization around classi
cal solutions or spontaneous symmetry breaking. We can 
introduce a new parameter 910 (which we shall specify from 
the condition that the effective potential evaluated in 910 is 
minimall) and define 

I/Jx = (V~)J.lo (ax + ax+) - 910' 

1Tx = i (~;) (ax+ - ax)· 

Then the formula (3.8) turns out to be 

t/Jb(91)=exp [ - J.l; f(91-910)2d 4X]. 

(6.1) 

(6.1') 

(6.2) 

Equation (6.2) changes the domain of the functional integra
tion in (3.10) (it fixes the values of classical fields at infinity) 
and makes clear the way to obtain symmetry breakdown in 
the FPI quantization scheme. 12 From the equation ofmo
tion (4.3), the meaning of the parameter J.l~ is clear-it fixes 
the boundary values of the free propagator ..::l, i.e., it specifies 
causality. Thus we see that a change in a representation of 
(2.8) leading to symmetry breakdown is equivalent to break
ing of the Feynman causality prescription defined by Eq. 
(3.8). From this example we can see advantages of this opera
tor formalism. In it, we naturally incorporate symmetry 
breaking and its connection to causality and to FPI. 
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From the construction of quantum theory in the pro
posed way, we see that the quantization procedure here is 
larger than the canonical one since we do not have specified 
the representation of commutation relation (2.7) from the 
beginning. The freedom in a choice of a representation of 
(2.7) is removed postulating that any realistic theory [i.e., 
any acceptable representation of (2.7)] must have a solution 
(vacuum) minimizing the effective potential. 

The Fock-Stueckelberg space, the kinematical opera
tors ¢lx, and the propagator operator % are the basic tools 
for coordinate (basis)-free description of the Feynman 
quantization technique. From it we can deduce that the lack 
of a rigorous definition of FPI can be divided into two parts. 
The first one, before we introduce the Feynman basis, is con
nected with correctness of multiplication of kinematical op
erators and is essentially equivalent to the corresponding 
difficulties in canonical QFT (i.e., the problem ofrenormal
ization). The second part lies in the eoncept of the Feynman 
functional basis which is highly distributive (singular), and 
brings itself new mathematical complications rendering the 
meaning of FPI more perplexed. The spectral definition, 
here suggested, could help in resolving this second difficulty. 

We expect that this line of considerations could clarify 
the true meaning of FPI, formulate Feynman quantization 
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independently on canonical formalism, and be useful in the 
unification of QFT and General Relativity. 
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We investigate dispersion-free states which are additive only on the pairs containing a central 
element (central-absolutely compatible). We show that any logic possesses plenty of such states, 
in fact, as many as a certain Boolean algebra. The latter result matches the hidden variables 
conjecture. 

PACS numbers: 03.65. - w 

According to the proponents of the hidden variables 
theory, there are certain hidden variables in the quantum 
mechanical system which would accurately determine the 
behavior of the system-if we knew them. The probabilistic 
character of the occurrences of events would therefore disap
pear (see Refs. 1-3). In the mathematical model, the presence 
of hidden variables would yield the existence of dispersion
free states on the logic in question, which means that the 
existence of such states which would have only the values 0 
and 1 (see Ref. 4 for more detailed exposition). It is known 
that, e.g., that the Hilbert space logic L (H) for quantum me
chanics does not admit hidden variables in the usual sense, 
and there are other examples (see Refs. 5-9). 

We show in this paper that if we weaken the notion of a 
state, we obtain the dispersion-free states on [any logic L. A 
state in our sense is a mapping s:L-{ 0, I} such that: (1) 
s(a') = 1 - sIal for any aEL; (2) if sIb ) = 0 and a<.b, then 
sIal = 0; (3) s(a Vb) = sIal + sIb ) whenever a<.b' and b is a 
central element. Any dispersion-free state in the usual sense 
fulfills the latter conditions, and if L is a Boolean algebra, 
then our "weak" state means exactly the state in the usual 
sense. Obviously, the third condition of our definition van
ishes as soon as L has a trivial center (e.g., for the Hilbert 
space logic). There are, however, many important logics 
which have considerably rich centers and yet do not have 
any dispersion-free states. If we, for instance, take 

L = L (H ro
, where L (H )"'0 means the countable power of 

L (H) (see Refs. 4 and 10), we obtain a logic with the center 
isomorphic to the Boolean algebra of all subsets of a count
able set. One can show easily (see Ref. 10) that such a logic 
possesses no dispersion-free states in the usual sense. On the 
other hand, for the logics with rich centers, the suggested 
generalization of a state is meaningful because the intrinsic 
structure of the logic is very much involved. 

The terminology and basic facts are taken from Refs. 4 
and 11. The content of the paper overlaps slightly with Refs. 
11 and 12. 

Let us first introduce the notions which are used 
throughout the paper. 

Definition 1: A logic is a partially ordered set (L,..;;) with 
the least and greatest elements 0 and 1 and with a unitary 
operation' satisfying the properties: 

(i) (a')' = a for any aEL; 
(ii) a V a' = 1 for any aEL, where the symbol V (and 

dually 1\) means the lattice-theoretic operation induced by 
<; 

(iii) if a<.b,a,bEL, then a'>b' and b = (a V (b I\a'). 
In what follows, we shall reserve the letter L for a logic. 

One can show easily (see Ref. 11) that if a <.b " then a V band 
a 1\ b exist in L. 

Definition 2: Two elements a,bEL are called compatible 
(abbreviated a++b) if there are elements e,d,eEL such that 
e<.d', d";;e', e..;;e' and a = eV d, b = eVe. 

Obviously, if a++b, then a V b = e V d V e and a 1\ b = e. 
Definition 3: The center of a logic L is the set of all aEL 

such that a++b for any bEL. We denote the center of L by 
C(L). 

Proposition 1: The set C (L ) constitutes a Boolean subal
gebra of L. The logic L is a Boolean algebra if and only if 
L=C(L). 

Proof See Refs. 11, 13, or others. 
Definition 4: A weak (dispersion-free) state is a mapping 

s:L_ { 0, I} SU9h that: 
(i) s(a') = 1 - sIal for any aEL; 
(ii) if s(b) = 0 and a<.b, then sIal = 0; 
(iii) s(a Vb) = sIal + s(b) whenever a..;;b' and bEC (L ). 
Proposition 2: Suppose that s is a weak state on L. If 

bEC (L ), then s(a V b )<.s(a) + sIb ) for any aEL. 
Proof Since we can write a V b = (a 1\ b ') V b, we have 

s(a Vb) = s(a 1\ b ') + sIb ). If s(a Vb) = 1 and sIal = 0, then 
s(a 1\ b ') = 0 and therefore sIb ) = 1. The rest is obvious. 

Theorem 1: If aEL, a"# 0, then there exists a weak state 
on L such that sIal = 1. 

Proof We shall first state a lemma. To simplify the ar
gument, let us introduce an auxiliary notion. A subset I of L 
is said to be absorbing if I fulfills the following properties: 

(1) if aEl and b<a, then bEl; 
(2) if aEl and bElnC (L ), then a V bEl; 
(3) if aEl then a'iI. 
Lemma 1: Let I be an absorbing subset of L and let 

In{ c,e' l = (/) for some element eEL. Then there exists an ab
sorbing set J which contains the set Iu{ e}. 

Proof of Lemma 1: Let us set Ie = {xEL I X <e J. Put 
J = {xEL I there are elements mElnC (L ), nElenC (L ) and 
k€Jule such that x<m V n V k }. Obviously, eEJ. We shall 
prove now that J is absorbing. If aEJ and b<.a, then hEJ by 
the definition of J. Suppose that aEJ and bEInC (L ). Then 
a<m V n V k and b<.pVrV s, where m,pElnC(L), n,rEle 
nC (L ) and k, s€Jule' Observe first that there exist two ele
ments u,ueL, uElnC (L ), vElc nC (L ) such thatb< u V v. To see 
that, let us notice that we may assume the elements p,r,s to be 
mutually orthogonal [for p,reC (L ), therefore 
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p V rV s = p V (r Ap') V t for a teL orthogonal to p V r, and 
hence t<s]. Since beC (L ), we have the equality 
b = (pAb )V(rAb )V(sAb ) and thereforesA beC(L ). Sup
pose that sEl. Then sA beJnC (L ), and we put 
u = (p A b) V (s A b ), v = r A b. (The casesEle argues similar
ly.) We see that 
aVb«mVnV k)V(uVv) = (mVu)V(nVv)V kE.!. 

Let us check the condition (3). Suppose that aE.! and 
a'E.!. We may assume without any loss of generality that 
a,m V k, a' <n V h, wheremElnC (L ), nElenC (L ), andkEle, 
hEl, m<k', n<h'. Since m,n are central, we may write 
a = (m A a) V (m' A a), a' = (n A a') V (n' A a'). It follows that 
1 = a Va' = (m Aa)V (m' Aa)V(n Aa') V(n' Aa') and the 
right side is a supremum offour mutually orthogonal ele
ments. Since a' <n V h, we obtain that 
a' A n' <In V h) A n' = hAn' <h and therefore a' A n'El. 
Analogously m' AaEle. We obtain that (m' Aa)V(n Aa')<e 
and therefore ((m' Aa)V(nAa'))' = (mAa)V(n' Aa'»e'. 
Since (m A a) V (n' A a')El, it follows that e'El, which is a con
tradiction. The proof of Lemma 1 is finished. 

Let us continue with the proof of Theorem 1. Denote by 
.sf the collection of all absorbing subsets of L which contain 
the element a'. Since la' = 1 xeL I x<a' J belongs to .sf, we 
see that.sf #=0. It is obvious (Zorn lemma) that.sf has maxi
mal elements if we order .sf by inclusion. Take a maximal 
element of .sf, someA. By Lemma 1, ifeeL, theneithereore' 
belongs to A. We may thus define a mapping s:L_1 0,1 J by 
settings(x) = 0 ifand only ifxeA. One can check easily thats 
is a weak state with the required properties. The proof of 
Theorem 1 is finished. 

The latter theorem asserts that any logic possesses weak 
states. One must notice that the proof went via a noncon
structive argument (Zorn lemma). It would be desirable to 
remove any such reasonings when dealing with the physical 
theories but we doubt that this is possible. 

The following result refines Theorem 1 and connects 
together weak states on logics with the states on Boolean 
algebras. Let us denote by Y(L ) the set of all weak (disper
sion-free) states on L and recall that a weak state on a Bool
ean algebra is a state. 

Theorem 2: Let L be a logic. Then there is a mapping 
f :L-B to a Boolean algebra B such that: 

(i) f(O) =0; 
(ii) f(a') = f(a)' for any aeL; 
(iii) f(a)<f(b) if and only if a<b; 
(iv) f(a Vb) = f(a) V fIb ) whenever aeL, beC (L ); 
(v) ifseY(B), thensfeY(L ) and the latter assignment is 

injective. 
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Proof Let B be the Boolean algebra of subsets of Y(L ) 
generated by the sets of the type Aa = 1 seY(L )Is(a) = 1 J, 
aeL. Putf(a) = A a , aeL. The properties (i) and (ii) are then 
evidently fulfilled. The property (iii) requires one to show 
thatf(a) <fIb ) implies a <b. We employ the method which we 
have used for proving Theorem 1. Suppose that atf.b. Con
sider the set .sf a,b of all absorbing sets which contain b but do 
not contain a. Take a maximal element of .sf a,b and denote it 
by D. According to Lemma 1, if eeL, then either e or e' 
belongs to D. The weak state s:L-1 0, 1 J such that six) = 0 if 
and only if xED then belongs tof(a) but does not belong to 
fIb ). Therefore,J(a)-if(b ) and the statement (iii) follows. 

The statement (iv) follows immediately from Proposi
tion 2, for if s(a Vb) = 1 for aeL, beC (L ), then either sIal = 1 
or s(b) = 1. 

Finally, ifseY(B) thensfeY(L ) according to the latter 
statement (iv). It is easy to see that if two dispersion-free 
states on a Boolean algebra B agree on the generators, they 
have to agree on the entire B. This yields that the assignment 
s-sfis injective. The proof of Theorem 2 is finished. 
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The theorem due to L. Cohen, which implies that quantum mechanics cannot be formulated as a 
stochastic theory in phase space, is generalized. The assumption that the phase-space 
representatives of the density operators satisfy the quantum mechanical marginals is replaced by 
the weaker condition of il-representability. 

PACS numbers: 03.65.Ca 

I. INTRODUCTION 

The possibility of expressing quantum mechanical ex
pectation values as averages over phase-space distribution 
functions has been widely discussed. The majority of such 
representations of quantum mechanics considered in the lit
erature l

-4 can be characterized by two mappings, one which 
maps density operators p into so-called quasidistribution 
functions/(q,p) on phase space, and the other which maps 
operators g representing observables into their phase-space 
counterparts g. The basic requirement imposed on these 
maps is 

Tr( pg) = f f /(q,p) g(q,p) dq dp . (Ll) 

Among other specific conditions they are usually also taken 
to be one-to-one and linear. 

Now Wigner's theorems states that for a certain class of 
such representations in which the quasidistribution func
tions satisfy the quantum mechanical marginals, these func
tions cannot in general be true probability distributions, i.e., 
they take on some negative values. This is often taken6

•
7 as 

demonstrating the impossibility of formulating quantum 
mechanics as a classical stochastic theory in phase space. A 
similar conclusion based on similar assumptions can be pro
vided by Cohen's theorem.2

,6 He considers the phase-space 
representative of the observable F (g) and demonstrates that 
in general it is not F ( g). 

Both theorems are based on specific assumptions about 
phase-space representations, the foremost being linearity 
and the requirement that quasidistribution functions satisfy 
quantum mechanical marginals. Both assumptions have 
been criticized8

-
1O

, and this leads one to question the general 
conclusion drawn from these theorems. For it might be the 
case that in dropping either or both of these assumptions, 
Cohen's and Wigner's theorems would not hold in general, 
so that a representation could be found which did formulate 
quantum mechanics as a classical stochastic theory. No one 
seems to have considered dropping the assumption oflinear
ity, due probably to mathematical difficulties. However, in 
the case of the quantum mechanical marginals condition it is 
well known4 that there are many (linear) representations 
with non-negative distribution functions. This condition is 
thus essential for Wigner's theorem. On the other hand, this 
is not the case of Cohen's theorem. It is the purpose ofthis 
paper to show that Cohen's theorem is actually true for the 

large class of all il-representations (which encompass all 
those of practical interest). Thus, the possibility of a classical 
stochastic formulation of quantum mechanics is left open 
only to nonlinear and linear non-il-representations. 

In Sec. II I give a brief review of the phase-space repre
sentations of quantum mechanics as formulated by Srinivas 
and Wole These, termed Ll-representations, are the most 
general kind considered in the literature. Finally, in Sec. III 
Cohen's theorem and its generalization are stated in this 
framework, and the latter proved. 

II. PHASE-SPACE REPRESENTATIONS OF QUANTUM 
MECHANICS 

In the following, the notation and approach of Srinivas 
and Wolf 4 to the phase-space representation of quantum 
mechanics is adopted. Attention will be restricted to a sys
tem consisting of one particle, and hence observables will be 
functions of the usual position and momentum operators 
(these are denoted by q,p but it should be emphasized that 
they are not necessarily operators which correspond via 
some representation to the phase-space functions q,p, as the 
notation ofSrinivas and Wolf may suggest). 

Each Ll-repres:.,ntation is characterized by a pair of op
erators Ll (q,p;q,p), Ll (q,p;q,p) (parametrized by q,p), which 
satisfy 

Ll + (q,p;q,p) = Ll (q,p;q,p) , (2.1) 

Tr[J"(q,p;q,p)Ll (q,p;q',p')] = o(q - q')o(p - p'), (2.2) 

f f Ll (q,p;q,p)dqdp = I . (2.3) 

The mapping (as outlined in Sec. I) which relates func-
tions in phase space to operators representing observables is 
then constructed by postulating that the function 
c5(q - q')o( p - p') of q,p be mapped to the operator 
Ll (q, p;q', p') (for all q',p'). The images [denoted by g(q,p)] of 
other functionsg(q,p) are then obtained by the assumption of 
linearity, 

g(q,p) = f f g(q',p')Ll (q,p;q',p')dq'dp' . (2.4) 

The invertibility of this map is assured by (2.2), which explic
itly gives 

g(q,p) = Tr[ g(q,p)J'(q,p;q,p)] . (2.5) 

On the other hand, the mapping which relates density opera-
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tors,o to quasidistribution functions/(q,p) is defined by 

/(q,p) = Tr[,o.d (q,p;q,p)] , (2.6) 

likewise it is linear and invertible. 
The basic relation (1.1) then follows directly from (2.5), 

(2.6), and (2.2). 
Now (2.1) is the "reality condition" which ensures real 

functions are mapped onto self-adjoint operators and vice
versa (for both mappings of the representation), while in the 
case of the mapping given by (2.4), (2.3) implies that the iden
tity function corresponds to the unit operator [this need not 
be the case for the mapping given by (2.6)]. Details can be 
found in the cited paper.4 

An important subclass of the .d -representations is the 
class of Il-representations. These have been studied in detail 
by Agarwal and Wolf.3 They are generated by taking a com
plex valued function 11 from phase space satisfying 

11 (0,0) = 1 (2.7) 

and 

11*( - t, - 1]) = 11 (t,1]) (2.8) 

(11 is also usually assumed to be a boundary value of an entire 
analytic function of two complex variables 3(&)), and setting 

.dn(q,p;q,p) = (2~)2 J J 11 (t,1])eiIsIQ-Q) + 1'Jl.P-plldt d1], 

(2.9) 
ifn(q,p;q,p) = 21T'fujjj(q,p;q,p) , 

where 

(2.10) 

jj (t,1]) = [11 ( - t, -1])]- •. 

In this case formula (2.4) reduces to 

g(q,p) = (2~)2 J J J J g(q,p)Il(t,1])eiIs (Q-Q)+1'Jl.P-p)J 

xdtd1]dqdp (2.11) 

and formula (2.5) to 

g(q,p) = 2: J J Tr(ge-iIsQ+>1JlJ)[Il(t,1])]-·eiIsQ+lIpJ 

xdtd1]. (2.12) 

In Ref. 4, Ii has been inadvertently omitted from the 
right-hand side of (2.10) and (2.12). 

Now, condition (2.7) is introduced so that the identity 
operator be mapped via (2.12) to the unit function, and (2.8) 
is required so that real-valued functions on phase space are 
mapped to self-adjoint operators and vice-versa, i.e., (2.7) 
and (2.8) are, respectively, special cases of (2.3) and (2.1). 

It is interesting to note that these two conditions will 
play no part in the proof of the generalized Cohen's theorem 
(Sec. III). 

III. COHEN'S THEOREM AND ITS GENERALIZATION 

Il-representations are still a more general class than the 
one considered by Cohen.2,6 However, if we impose the 
condition 

11 (t,0) = 11 (0,1]) = 1 , (3.1) 

the resulting class of Il-representations is identical to his 

842 J. Math. Phys., Vol. 24, No.4, April 1983 

[11 (t,1]) is/(O,T) in Cohen's notation6.7]. Which means, as 
demonstrated by Cohen,2.6 that in the context of Il-represen
tations, (3.1) is equivalent to 

(i) For all density operators,o and their phase-space re
presentatives J, 

J /(q,p)dp = (q!,o!q) , 

J /(q,p)dq = <P!,olP> 

(i.e., the quasidistribution functions are required to satisfy 
the quantum mechanical marginals). 

Noting the above, Cohen's theorem can then be stated 
as 

Theorem 1 (Cohen's theorem2,6): There exists no Il-re
presentation satisfying (i) such that (ii). For arbitrary real
valued functions g on R2, if g is the phase-space representa
tive of the observable g, then g2 is the representative of ~. 

Now the generalization of Theorem 1 consists in simply 
leaving condition (i) out, i.e., 

Theorem 2 (Generalization of Theorem 1): There exists 
no Il-representation which satisfies (ii). 

Proof As a preliminary we need the following simple 
lemma: 

Lemma: If R (q,p;q.,P.,q2,P2) is a complex valued func
tion from R2 satisfying 

(iii) For arbitrary functions g from H2 into H 

[g(q,p)]2 = J J J J R (q,p;q.,P.,q2,P2)g(q.,pdg(q2,P2) 

xdq.dp.dq2dp2 . 

Then 

R (q,p;q.,P.,q2,P2) + R (q,P;q2,P2,q.,P.) - 26(q - q.)c5(p - P.) 

X~ (q - q2)c5(P - P2) = O. (3.2) 
Proof Interchanging q. with q2 and P. with P2 in (iii) 

demonstrates that R (q,P;q2,P2,q.,P.) is also a solution of (iii). 
Butclearly~ (q - q.J~(p - P.)~(q - q2)~(P - P2) is likewise a 
solution of (iii), hence 

J J J J [R (q,p;q.,P.,q2,P2) + R (q,P;q2,P2,q.,P.) 

- 26(q - q.)~(p - P.)~(q - q2)c5(P - P2)] 

xg(q.,P.)g(q2,P2)dq.dp.dq2dp2 = a 
for arbitrary functions g, which immediately gives (3.2), 
Q.E.D. 

The proof of Theorem 2 is by contradiction. So suppose 
we have an Il-representation satisfying (ii), characterized by 
the function 11 (t,1]). It can be shown4 that if g ® h is the 
phase-space representative used to calculate the expectation 
values of the operator gh, then 

g(q,p) ®h (q,p) = J J J J Rn (q,p;q.,P.,q2,P2)g(q.,p.)h (q2,P2) 

xdq.dp.dq2dp2' (3.3) 

where 
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R n (q,p;ql,PI,q2,P2) 

= (2:)4 f f f f [n ($1 + 52,111 + 1]2}1-ln ($I,1]I)a ($z,712) 

X e - (W2)(s,'1, - S,'1,) eig',(q - q,) + '1,( p - p,) + s,(q - q,) + '1,1 p - p,ll 

(3.4) 

in Ref. 4, 1/(217")4 has been inadvertently left out and the sign 
changed in the first exponential term. 

Now noting that condition (ii) requires g ® g = ~ for all 
functions, it follows using (3.3) that a (5,1]) satisfies 

[g(q,pW 

= f f f f R (q,P;ql,PI,q2,P2)g(ql,Ptlg(qZ,P2) 

X dqldpldq2dp2 (3.5) 
for arbitrary g(q,p). But this is just the hypothesis of the 
lemma in relation to Rn, hence 

Rn (q,p;ql,PI,q2,P2) + R n (q,P;q2,P2,ql,Ptl- 215(q - ql) 

X8(p - PI)8(q - Q2)8(p - P2) = O. (3.6) 

From this we can derive a contradiction. To do this write the 
left-hand side of(3.6) explicitly in terms of a [$,1]). Noting 
that by interchanging 51 with 52 and 1]1 with 1]2 in (3.4), 
Rn (q,P;Q2,P2,QI.PI) is just R n (Q,p;QI,PI.Q2'PZ) with 
e - (W2)(5,'1, - 5,'1,) replaced by e(W2)(s,'1, - S,'1'), (3.6) thus 

becomes 

(2:)4 f f f f 2{[a (51 + 52,1]1 + 1]2)] -Ia (SI,1]tla (52,1]2) 

xcos( ~ (521]1 - 511]2)) - I} 
Xei[s,(q- g,) + '1.1p-p,) + 5,(q - g,) + '1,(p-p,ll ds

l
d1]

l
ds2d1]2 

=0. 

Hence by the one-to-one nature of Fourier transforms we 
must have 

a [$I,1]I)a (52,1]2)COS (~ (511]2 - 521]tl) 

= n [$1 + 5z,1] I + 1]z) . 

This gives 

n (51,0)a (52,0) = a (51 + 52,0) , 

a (O,1]I)a (0,1]2) = a (0,1]1 + 1]2) , 

a (5,0)11 (O,1])cos( ~ 51]) = a (5,1]) . 

Thus 

(3.7) 

a (sl,1]tla (52,1]2) = a (5I,O)a (O,1]I)COS( ~ 511]I)a (52,0) 

xa (0,1]2)COS( ~ 521]2) 

843 J. Math. Phys., Vol. 24, No.4, April 1983 

= a [$1 + 52,0)a (0,1]1 + 1]2)COS( ~ 511]I)cos( ~ 521]2) 

= a.,,[$1 + 52,1]1 + 1]2) cos( ~ 511]I)cos( ~ 521]2) 

cos( 2" [$1 + 52)(1]1 + 1]2)) 

and therefore 

cos( ~ ($11]2 - 521]1))cos (~ (51 + 52)(1]1 + 1]2)) 

=cos(~ 511]I)COS(~ 521]2)' 

which is not an identity and hence we have a contradiction. 
Q.E.D. 

Theorem 2, proved above, is a bona-fide generalization 
of Cohen's theorem, since functions a [$,1]), which satisfy 
(2.7) and (2.8) but not (3.1), give rise to a-representations 
which necessarily do not satisfy (i) [as pointed out in the 
paragraph following (3.1)]. 

A bonus of the above proof is that a (5,1]) need not satis
fy (2.7), and (2.8), so the argument holds even for a-represen
tations which do not necessarily map real-valued functions 
to self-adjoint operators and vice-versa, or the identity oper
ators via (2.12) to the unit function. 

In view of Theorem 2, the possibility of a classical sto
chastic formulation of quantum mechanics is left open only 
to nonlinear and non-n-representations. 

I t would be interesting to see whether Theorem 2 can be 
further generalized, e.g., to all.:1-representations, and if it 
cannot be generalized then to see for what kind of represen
tation it does not hold. 
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Path integration of an action related to an electron gas in a random potential is performed within 
the framework of Feynman's polygonal path approach. The exact propagator obtained is simply 
related to the harmonic oscillator propagator. The integration is direct and does not require the 
knowledge of an auxiliary measure or the artificial coupling of the system to the external forces. 

PACS numbers: 03.65.Db, 03.65.Ca 

I. INTRODUCTION 

The path integral formulation of Feynman 1 offers a glo
bal approach for solving quantum mechanical problems. In 
this formulation the usual time-dependent SchrOdinger 
equation is replaced by an integral equation 

(1) 

which expresses the wavefunction I/J(x, T) at the time Tin 
terms of the wavefunction t/I(xo' 0) at the initial time t = O. 
The propagator or the kernel K is defined by a path integral 

K (x, T; xO' 0) = iX1T

) = x exp W/Ii)S [x(t ) 1l ii7 x(t), (2) 
xIO) =Xo 

where the symbol ii7 x(t) implies that integrations are over all 
possible paths starting at x(O) = Xo and terminating at 
x(T) = x. ThefunctionalS[x(t )] intheintegralis the classical 
action defined by 

S[x(t)] = iT L(x,x,t)dt, (3) 

L (x, X, t ) being the Lagrangian of the system considered. 
Although this approach is intuitively appealing, the 

problem of obtaining the propagator is, in general, nontri
vial, because of the associated analytical difficulties. A sim
ple prescription for computing the path integral K involves 
the assumption of polygonal paths. In this scheme, first pro
posed by Feynman and subsequently by Cameron,2 the 
propagator is obtained as the limit of a multiple Riemann 
integral of order N when N-+ 00 • A rigorous justification of 
the polygonal path formulation has been given by Truman in 
his recent papers.3 Path integration without the limiting pro
cedure has been discussed by Mizrahi. 4 Albeverio and 
Hoegh-Krohns base the mathematical definition of Feyn
man path integrals on a general theory of oscillatory inte
grals on real Hilbert spaces. 

In a recent review,6 DeWitt-Morette, Maheshwari, and 
Nelson have discussed extensively a new method of path 
integration based on the theory of promeasures. Although 
this technique of global integration on function spaces is 
mathematically elegant and potentially powerful, the exam
ples treated in Ref. 6 are precisely those which one can com
fortably handle with the polygonal approach. A somewhat 
nontrivial instance, where the theory of promeasures was 

exploited, has been considered by Maheshwari.7 This case 
involved the path integration of a system characterized by 
the action 

S [x(t)] = (dt {m X2 _ mn 2 rT 

[x(t) _ x(t'W dt'}' 
Jo 2 4T Jo 

(4) 

This action has been considered by Bezak8 in connection 
with a path integral theory of an electron gas in a random 
potential. Bezak, however, had to use imaginary time - iP 
(P is the inverse of temperature) for obtaining the partition 
function and arrived at only an approximate evaluation of 
the path integral. Subsequently, Papadopoulos9 evaluated 
the path integral (in imaginary time) in an exact closed form 
by coupling the system to auxiliary external forces. 

The main purpose of the present paper is to show that 
the path integration of the action (4) can be carried out with
in the framework of Feynman's polygonal approach and in 
the spirit of some of our previous work. 10 Section II outlines 
this derivation, which shows how the propagator depends on 
the solution of the classical harmonic oscillator offrequency 
n acted on by a constant force. We present in Sec. III an 
alternative, shorter derivation of the same result, which 
brings out explicitly the relation between the present propa
gator and the well-known harmonic oscillator propagator. 

II. DERIVATION OF THE PROPAGATOR 

The polygonal paths formulation for the propagator 
K (x, T; xo, 0) is based on a partition P N if the time interval 
[0, T] into N subintervals. Assuming for simplicity that all 
subintervals are of equal length, we characterize P N by 

PN:tO = 0, t l , t2 , ••• , tN_I' tN = T, 

(Sa) 

tj - tj _ 1 = E, NE = T, j = 1,2, ... ,N, 

and the corresponding discretization of a path x(t) by 

Xj = x(tj)' Xo = x(O), XN = x(T) = x. (Sb) 

The action S [x(t)] ofEq. (4) is next expressed in the discrete 
form as 

N [m(x, -x· 1)2 mn 2E N 2] SN[Xj ] = L E -} }- --- L (Xj-Xk) . 
j= I 2 E 4T k= I 

(6a) 
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Here, we have replaced the integrals in Eq. (4) by sums fol
lowing the standard prescriptions of Feynman1 for approxi
mating the kinetic and potential energy terms over the jth 
subinterval [tj _ 1 , tj ]. Next the path differential measure 
takes the form 

1 N-I dx. 
gx(t)-.- II _J , (6b) 

A j=1 A 

where A = (21Tili£lm)I/2. One then writes the approximate 
propagator as a multiple Riemann integral 

(7) 

Finally, in the limit of infinite refinement of the partition 
PN(E-o) of the time interval [0, T], oneexpectsthatKN goes 
over into the exact propagator K (x, T; xo, 0) defined by Eq. 
(2). We may, therefore, write 

E--+O 

INE=TI 

(8) 

Note that the introduction of A as defined above in the path 
differential measures is necessary to obtain the desired limit 
of the path integral (7) and the correct free-particle normal
ization 1 as N-. ~. It may also be mentioned here that for 
one-dimensional problems (e.g., Refs. 1, 10) the polygonal 
path approach yields correct propagators. We shall see be
low that, even in the present case, this approach leads to an 
exact evaluation of the propagator in a closed form. 

Next, in order to evaluate K N' we have to substitute 
expression (6a) for SN in Eq. (7) and carry out the integra
tions over Xj (j = 1···N - 1) successively. This appears to be 
a formidable task at first. However, repeated use of the fol
lowing identity for a one-dimensional Gaussian integral de
rived in the Appendix, 

where A = 1: f= I aj and aj are positive real numbers, simpli
fies the task considerably. Note that formula (9) is handy to 
use since at every stage j the integral to be evaluated is of the 
form given in Ihs ofEq. (9) when one identifies the variable x 
withxj andsk asthexk(N - l>k>j) besidesxo andxN. We 
then obtain 

( 
m )112 I [ im ] KN(x, T;xo, 0) = --. -mexp -PN(X-xo)2 , 

2mfz qN 2fz 

where 
N-I 

PN =BNIE, qN =E II A k· 
k=1 

(to) 

(11) 

The coefficientsAKand BK are determined from the fol-
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lowing system of recursion relations: 

Ak = 1 +Bk +(N-k)Ck, (12) 

Bk I k-IB·C. 
Bl = 1, Bk = --- + l',...l-J..., k>2, (13) 

Ak_ 1 j=l Aj 

f12~ Ck_ 1 k-ICJ 
C1 =---, Ck=C1+--+ l',-. (14) 

T Ak_ 1 j=1 Aj 

The system ofEqs. (12HI4) represent a set of nonlinear 
coupled difference equations, and hence is difficult to treat 
analytically. However, according to Eq. (8), in order to ob
tain the propagator K (x, T; xo' 0) we need merely to evaluate 
PN and qN as N-.~ (E-o). For this purpose, it is more ap
propriate to derive a set of differential equations equivalent 
to the set (12HI4) by taking the limit E-o. To this end, it is 
convenient to introduce the quantities A. k' P k' and Qk by 
writing 

Ak =A.k+11 A.k' 

Bk = EPkl A.k, 

Ck = ~Qkl A.k· 

The recursion relations (12HI4) now take the form 

A.k+ I = A.k + EPk + (N - k )~Qk> 

(15) 

(16) 

k-I p.Q. 
Pk = Pk- I + ~A.k l', _1_1_, (17) 

j= I A.jA.j+ I 

f12E k-I QJ 
Qk =Qk-I - -A.k +~A.k l', --. (18) 

T j= 1 A.jA.j+ 1 

It is easy to see that Eqs. (16)-(18) reduce to the following 
system of equations in the limit E-o, N-.~ (NE = T): 

A=P+(T-t)Q, (19) 

p = A. f' P (r)Q (1') dr 
Jo A. 2(1') , 

(20) 

Q= _ f12 A. +A. f' Q:(r) dr, 
T Jo A. (1') 

(21) 

with the initial conditions 

A. (0) = 0, Q(O) = Q(O) = 0, 
(22) 

P (0) = A (0), P (0) = O. 

After some algebra, it is possible to cast Eqs. (19H21) in the 
form 

X +f1 2A.= -2Q, (23) 

P=~ (~ 
Q + f1 2Q = - (f1 21TjA (0). (25) 

Note that Eq. (25) indeed represents the equation of motion 
of a classical oscillator offrequency f1 acted on by a constant 
force. 

Equations (23H25) together with the initial conditions 
(22) may be readily solved to obtain 

A. (t) = [A (O)/f1T] [(T - t )sin f1t + (2/f1)(1 - cos f1t)], 
(26) 

P(t) = [A (O)lT] [(T - t) + (lIf1 )sin f1t], 

Q (t) = - [A (O)IT ]( 1 - cos f1t ). 
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It is now straightforward to obtain the limiting values of PN 
and qN as N---+oo (E---+O). We first note that 

N - I EA. N EA. (T) 
qN =E II Ak = -- =--. 

k=1 A.I A. (E) 
Hence 

lim qN = A. (T)lim _E_ = A..(T) 
N~oo E---+O A. (E) A. (0) 

= (Sin 11T\(tan I1T 12). 
11 -) I1TI2 

Next, it is easy to see that 

lim PN = lim PN = pIT) 
N~oo N~oo A.N A. (T) 

11 I1T 
=-cot-. 

2 2 

(29) 

(30) 

Substituting these limiting values of q Nand P N in Eq. (10) 
and using Eq. (8), we arrive at the exact expression for the 
propagator 

( 
I1T )1I2( ml1 I1T )112 K (x, T; xo, 0) = -.-- --. cot-

sm I1T 41Tl12 2 

[
iml1 I1T 2] Xexp --cot-Ix -xo) . 
41i 2 

(31) 

We recover from Eq. (31) the propagator obtained by Papa
dopoulos9 and Maheshwari7 when Tis replaced by - i{3. It 
is interesting to note that the propagator ofEq. (31) looks like 
that of a free particle with an "effective mass" 
m* = ! ml1T cot(!I1T) while the normalization factor con
tains an additional term (I1T Isin I1T)1/2 apart from the free 
particle normalization (m* 121riIiT} I 12. In fact, the action (4) 
admits the classical equation of motion 

mi + ml1 2X = (ml1 21T)iTX(t') dt', (32) 

which can be solved with the conditions x(O) = xo,x(T) = x 
to yield the classical path 

x(t) = x +xo + x -Xo sin[!11(2t- T)] . (33) 
2 2 sin(!I1T) 

It is now easy to evaluate the contribution of the classical 
path to the action Sci , which turns out to be 

Sci = U ml1 cot(~ I1T)](x - xo)2. (34) 

The propagator of Eq. (31) is then essentially given by the 
Van Vleck-Pauli formula 

(35) 

apart from the correction factor Cf = (I1T Isin I1T)1/2, 
which represents the sum of contributions arising out of the 
deviations from the classical path. 

III. RELATION TO THE HARMONIC OSCILLATOR 
PROPAGATOR 

In this section, we consider an alternative derivation of 
the propagator ofEq. (31) which avoids the integrations over 
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successive Xj (j = 1,2, ... ,N - 1). First note that by letting 
M = N, aj = ml1 2E/21i, and Sj = Xj (j = 1 ... N) in the identi
ty (9) and taking the negative sign, we can write 

[ 
iml1 2C N ] (mT)1I2 exp - L (Xj - Xk)2 = 11 -- ei1r/4 

4liT j,k = I 21rlJ 

Joo (iml1 2E N ] X dyexp --- L (y_xj )2 . 
- 00 21i j= I 

(36) 

The propagator defined through Eqs. (7) and (8) then 
takes the form 

(
mTi)1I2JOO f f

N
-

ldX . K (x, T;Xo,O) = lim 11 -- dy ... II-l 
N~oo 21rlJ - 00 j = I .:1 

INE= T) 

X exp{ im [(Xj -xj_lf - 112E2 .i (y _Xj)2]}. 
21iE J= I 

(37) 

Next a change of variables from Xj to ~ = Xj - Y reduces 
Eq. (37) to 

= 11 (mTi)1I2 lim [fOO dy K ~O(x + y,T;xo + y,O)] , 
21rlJ N~oo - 00 

(38) 

where K ~o is the propagator for harmonic oscillator in the 
Nth approximation. Assuming for simplicity·· that the limit 
N---+ 00 can be carried out under the integral sign, we obtain 

K (x,T;Xo,O) = 11 (mTi)1/2 Joo dy K HO(X + y,T;Xo + y,O). 
21rlJ - 00 

(39) 

Finally using the well-known expression for K HO given by 

K HO(X, T; xo, 0) = ( 21rili~~ I1T ) 112 

X exp{ in:
11 

[(X2 + x~)cos I1T - 2xXO ]} , (40) 
2lisml1T 

in Eq. (39) and carrying out the integration over y, we again 
arrive at Eq. (31) for the propagator. Equation (39) yields an 
interesting explicit relation between the propagator for the 
present problem and that for a harmonic oscillator. 

IV. CONCLUSIONS 

The main contribution of this paper is to show that the 
action considered by Bezak,8 Papadopoulos,9 and Mahesh
wari7 may be path-integrated within the polygonal path ap
proach of Feynman without much ado. The present deriva
tion is self-contained and does not require the knowledge of 
an auxiliary measure 7 or an artificial coupling to the external 
forces.9 An explicit relation between the propagator for the 
present problem and the harmonic oscillator propagator has 
been obtained, leading to a "back of an envelope" calculation 
of the path integral considered. 

APPENDIX 

In this appendix, we give a derivation of the identity (9) 
of Sec. II. Choosing first the positive sign in Eq. (9), we have 
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f: 00 exp[i j~1 ajlSj - X)2] dx 

= exp[i( .f aj sf _l.. . f aj ak Sj Sk)] 
J=I AJ,k=1 

xfOO exp[iA (x _l.. .f aj Sj)2] dx 
-00 AJ=I 

x f: 00 dy exp(iAr), (AI) 

where A = ~~ laj >0. 
It now remains to show that the improper Gaussian 

integral in Eq. (AI) may be assigned a value (1T/A )1/2 

Xexp(i1T/4). Consider the integral 

£ exp(iAr) dz, 

where C is a contour shown in Fig. 1. Next 

f: 00 exp(iAr) dz 

= f~ R exp(iAx
2

) dx + Sc. exp(iAr) dz 

+ eifT
/
4 fR exp( - Ar) dr + i exp(iAr) dz = O. 

-R c, 
(A2) 

The contributions from the arcs C I and C2 vanish as R_ 00 • 

Hence 

f: 00 exp(iAx
2

) dx 

= e
ifT

/
4 f: 00 exp( - Ar) dr = (1T/ A )1/2ei1T/4 • (A3) 
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The result involving the negative sign in Eq. (9) may be 
proved similarly by choosing an appropriate contour. 
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Gene:aliz~d Hilbert spaces D (a,{3) are defined using analytic continuation of Hardy class 
functions mto ~ wedge bounded by the angles a,{3. Eigenfunctions of isolated complex eigenvalues 
~ay be found III D (a,{3) for operators that have a self-adjoint representation in L 2. These 
eigenvalues correspond to resonances in the associated decay problem. A bilinear form between 
D (a,{3) and ~ (.- {3, - a) is de~ned, which has some of the properties of a Hilbert space scalar 
p.roduct, and 11 IS. shown that thiS form can be used to define a variational principle to obtain the 
eigenvalue equations. 

PACS numbers: 03.65.Db, 03.65.Nk 

INTRODUCTION 

. As pointed out in the excellent discussion of quasista-
tIOnary state theory by Baz', Zel'dovich, and Perelomov, I 
Gamow's theory of the alpha decay of heavy nuclei (1928) 
was the first successful application of quantum mechanics to 
the atomic nucleus. Although effective methods have been in 
use for the approximate calculation of various properties of 
unstable states for many years, the mathematical foundation 
for these procedures has not been very clear. Unstable states 
belong to the continuous spectrum; the separation between 
the part of the continuum to be associated with such states 
and the part which should be associated with the continuum 
was not well defined. Wavefunctions with complex energy 
eigenvalues which may be defined from the Schrodinger 
equation, such as the Gamow wavefunctions, are not ele
ments of the Hilbert space, and the usual notions of com
pleteness and orthogonality do not apply. Nevertheless, the 
notion of associating an unstable state with a well-defined 
functional of some type seems essential in order to character
ize the properties of the state. 

Berggren,2 using Zet'dovich's method of regulariza
tion, defined a generalized inner product which enabled him 
to discuss the problems of completeness and orthogonality of 
resonant states. A later paper by Romo,) following indepen
dently some of Berggren's procedures, emphasized the tech
nique of carrying out analytic continuation of matrix ele
ments. In a similar way, Fuller4 worked with analytic 
continuations of the Lippmann-Schwinger equation. 

As first pointed out by Grossmann,s it is possible to 
study the resonance problem and define a resonant state sys
tematically by weak analytic continuation (a procedure actu
ally used by Rom03), which he realizes by constructing map
pings into subspaces of analytic functions. Although he 
utilized nested Hilbert spaces, he remarked that one could 
use sequences such as Gel'fand triples as well. Aguilar, Bals
lev, and Combes6 have carried out a program of this type by 
using dilatation analytic potentials. Howland and Baumgar
tel7 achieved general results for the perturbation theory of 
eigenvalues imbedded into the continuous spectrum. SimonS 
obtained these results using the procedures of ABC. Horwitz 

alSupported in part by the Binational Science Foundation (BSF) Jerusalem. 

and Sigal9 used these approaches to study perturbation the
ory and the resonant state as an element of a Gel'fand triple, 
both through weak analytic continuation and through the 
use of a dilatation analytic subset of the Hilbert space. Sudar
shan, Chiu, Gorini, and Parravicini and Bailey and SchievelO 

studied the analytic deformation of the real continuous spec
trum, and Bohm II has investigated an explicit pole formal
ism. Katznelson l2 has discussed the time dependence of the 
decay law associated with arbitrary degeneracy of the com
plex poles of the resolvent. 

In techniques which use analytic continuation of the 
continuous spectrum to the lower half-plane to construct the 
functional which is an eigenfunction of the Hamiltonian 
with complex eigenvalue coinciding with the position of the 
resonance pole, this eigenvalue lies in a continuous sea of 
eigenvalues9

; one cannot, therefore, construct a variational 
principle. One sees, however, that it is appropriate to con
struct a theory which works with complex canonical varia
bles. 13 We have adopted a point of view in which we use 
complex variables from the beginning in the framework of 
Hilbert spaces of analytic functions (Hardy class) as devel
oped by Van Winter,14.15 in close relation to the work of 
ABC. In a given angular wedge of the complex plane for the 
canonical variables, one finds a quantum theory parallel to 
the usual real canonical theory,13 that is, every expectation 
value remains the same under the transformation leading to 
the new representations. One can find, however, complex 
eigenvalues for the Hamiltonian in the new representation, 
with eigenvectors which belong to the space defined by the 
complex wedge. These eigenvectors do not have anL 2 norm, 
since the existence of such a norm would preclude a complex 
eigenvalue. Nevertheless, one can define a scalar product 
(with the same L 2 measure) between elements of the space 
defined by the complex wedge and elements of a dual space, 
of which some elements are also L 2. Structures of this type, 
involving two spaces with the property that the scalar prod
uct is not defined between any pair of elements, but only 
between elements belonging to distinct spaces, and a third 
space, which is the intersection between them, compatible 
with both, were first proposed by Antoine and Grossmann, 16 
and given the name of partial inner product spaces. It ap
pears, therefore, that partial inner product spaces provide a 
suitable structure for the description of the states of unstable 
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systems. In this paper, we shall utilize the results of Van 
Winter to establish a connection between the complex singu
larities of the resolvent associated with resonance phenom
ena, and partial inner product spaces. 

In Sec. I, we define D (a,/3 ), a Hilbert space of analytic 
functions in a wedge. 15 In Secs. II and III some properties of 
these spaces are discussed. The notion of a space and its dual 
space is developed, and operators constructed in these two 
spaces are defined. A class of Hamiltonians, their associated 
resolvents, and their isolated singularities, are discussed in 
Secs. IV and V. In Sec VI, a notion of adjoint, appropriate to 
partial inner product spaces (based on a version of the Reisz 
theorem applicable to such spaces) is introduced, and in Sec. 
VII a variational principle for the isolated singularities of the 
resolvent is studied. 

I. SPACES D(a, fJ) AND RESONANCES 

We wish to study the resonance problem in the context 
of a Schrodinger equation with self-adjoint Hamiltonian of 
the form 

H=p2+V(r), (Ll) 
where VIr) is a real multiplication operator defined on 
O<r < 00. We shall work in one dimension to establish a set 
of basic results. These will apply directly to the spherically 
symmetrical case in higher dimensionality which we shall 
use later. We shall utilize a Hilbert space of analytic func
tions of the type discussed by Van Winter,15 corresponding 
to a conformal mapping of a complete set of Hardy class 
functions. Functions of this type are analytic, regular in a 
sector a < qJ <P and have the property that 

(1.2) 

exists and is bounded uniformly in qJ for a < qJ < p. We shall 
denote such a set offunctions by D (a, P ). There are boundary 
functions l5 f(keia ) andf(keiP ) [also satisfying (1.2)] such that 
(t/J=a,p) 

lim r"" I f(keiq» - f(keill'W dk = O. 
q>->.p Jo (1.3) 

With the inner product 

(f, g)D(a, 131 = ~ [l"" J(keia)g(keia) dk 

+ l"" J(keiP)g(keiP ) dk ], (1.4) 

this set of functions, closed in the norm Ilf II D (a, 13 I ' becomes a 
Hilbert space. The variable k can denote momentum or posi
tion; in fact, as we shall discuss later, D (a, P )-D ( - p, - a) 
under Fourier transform. 

Ifwetake V(r) to be the restriction tOqJ = Oofafunction 
v(re - iq» in D ( - r, r) for some r> 0, then there may exist 
solutions of the equation (for E real). 

Hf = Ef, (1.5) 

which are elements of D (a, P) for - r < a, P < r. 
Furthermore, if we consider spaces D (a, P) for which 

a, phave the same sign, we may find solutions to Eq. (1.5) for 
E complex-valued withf an element of such a space. Such 
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solutions are associated with complex poles of the resolvent, 
and, as will be demonstrated at the end of Sec. VI, lead to the 
exponential decay law in time, which is characteristic of res
onant or unstable states of the system described by the Ha
miltonian H. We shall therefore interpret these solutions as 
the quantum mechanical representations of the correspond
ing unstable states. These solutions cannot be continued 
back to qJ = 0 and still remain integrable in the sense ofEq. 
(1.2). For every solution, in the spaceD (a, P), corresponding 
to a complex eigenvalue E there is a solution in D ( - p, - a) 
corresponding to complex eigenvalue E(these eigenvalues lie 
between the wedge and the real axis). 

II. MELLIN TRANSFORM AND PROPERTIES OF THE 
BOUNDED KERNEL K 

The qJ dependence of the relations which we wish to 
study is simplified by the introduction of the Mellin trans
form. We define the Mellin transform by 

f(u,qJ) = [l/(21T)1/2] l"" f(kei'l')k iu - 112 dk. (2.1) 

The weight factor is determined by the conformal mapping 
between functions in D (a,/3) and functions of w, where eW 

= ke i</>, analytic in a strip. 14 A complex-valued functionf 
defined on the sector a <qJ <pbelongs toD (a, p ) if and only 
ifl4 

f(u,qJ) = - e'l'U - i'l'/2f(U) 

for some function f(u) satisfying 

f: "" (e
2au + e2/3U)If(uW du < 00. 

The inverse Mellin transform is given by 

(2.2) 

(2.3) 

f(kei'l') = [l/(21T)1/2] f: "" f(u)(kei'l')e- iu - 112 duo (2.4) 

Let us define a class % of integral kernels K (ke i'l',k Ie - iq» 

(we choose to represent the phase of the second argument as 
e - i'l' for later convenience), where 

(2.5) 

exists and is bounded uniformly in qJ, for a < qJ <P; and, 
furthermore 

(Kf)(kei'l') = i"" K (kei'l',k Ie - iq> lI'(k 1 ei'l' )ei'l' dk 1 (2.6) 

is in D (a, P ) iff is in D (a, P). The Mellin transform of the 
kernel K is defined byl4 

K(u,u',qJ ) 

= (l/21T)l"" dk l"" dklkiU-1I2K(keiq>,k'e-i'l') 

X (k ')iU' - 112 = e'l'Ue - 'l'U' - i'l' K(u,u /), (2.7) 

with K(u,u /) satisfying 

f: "" du f: "" du /(e2a(U - u'J + e2/3(u - U'I)IK(u,u'W < 00. 

(2.8) 

The transform inverse to (2.7) is 
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K (keitp,k'e - itp) 

= (1/21T) J: oo du J: oo du' K(u,u')(keitp ) - iu - 1/2 

X (k'e- itp )-iU'-1I2, (2.9) 

The Mellin transform ofEq. (2.6) is 

(Kf)(u,~) 

= [l/(21T)1/2] f" (Kf)(keitp)k iu - 112 dk 

= (l/21T) f" dk LOO dk 'eitpk iu - 112K (keitp,k'e - itp) 

x J: oo k' - iu' - 112etpu' - itp/2f(u') du' 

= etpu - itp/2 iOO du' K(u,u')f(u'). 

Now consider the integral 

LOO g(ke - itp)K (keitp,k ' e - itp )eitp dk " 

(2.10) 

(2.11) 

whereg(ke - itp), for a < ~ <p,lies in D ( - p, - a). We shall 
show that this integral is a function of k ' e - itp and that it lies 
in D ( - p, - a). To see this, we substitute the definition (2.4) 
into (2.11), and take the Mellin transform. Equation (2.11) 
then becomes 

(l/21T) J: oo du LOO dk LOO dk 'g(u)(keitp)iU - 1/2 

XK (keitp,k'e - itp)eitp k' - iu' - 1/2 

= e - tpu' - itp/2 J: oo g(u)K(u,u') duo (2.12) 

Comparing with Eq. (2.2), one sees that (2.12) corresponds to 
the complex conjugate of a function f(u', - ~ ),for a < ~ <p; 
in the integral we can multiply by e - tpuetpu and apply the 
Schwarz inequality which, along with (2.7) and (2.8), shows 
that (2.12) lies in D ( - p, - a). We shall say that a kernel of 
this type is constructed in the two spaces D (a, P) and 
D ( - p, - a), in contrast with the usual type of kernel in a 
Hilbert space, which is constructed in just one space. 

III. RELATIONS BETWEEN THE SPACES D(a, [J) AND 
D( -p, -a) 

We shall use the notationD (O,O)fortheusuaIL 2 space de
fined by square integrable functions on the real half-line. For 
any g(k)eL 2 and any fixed if! in a<if!<p, and a positive €, 

there is a functionf(ke itp) in D (a, P) such that 

L'" I f(ke i"') - g(k W dk < €, (3.1) 

i.e., the functions inD (a, p land their boundary functions are 
dense in D (0,0).15 In a similar way we shall show that the set 
of functions that can be continued analytically to a wedge 
containing the real half-line, say D ( - y,y), is dense in a 
wedge contained in ( - y,y) in the following sense: 

For any fixed if! in a<.if!<.p and a positive €, for any 
g(keitp) ED (a,/3), where - y<.a <P < y, there exists a func
tionf(keiO)ED ( - y,y), for each e, such that 
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(3.2) 

i.e., the set of elements associated with any given e in 
D( - y,y)isdenseinD(a,/3). The proof is as follows. The set 
offunctions, for fixed e,f(kei~ ED ( - y, y) is dense in D (0,0). 
Sincef(kei~ is a continuation of a functionf(k ) ED (0,0), this 
statement implies that the functions in D (0,0) that can be 
continued analytically to a wedge ( - y, y) are dense in D (0,0) 
and remain dense after the continuation. Now consider 
g(kei"') as a function in L 2; sincef(keitp) is dense in L 2, the 
result (3.2) follows. 

Let us consider the class of operators ~ defined on 
D (a,/3 ), such that 

.s:Y'(A,~) = sup [ roo I (Af)(keitpWdk ]1/2 
./ED (a'p) Jo 
x [L" If(keitpWdk ] -1/2 (3.3) 

exists and is uniformly bounded in a < ~ <p. If A satisfies 
Eq. (2.5), then, by the Schwarz inequality, it satisfies (3.3) 
also. Now, considering f(ke itp ) as a function in L 2, then 
Af(keitp ), foralljinD (a,/3), defines a family of operators, A (~) 
from L 2 to L 2, i.e., 

(3.4) 

andEq.(3.3)istheL 2 norm IIA (~lilofA (~). We remark thae4 

sup IIA (~)II = max { IIA (alil,IIA (f3 )11 J, 
a<tp<f3 

which provides a norm for operators A in ~. 

IV. THE HAMILTONIAN AND ITS ASSOCIATED 
RESOLVENT 

(3.5) 

Let !iJ(Ho) be the set offunctionsf(keitp) inD (a,/3) with 
the property that k 2 e2itp f(kei'P) is in D (a,/3 ). Let the free Ha
miltonian Ho have domain !iJ(Ho) and let it act according to 

Hr/=k 2e2i'Pf (4.1) 

for allfin D (Ho). This definition results in a closed operator 
[in the norm defined by Eq. (1.4)]. The resolvent ofthe free 
Hamiltonian, 

(4.2) 

is bounded as an operator on D (a,/3) if A. is in the sector 

2{3 < argA. < 21T + 2a, 

where - 1T/2 < a<.~<.p < 1T/2. In particular, Ro(A.,~ ) [an 
operator defined onL 2 as in Eq. (3.4)] is bounded for alIA. for 
which 

2~ < argA. < 21T + ~. (4.3) 

Now suppose the potential V of Eq. (1.1) to be the re
striction to ~ = 0 of a function V(re - i'P) in D ( - y,y) for 
some positive y. Its Fourier transform is defined by 

(FV)(k,~ ) = [l/(21T)3/2] 1"" J eik.rV(re - i'P) 

Xe- i'P(re- i'P)2drdQ). (4.4) 

In the following we shall discuss the three-dimensional (one
particle) case for the sake of simplicity in working with the 
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Fourier transform; w corresponds to angular variables, i.e., 
polar and azimuthal angles. It is shown by Van Winter 15 that 
FV(k,q;) is a function of kei'l' only. In fact, if we consider the 
action of F onj(re - i'l') ED ( - /3, - a), thenf(k,q; ) 
= Fj(k,q; ) is a function of kei'l' and lies in D (a,/3). We shall 
denote it aSf(kei'l'). Fis therefore an isometric mapping of 
D ( - /3, - a)intoD (a,/3 ) and a unitary mappingofD ( - r,r) 
into D ( - r,r). We define 

(4.5) 

We define the action of V(re-i'l') onj(re-i'l')ED ( - /3, - al, 
as V(re- i'l'))j(re- i'l'). In the Fourier transformed (momen
tum) space, FVacts an an integral kernel in the following 
way: 

(FVj)(kei'l') = 1''' f W(lk - k'lei'l'lf(k'ei'l') 

xei'l'(k 'ei'l')2 dk 'dw. (4.6) 

We remark that, although Vjis in D ( - /3, - a), II vjll/illil 
[the usual L 2 (R+,d 2k) norm, where R+ is the positive half
line, and d 3k the Lebesque measure in momentum space) 
may have no supremum, and therefore the operator V(q; ) on 
L 2(R+,d 3k) defined by (4.6) may be unbounded. 

We shall define V(q;) as follows. Letg(k) run through a 
densesetinL 2(R+,d 3k );then V(q; ) is the operator for fixed q; 
in - r<q;<r on L 2 (R+, d 3k), which acts according to 

(4.7) 

The operator Ro(Ji,q; ) onL 2 (R +,d 3 k ) consisting of mul
tiplication by (k 2e2i'l' - A. ) - I is the resolvent of a closed oper
ator Ho(q; ) on L 2 with domain !iJ (Ho(q; )) consisting of all 
f(k,w)suchthatk 2f(k,w)isinL 2. Thespectrumu[Ho(q; )]isthe 
halfline 0< 1.1 I < 00, arg-i = 2q; and the resolvent set 
p[Ho(q;)] is given by (4.3). For q; fixed in - r<q;<r and .1E 
p[Ho(q;)] the operator V(q;) Ro(.1,q;) belongs to the Schmidt 
class on L 2 (R+, d 3k). Its Schmidt norm (9) satisfies 

and therefore V(q; )Ro(.1,q;) is an integral kernel in %. 
For gE!iJ(Ho(q;)), there exist constants a,b such that14 

(4.9) 

for any € > 0, the constant a may be chosen such that a < € 

! this follows from the fact that for any A. inp[Ho(q; )], there is 
anf for which g = Ro(.1,q; )f, and from the inequality (4.8) J. 

The operator Ho(q;) + V(q;) withdomain!iJ(Ho(q; ))isa 
closed operator in L 2(R+,d 3k) (by a theorem on stability of 
closedness under relatively bounded perturbations 17). 

The proofl5 ofEq. (4.8) follows from the convergence 
and uniform boundedness (with respect to q; and k ') of 

iOO 

W(lk - k 'Iei'l')k 2 dk 

in - r<q;<r. 
Hence the bound (4.8) is valid for q; = a or /3, and it 

follows that the K-norm [the left side of (2.8) in kk' 
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FIG. 1. Domain of analyticity for 8 (A) (example for r < 1T12). 

representation] 

K(K) = {f(IK(keia,k'e-iaw 

+ IK(kiP,k 'e-iPW)d 3kd 3k'J 1/2 (4.10) 

of VRo(.1 ) satisfies 

K(VRo(A. )) 
<const{[Im(A.e- 2ia)1/2]-1 + [Im(A.e- 2iP )1/2]-I}1I2. 

(4.11) 

Since H is a closed linear operator, we may define the 
resolvent 

R (A.) = (H -A. )-1, 

which satisfies 

R (A. ) = Ro(A. ) - Ro(A. )VR (A. ). 

(4.12) 

(4.13) 

Since Ro(A. ) Vis in the % class, the Fredholm procedure may 
be applied to obtain 14 

R (A. ) = Ro(A. ) +.1 (A. )Ro(A. )/8(A. ), (4.14) 

where 8 (A. ) is a function independent of <I? and analytic in the 
sector (see Fig. 1) 

- 2min{y,!1T) < arg-i < 217' + 2min(r,!1T), 

and.1 (A. ) is an operator in % defined on D (a,/3 ). 
The equation in L 2 corresponding to (4.13) is 

R (A.,q;) = Ro{.1,q;) - Ro{A.,q; )V(q;)R (A.,q;). (4.15) 

This equation is solved by the restriction of(4.14) to fixed q;, 
i.e., 

R (A.,q;) = Ro(A.,q;) +.1 (A.,q; )Ro(A.,q; )/8(A. ). (4.16) 

V. ISOLATED SINGULARITIES OF THE RESOLVENT 

Let us denote the term in (4.15) which is not regular in 
the region 2/3 < arg-i < 217' + 2a as 

F(A.,q;) = - Ro(A.,q; )V(q;)R (A.,q;). (5.1) 

For A. not too far from the negative real axis, according to 
(4.14) this corresponds to an operator F(.1 ) in the class % on 
D (a,/3), as well as an operator F(A.,q;) which is in the Schmidt 
class in L 2. Either operator has the same kernel F(A.,kei'l', 
k'e-iq») [as in Eq. (2.7)]. 
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Let us first assume that a<O</3, and let q; = O. Since 
H (0) is self-adjoint, 

F*(l',O) = F(A,O). (5.2) 

The kernel therefore has the property 

F(l',k',k) = F(A,k,k'). (5.3) 

We now consider the Mellin transform [the three-dimen
sional form ofEq. (2.7)] 

F(A,u,w,u',u/,q;)= (1I217')i
oo 

dk loo dk' e2itp(keitp)iU + 112 

X (k 'e - itp )iU' + 112F(A,keitp,k'e - itp). 
(5.4) 

From (5.3), for q; = 0, it follows that 

F(l',u',w',u,w) = F(A,u,w,u',w'). (5.5) 

Now, using (2.7), we can reconstruct F(A,u,w,u' ,w' ,q; ) as 

F(A,u,w,u',w',<p) = etpue - tpu' - i'PF(A,u,w,u',w') 

= etpue - 'Pu'e - itpF(l',u',w',u,w), (5.6) 

i.e., we obtain the symmetry relation 

F(A,u,w,u',w',q;) = F(l',u',w',u,w, - q;). (5.7) 

Using the three-dimensional version of Eq. (2.9) for the in
verse Mellin transform, we obtain 

F(A,keitp,k'e - itp) = F(l',k'e - itp,keitp). 

It follows from reality that, for q; = 0, 

F(l',k,k') = F(A,k,k'), 

and, using (5.3), we obtain 

F(A,k,k') = F(A,k',k). 

The Mellin transform for q; = 0 results in 

F(A,u,w,u',w') = F(A, - u',w', - u,w), 

and, using (2.7) again, we obtain 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

F(A,keitp,k'e - itp) = F(A,k 'ei'P,ke - itp). (5.12) 

For our purposes it will be useful to extend the validity of the 
relations obtained above to the case that 0 < a </3 or 
a </3 < 0, so that arg..i. can exceed 217' or be negative (compare 
Figs. 2,3,4). To do this, suppose that we restrict <p to the 
interval 0 <a' <<p</3. The function F(A,kei'P, k'e - itp), con-

------- 2a 

FIG. 2. Region of analyticity of F(A. ) for a < 0 <po Double line is overlap 
analyticity region of 8 (A. ), Ro(A. ). 
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FIG. 3. Region of analyticity of F(A. ) for 0 < a <po 

sidered as a kernel on D (a' ,/3 ) satisfies the symmetry rela
tions (5.7), (5.8), (5.11), and (5.12) for A sufficiently close to 
the negative real axis; since it is analytic in A, we can analyti
cally continue the relation (5.12) to a region for which 
arg..i. > 217'. In this region, the function may have isolated sin
gularities (marked ® in Fig. 3), and, for this reason, al
though (5.11) remains valid, F(A,u,w,u',w') may not be 
square-integrable. In the same way, we could choose to re
strict q; to the interval a<q;</3' < 0, and extend the validity 
of(5.12) to a region for which arg..i. <O(newsingularitiesmay 
occur in the region marked in Fig. 4). We now turn to the 
study of (5.8). 

To extend the applicability ofEq. (5.8), we first note 
that the left side can be continued to arg..i. > 217' in the case 
tp > 0 andF(A,k'e - i'P, keitp ) can be continued to arg..i. < O. In 
order to maintain the condition 2<p < arg..i. < 2<p + 217', we 
can letl' denote the value of A, for arg..i. < 0, to which we had 
continued the function Fat - <po Then the functions Fat 
(q;,A ) and ( - <p,x) are related by (5.8), even though they are 
not kernels on the same space D (a,/3). In a later section, we 
shall define a space which includes both of the spaces on 
which these kernels act as subspaces. 

As remarked by Van Winter, IS the resolvent operator 
can be expanded in a Laurent series of the form 

R (A) = - (A -Ao)-Ip- i (A _Ao)-n-1N n + Rreg(A ) 
n=1 

(5.13) 

2y 

FIG. 4. Region ofanalyticity of F(A.) for a <p <0. 
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around a pole at Ao, where Rreg (A ) is regular in an open set 
aroundAo. From (4.16) and (5.1), it follows that the operator 
(for r a contour enclosing only the singularity at Ao) 

P = - (1I21Ti)i R (A) dA 

belongs to % on D (a,/3) and has finite-dimensional range r 
and 

N = (H - Ao)P = - (1I21Ti) i(A - Ao)R (A ) dA 

is nilpotent such that N r = O. Note that P 2 = P (but it is not 
necessarily self-adjoint), N = PN = NP, and that r is inde
pendent of rp (the proof is given by Van Winter,14 where the 
fact that the multiplicity of a Schmidt class operator and its 
adjoint is the same is used in an essential way). 

Suppose that the set Ibn (keiop ) J, n = 1, ... ,r, is a basis for 
the range of P. In the Mellin representation it follows that 

bn (u,tU,rp ) = II dtU'du' P(u,tU,u',tU')e - opU'bn (u',tU',rp ). 

(5.14) 

According to (5.13) and the fact that the singularities inR (A ) 
are due to singularities in F(A ), the symmetry properties of 
the kernel P are the same as those for F. It then follows from 
(5.11) that 

bn(u,tU,rp) = J J du'du/ eopu 

X P( - U',tU' - u,tU)e - opu'bn (u',tU',rp ) 

and hence 

bn ( - U,tU,rp) = I Ie - opu 

XP(u',tU',u,tU)eopu' bn ( - U',tU',rp) du'dtU'. 
(5.15) 

The kernel in (5.15) is the kernel ofthe adjoint operator p* (rp) 
in L 2, the Mellin transform space of the L 2 defined in the 
discussion concerning Eq, (3.4); hence Ibn ( - u,tU,rp) J is a 
basis for the range of P*(rp), It therefore follows (since the 
I bn I are linearly independent functions) that 

= 2:, Bn1eopubn(u,tU)b/( - u',tU')e-opu'. 
nl 

(5.16) 

In the following, we depart from the viewpoint taken by Van 
Winter. 15 If eopu - iopi2bn (u,tU) is an element of D (a,/3) for 
a < rp </3, then e - opu' - iop12bn ( - U',tU') is the complex conju
gate of an element of D( - /3, - a), with - /3 < - rp < - a, 
i.e" the projection operator P will be interpreted as con
structed in two different spaces and not, as in Ref. 15, con
structed in a single space. Let us define 

e-OPU+uop 12 Cn(u,tU) = e-opU+iopI2bn( - U,tU) 

to obtain the form 

~ B OPUb ( )- (' ') - opu' = £.. nle n U,tU CI U ,tu e , 
nl 
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(5.17) 

(5.18) 

From the symmetry property (5.11) it follows thatBnl is sym
metric and can therefore be diagonalized by a real orthogo
nal transformation. If 

and we define 

aj(u,tU) = 2:,bn(u,tU)Cnj , 
n 

dj(u,tU) = 2:,cn(u,tU)Cnj , 
n 

then (5,18) becomes (normalizing aj and dj so that all the Dj 

can be replaced by unity) 

eopUP(u,tU,u',tU')e - opu' 

= 2:, eopuaj(u ,tU)dj(u' ,tU')e - opu'. 
j 

Since Paj = aj , it follows that 

J J dj(u,tU) adu,tU)dudtU = Djk' 

(5.19) 

(5.20) 

The inverse transformation (for the direction of k corre
sponding to tu), the generalization of (2.9) to three dimen
sions, is 

P (keiop,k , e - iop) 

= (l/21T) J dudu'(keiop ) - iu - 3I2p(u,tU,U' ,tu') 

X (k'e- iop )-iu'-312, (5,21) 

or with [note that aj(u,tU)euop - iopl2 = aj(u,tU,rp) is the Mellin 
transform of aj (keiop ).keiop since we are working in three 
dimensions] 

aj(keiop ) = [1I(21T)1I2] J du(keiop ) - iu - 3/2aj (U,tU). (5.22) 

and similarly for ~ (ke - iop) [corresponding to the conjugate 
of(5.22) with rp replaced by - rp], one obtains the 
representation 

where the element aj(kei<P)ED (a,/3) corresponds to an isolat
ed singularity of the resolvent, The basis functions satisfy 

J d 3k e3iop~(ke- i<P)adkeiop ) = Djk · (5.24) 

Note that this integral is independent of rp. 
In case the two regions (a,/3) and ( - /3, - a) overlap, 

they contain rp = O. Let us consider this situation briefly. In 
this case, R (A,O) is the resolvent of an operator self-adjoint in 
L 2, and P must be of the form 

(5.25) 

so thatdj(k') = aj(k'). Since, furthermoreaj(k') can be con
tinued in the union of the two domains, (5.23) becomes 

(5.26) 
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and (5.24) becomes 

(5.27) 

Hence, for the case that an isolated pole is real, its corre
spond~n& analytic representatio!! is of the form (5.23), but 
with dj(k'e - "I') replaced by aj(k'e -ICP). The representation 
(5.23) is therefore a generalization of the structure of a self
adjoint projection operator. As we will show below, an oper
ator of the type (5.23) can actually be defined in a partial 
inner product space,4 in close analogy to the definition of a 
self-adjoint operator. 

VI. ll-SELF-ADJOINTNESS 

In this section we shall show that many of the notions 
available for operators in the usual Hilbert space are also 
available to operators constructed in two spaces. In particu
lar, we shall show that the operator P (keiCP,k' e - iCP) for 
a < rp < /3 satisfies a symmetry relation analogous to self-ad
jointness in a generalized type of space. Let us define such a 
space by introducing the scalar product 

(6.1) 

where g(keiCP)ED (a,/3) and/(ke - icp)ED ( - /3, - a). In terms 
of the Mellin transformed functions, 

(f,g)1l = fC(U,W)g(u,w)dUdW, (6.2) 

from which it is clear that (f ,g)n is independent of rp. We see 
from Eq. (5.24) that ak (keiCP)ED (a,/3) is ll-orthogonal to 
dj(ke - iCP)ED ( - /3, - a). Incaseg(u,w)ED ( - /3,/3 )sothatitis 
an L 2 function, (g,g)n is the L 2-norm. 

We remark that even though (6.2) is independent of rp,J 
and g are not, in general, L 2 functions. We may apply the 
Schwarz inequality, by providing the factors eCPU - icp/2 for 
g(u,w) and e - cpu + icpl2 for/(u,w) so that the integrand can be 
factored into L 2 functions, i.e., 

(f,g)n = f( e - cpH icpI2f(u,W) Hecpu - icpI2g(u,w))eicp dudw 

= fC(U,W, - rp )g(u,w,rp )eiCP dudw, 

and hence 

1 (f,g)n 12 

(6.3) 

<(flf(U,w, - rp W dUdw)(flg(u,w,rp W dudw). (6.4) 

Since in (6.3),J( - rp) or g(rp) may vary through a dense set in 
L 2, (f,g)n is nondegenerate. 

We have defined the set D (a,/3) such that 
- 1T12 < a,/3 < 1T12. With the inner product (6.2), the union 

of all spaces D (a,/3) and D ( - /3, - a) forms a partial inner 
product space (Ref. 16, I), where D (1T12, - 1T12) is the set 
"compatible" (the scalar product exists) with all the space. It 
is also true that, for given a, /3, D (a,/3 )uD ( - /3, - a) is a 
partial inner product space, withD ( - /3,/3 ) as the compatible 
subset. This partial inner product space is a subspace of the 
larger union. 
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To compare the structure ofthis space with that of the 
Gel'fand triple,9 we consider the four spaces, D (a,/3), 
D ( - /3, - a), D ( - /3,/3 ), and D (0,0) (L 2). Functions in 
D ( - /3,/3) form a dense subset of L 2. Furthermore, we may 
define the ll-scalar product of functions in D ( - /3,/3 ) with 
functions inD (a,/3 ) and functionsinD ( - /3, - a), in thefol
lowing way. Let, for example, g(u,w)ED ( - /3,/3) and 
f(u,w)ED(a,/3). Then, fora <rp</3, (6.3) is valid, and hence 

(J,g)n = fC(U,W)g(U,W) dudw (6.5) 

corresponds to a bounded [by (6.4)] linear functional of 
gED ( - /3,/3). This result has some similarity in structure 
with that of a Gel'fand triple, i.e., 

D (a,/3 PD ( - /3,/3), 

and D ( - /3,/3 ) is dense in L2 in L 2-norm. It is, furthermore, 
true that in the D (a,/3 )-norm there are sequences of elements 
of L2 which converge to any element in D (a,/3) but not all of 
L2 is contained in D (a,/3). This is a different situation from 
what one finds in the Gel'fand triple, in which the succes
sively larger spaces contain the smaller, and is characteristic 
of the structure of a partial inner product space which looks 
like Fig. 5 (Muppet-like). 

Antoine and Grossmann 16 have defined symmetric op
erators in partial inner product spaces. We shall apply the 
Antoine-Grossmann definition to operators mapping a par
tial inner product space into itself (See Ref. 16, II, Theorem 
3.4): 

In order to define the adjoint of an operator, we wish to 
prove the analog of the Reisz theorem for partial inner prod
uct spaces. Let S = D (a,/3 )uD ( - /3, - a),JED (a,/3), and 
Lf-.C such that 

L (all + b12) = aL (ft! + bL (/2)' 
(6.6) 

IL (f)I<Km~n f If(keiCPW d 3k<K IlfIIDla.P); 

forJinD (a,/3 ) we must also consider the mapping of/(rp ). We 
shall assume that 

L (f(rp )) = L (f) (6.7) 

independently of rp, for all a <rp<f3. As in (3.4), we may de
fine a linear functional acting in the subset associated with rp 
as 

L (rp HI) = L (f(rp )); (6.8) 

the functional L (rp), according to (6.7), is rp-independent. 

FIG. 5. Structure of the partial inner product space. 
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Suppose that the set Wof elements of D (a,/3 ) are mapped to 
zero, i.e., 

W= If ED (a,/3)IL (f) = OJ (6.9) 

and suppose WL' in the L 2 closure of D (a,/3 ) such that (i is 
defined through the continuity of L ) 

WL' = IgeL 2 Ii(g)=0}. (6.10) 

We suppose that the complement of WL ' in L 2 is not empty 
and denote it by Wi 2. For g·E Wi" suppose 

i(g·) = 1. 

It now follows that 

g -i(glg· 

is in WL ' and hence 

(g. ,g - i (g1g·)L' = O. 

We thus obtain 

i(g) = (g·,g)L,/lIg·lIi,. 

Takingfto be in D (a,/3), q:> independence of 

(6.11) 

L (f) = (gLI)L' (6.12) 

implies that gL = g. Illg·lIi 2 ED ( - {3, - a), i.e., in Mellin 
transform representation, gL (u,w,q:> ) = gL (u,w)e - "tpe - ill' 12, 

so that 

L (f) = f gdu,w)f(u,w) dudw. (6.13) 

This linear functional is of the form given in (6.5), i.e., 

(6.14) 

According to the usual Reisz theorem, applied toD (a,fJ) as a 
Hilbert space, it follows from the second inequality (weaker) 
in (6.6) that, for linear functions of this type, there exists an 
element gR ED (a,fJ ) such that 

L (f) = (gR/)DlaJJI' (6.15) 

In Mellin transform representation, it follows that 

gR (u,w) = gL ( - u,w). (6.16) 

With the help of the Reisz theorem, we may find the 
elements in D (a,fJ ) which are orthogonal (i.e., the II scalar 
product vanishes) to all of the elements in D ( - {3, - a) 
which correspond to isolated singularities of the resolvent. 
These elements in D (a,/3 ) contain the generalized states asso
ciated with the continuous spectrum. 

LetgED (a,/3 ),fED ( - {3, - a),andAbealinearoperator 
defined on some dense domain in D (a,fJ ) [in the norm given 
by (1.4)] as AaJJ , and on some dense domain in D ( - {3, - a) 
as Aa{3' Then, for g in the domain of Aa{3 there exists a set of 
f's in D ( - {3, - a) (the domain of the adjoint) such that 

b(f,g) = (f,Aa{3g)n (6.17) 

is a bilinear form L 2-continuous ing. It then follows that this 
bilinear form defines a linear operator A ~ on D ( - {3, - a), 
satisfying 

b (f,g) = (A :W,g)n' (6.18) 

Then,A ~isdefinedas thell-adjointofA inD ( - {3, - a) [in 
a similar way, A ~ is obtained by starting with the bilinear 
form (g, Aa{3 fJn, and is defined as the ll-adjoint of A in 
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D(a,/3)]. 
We first remark that a set of vectors dense in D (a,/3 ) is 

dense in theL 2 sense as well; i.e., given that for any geD (a,/3) 
there exists anfin the dense set ~(A ) in D (a,/3) such that 

Itr - gliDlaJJ) < E, (6.19) 

then, for any gEL 2, there exists anfE~(A ) (for any q:> in 
a<.q:></3) such that 

f tr(keitp ) -g'(kWd 3k<E. (6.20) 
.... 

The result (6.20) follows from the fact that the Ig(ke'tp ) J 
ED (a,/3) are dense in L 2 (Sec. III), so that in the expression 

f tr(keitp ) _g(keitp ) +g(keitp ) -g'(kWd 3k 

<.f tr(keitp ) - g(keitpWd 3k 

+ f lg(keitp )-g'(kWd 3k 

there exists a g(keitp) such that 

flg(ke itp ) - g'(k W d 3k < E/2 

and it follows from (6.19) that there is anf(keitp)E~(A) for 
which 

f tr(keitp ) - g(keitp W d 3 k < E/2. 

Consider now the bilinear form (6.17) in terms of the Mellin 
transform: 

b (f,g) = f f(u,w)e - tp"e - itp/2{etp" - tp"'AaP(u,w,u' ,w') 

X etpu' - itpl2g(u',w)eitp dudu'dwd(j/} 

= f f(u,w)e - tp"(etp" Aa{3(u,w,u' ,w')e - '1'14') 

Xetpu'g(u' ,w)dudu'dwdw'. (6.21) 

Since the domain of A in D (a,fJ ) is dense, according to the 
result (6.20), the I etp"'g(u',w) J which can occur in (6.21) are 
also dense in L 2, and hence we can apply the Reisz theorem 
as proved above. 

In case 

A ~;;;JAa{3 and A ~;;;JAa{3' (6.22) 

we shall say that A is ll-symmetric (it can be closed) and if the 
equality holds in (6.22), A will be said to be ll-self-adjoint. 

The operator P, as given in (5.23), explicitly satisfies the 
definition for a self-adjoint operator. To show that the opera
tor H is ll-self-adjoint, we shall use the result of Sec. V. From 
the explicit form of Ro(A,q:» and Eq. (5.8), one finds that 

R (A,keitp,k'e - ill') = R (i,k'e - itp,keitp ). (6.23) 

By the definition of the resolvent, 

f [A8 3(k - k ')e - 3itp - H (keitp,k' e - itp)]R (A,k' eitp,k "e - ill') 

Xe3itp d 3k' 

= 83(k - k "Ie - 3itp. (6.24) 
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By conjugating (6.24) and using (6.23), it follows that 
......... . - ........ 

H(ke"P,k'e- UP ) =H(k'e-UP,keUP ) (6.25) 

and hence H is 11-self-adjoint. 
For completeness, we conclude this section with a brief 

and elementary illustration of the notions developed here for 
the resonance problem. We shall, in particular, describe the 
method of associating the decay of a state in time, due to the 
presence of a complex pole in the resolvent, with an element 
of D (a,/3). The relation between decaying states and scatter
ing resonance phenomena has been described, for example, 
by Horwitz and Marchand. IS 

We shall use H(ke - iO,k'e iO) as the kernel of H(e) to 
calculate the decay of a state if;, where if; and H (e) have the 
following properties: 

(1) if;eD (.8, - P), a <P; 
(2) H (a) has an eigenvalue at E = Eo - ir 12 of multi

plicity 1 (see Ref. 12 for a more general situation), associated 
with eigenvector f/JoeD (a,p). 

(3) if;(ke ia), the analytic continuation of if; from an L 2 

function on the real line to a function defined along a line at 
angle a, is close to f/Jo in the 11 norm. 

The probability that if; (the state at t = 0) remains if; at 
time t is 

p(t) = I(if;,e - iHtif;W· 

We shall use 

(6.26) 

a(t)=(if;,e-iHtif;) = (1I21Ti) L (if;,(H -A )-lif;)e- iAt dA, 

(6.27) 
where C is a contour going around oiH), the spectrum of H 
(positive real half-line). 

We now rotate C and replace iif;,(H - A )-lif;) with 
(if;a' [H (a) - A ] -lif;a )n, where if;(ke - ia)eD ( - p, - a) and 
if;(ke ia)eD (a,/3) occur in the 11 scalar product. Then, 

a(t) = (112m') r (if;a, ,f/Jo)n(f/Jo, [H (a) - A ] -1<Po)n Jc, 
X (f/Jo,if;a )ne - iAt dA + R (t), (6.28) 

where C I is around the eigenvalue E, and R (t) represents 
contributions from other singularities. We now use the 
Laurent expansion (5.13) in the form 

[H (a) - A] -I = [lI(E - A)] If/Jo) (f/Jol + Rreg (A )(6.29) 

to obtain 

a(t) = e - i~t (if;a ,<Po)n(f/Jo,if;a)n + R (t), 

where R (t ) is a relatively slowly varying function. This result 
shows the characteristic exponential decay law associated 
with a resonance pole. 

VII. THE VARIATIONAL PRINCIPLE19 

Let us consider the symmetric bilinear form (in Mellin 
transform representation) 

(fig) = f f(-u,w)g(u,w)dudw=(glf), (7.1) 

where/, geD (a,/3). This form is equivalent to the 11 scalar 
product (6.3), but in this type of representation 11-self-ad
joint operators appear as symmetric. Although (f 1 f) is not a 
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norm in the usual sense, it is useful in providing a scale for 
comparison. It is also nondegenerate, since forf( - u,w) 
= h(u,w)eD ( - p, - a),(fl g) = (h,g)/l' For example, the 

quantity [for (fl f),( gl g) not zero] 

F(f) = (fl g)/I(flf)11/2 (7.2) 

is stationary whenf(x) = zg(x), in which case it is equal to 
(gl g)1/2. Consider the expansion ofF (f) in the neighborhood 
off = g, i.e., for f = g + Eh, where E (real) is small, and h is 
arbitrary in D (a,f3): 

[F(g+Eh)f= l(glg)I[l- [E2/1(glgW] Re[C(h,g)] 

+ 0 (c) J, (7.3) 

where 

C(h,g) = (h Ih )(glg)* - [lIl(glgW(h Ig)2(glg)*2. (7.4) 

A similar calculation in the usual complex Hilbert space 
yields the expression Ilh 11211 gl12 - l(h,gW;;;.O, where zero is 
achieved only if h is proportional to g, in place of C (h,g). It is 
also true that C (h,g) vanishes whenh is proportional tog, i.e., 
for h = zg, any complex z. Since 

C(eilih,g) = e 2iliC(h,g), (7.S) 

if C (h,g) is not zero, we may pick the phase of h so that 
F( g + Eh) is a maximum (or minimum) as € goes through 
zero. 

To interpret this situation geometrically, let us examine 
the problem of constructing projections. Let g range over a 
closed linear manifold Min D (a,/3), and supposefis a given 
element of D (a,/3) (which mayor may not be in M). We now 
seek a g in M such that 

G(g) = 1(f-glf-g)1 (7.6) 

is stationary. Suppose that go is an element of M which satis
fies this requirement. Then, 

G(go + Eg) = l(f -go + Eglf -go + €gW 

.. = I(h + eglh + egW (7.7) 

is stationary as a function of E, for arbitrary gEM, at E = 0. 
Expanding as a function of real €, we obtain 

G(go + €g) = I(h Ih W + 2c[Re(h Ih )(glg)* + 21(h IgW] 

+ €41(glgW + 4CRe(glg)(h Ig)* 

+ 4ERe(h Ih )(h Ig)* (7.8) 

and since the first derivative with respect to € must vanish at 
€=O, 

Re(h Ih )(h Ig)* = 0. (7.9) 

This condition must be valid for all gEM and hence, for g 
replaced by ig. It follows that if (h I h ) # 0, 

(h Ig) = 0. (7.10) 

It is not true, however, that G (go + Eg) will be larger than 
G (go) for any gin M. Since (h Ig) = 0, the positivity of the 
second derivative requires 

Re(h Ih )(glg)*;;;.O. (7.11) 

This condition is sensitive to the phase of gin M, and, for any 
g, a change in phase can be introduced to satisfy (7.11) [for 
(gIg) #0; in case (gIg) = 0, G (go + €g) does not depend on E]. 
Although we shall not use this notion in an essential way 
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(b) 

FIG. 6. Geometrical notion of orthogonality. 

later, we could consider (7.11) to be part of the criterion for 
the "orthogonality" of two vectors, h andg, according to the 
form (7.1). To associate a geometrical intuition with the idea 
of orthogonality, each vector should be minimum under 
small perturbations parallel to the other. In particular, if the 
M utilized in (7.6) is one-dimensional, one has the picture of 
Fig. 6. Under small additions to go [Fig. 6(a)], the "distance" 
of Ito the corresponding point on the manifold should in
crease, and similarly for g. We now show that the phases ofl 
and g can always be picked so that this picture is valid: 

Let 

h=l-ag, h'=g-bl (7.12) 

so that (h Ig) = 0 and (h ' If) = O. It follows that (assume 
(gIg) #0, (flf)#O) 

a = (flg)/(glg), b = (flg)/(flf)· 

Then, 

(h Ih) = (flf) - (flg)2/(glg), (h 'Ih') = (gIg) - (glf)2/(flf)· 
(7.13) 

The condition (7.11) for each of these, implying "orthogona
lity," is [with the definition (7.4)] 

ReC(f,g»O, ReC(g/»O. (7.14) 

The inequalities would imply that 

I(h + Eglh + Eg)I>I(h Ih)1 (7.15) 

for E real. 
Ifwe letl-ej/j J, then the requirement (7.14) becomes 

(7.16) 

where we have used the fact that C ( g,ej/j I) = e - 2j/j C ( g,f). 
Such a rotation in the complex plane can tum any complex 
number to a position satisfying the required inequalities. 

Returning to Eq. (7.3), let us consider a variation Eh 
which is orthogonal to g in the sense of (7.10) and (7.11). The 
choice of phase in (7.5) is then such that the functional F(f) 
defined in (7.2) is a minimum. The geometrical significance 
of the form (fIg) is therefore similar to that of the usual com
plex Hilbert space scalar product, provided that the phases 
are chosen appropriately. 

We now tum to the notion of projection operators. We 
say that a basis for a finite-dimensional manifold M, such 

that [1;} = M in the D (a,/3) topology, is nonnull if 

det(t: l/j)#0. (7.17) 
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This condition is necessary and sufficient for the existence of 
an orthonormal basis [tpj} such that (tpj Itp}) = 6ij' Since 
(t: l/j) is symmetric, there is an orthogonal transformation A 
such that 

where, by (7.17), Ak #0. Then, [tpk = [l/(Ak )1/2]IAkJ: } is 

the orthrnormal set. Suppose, on the other hand, 

det(t: l/j) = O. 

j 

(7.18) 

Then, there is no transformation to an orthonormal basis. 
Suppose 

is an orthonormal basis. Then, 

and 

det(tpj Itp}) = (detTi/det(t: l/j) = 0, 

in contradiction with the assertion that the [tpj} form an 
orthonormal basis. 

Not every manifold is nonnull. As we have remarked, 
(flg)isnondegenerate, since (f Ig) = OforallgeD (a,/3 ) implies 
that e - u'Pf( - u,a» is orthogonal in the L 2 sense to all of 
[e'PUg(u,a»} = L 2. ForgrestrictedtoM,asubspaceofD (a,/3), 
(f Ig) = 0 implies only that e - u'Pf( - u,a» is orthogonal, in the 
L 2 sense, to a subspace of L 2. 

We have shown that every finite-dimensional manifold 
spanned by a nonnull basis (which we shall call a nonnull 
manifold) has an orthogonal basis. For such a nonnull mani
fold M, the decomposition 

I=go+h, (7.19) 

where (h Ig) = 0 for all gEM and goEM is unique. Let 

where [tpj} is the orthonormal basis in M. Then, 

aj = (tpj If) 
and 

h = I - Itpj(tpj If)· 
} 

Since 

(h Ih ) = (flf) - I(tpj If)2, 
} 

(7.20) 

(7.21) 

the phase of/can always be chosen so that Re(h Ih »0, and 
hence I(h + ~Ejtpj Ih + ~Ejtp;)1 > I(h Ih)1 ("orthogonality" of 
h to the orthonormal basis in M). We see that the mapping 

(7.22) 

is precisely that of a projection operator ofthe type (5.26). 
Let us now consider the "normalized" bilinear form 

(for (gIg) #0) 
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f g( - u,lU)H(u,lU,U',lU')g(U',lU') dudu'dlUdlU' 

E(g) =------------ (7.23) 

f g( - U,lU)g(U,lU) dudlU 

_ (gIHlg) 
- (gig) , 

(7.24) 

where, in terms of our notation ofEq. (6.2), we have taken 
f(u,lU)e - 'PU = g( - u,lU)e - 'PUEf) ( - (3, - a). Then, for 
b(u,lU)e'PuEf) (a,/3), 

E (g + €h ) = E (g) + [2€/(glg)][(h IH Ig) - (h Ig)E (g)] 

+ [~/(glg)] [(h IH Ih ) + E (g) 
X [4(h Ig)2/(glg) - (h Ih)] 

- 4(h IH Ig)(h Ig)l(glg)} + 0 (~), (7.25) 

usingthesymmetryproperty(5.11), i.e., (h IH Ig) = (gIH Ih). 
If g is a stationary point for the functional E (g), then the 

linear term in € must vanish: 

(h IH Ig) = E (g)(h Ig) (7.26) 

for all btu, lU)eu'PEf) (a,{3); since the bilinear form is nondegen
erate, this implies 

Hg=E(g)g, (7.27) 

i.e., E (g) is an eigenvalue of H which is equal to the A dis
cussed in Sec. Y, and g(u, lU)eu'PEf) (a, (3) is an eigenfunction. 
With (7.27), (7.25) becomes (if(h Ih )#0) 

E(g + €h) = E(g) + ~[(h Ih )(glg)*/I(glgW] 
X [E(h) - E(g)]. (7.28) 

According to the symmetry (5.7), we have 

e'PUH(u, lU, u', lU')e - 'PU' = e - 'PU'H(u', lU', u, lU)e'PU, (7.29) 

Then, conjugating 

f e'PUH(u, lU, u', lU')e - 'PU'e'PU'g(u', lU') du'dlU' 

= E (g)e'PUg(u, lU), 

we obtain 

f e - 'PUH(u, lU, u', lU')e'PU'e - 'PU'g( - u', lU') du'dlU' 

= E(g)e-'PUg( - u, lU), 

(7.30) 

(7.31) 

Each eigenvalue E (g) corresponding to an eigenfunction 
g(u,lU)eU'P Ef) (a,/3) implies the existence of the complex conju
gate eigenvalue for an eigenfunction 
e - u"'g( - U,lU)Ef) ( - (3, - a) [as in (5,17)]. If (gig) is maxi
mal, in the sense 

If g( - u, lU)e - U'Pg(u, lU)eU'P du I 
<flg(U, lU)eU'P 12 du, 

and the equality is realized, then 

g( - u, lU)e - U'P = zg(u, lU)eU'P (7,32) 

and the variational principle (7,23), that E be stationary 
aboutg, reduces to the usual Hilbert space variational princi
pal for a self-adjoint operator. In this case, E (g) is real. Sub
stituting (7.32) into (7.31), we obtain 
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f e - 'PUH(u, lU, u', lU')e'PU'e'PU'g(u', lU') du'dlU' 

= E (g)e'!'Ug(u, lU); (7,33) 

hence, e'PUg(u, lU) is an eigenfunction of H ( - (jJ) as well. By 
(7,32), D (a, (3) and D ( - (3, - a) overlap, From this, it fol
lows that g(u, lU) is an L 2 function, and can be continued to 
both sides of the real axis (as already mentioned), 

We now return to (7.28), In general, 

IE(g + €h W = IE(gW + [2~/I(glgW] 
XRe[(E(g)*E(h) -IE(gW)(h Ih )(glg)*] 
+ 0 (€4) (7,34) 

is not definitely greater or less than IE (gW, The sign of the 
coefficient of ~ is given by 

a = sgn[ IE(h )ICOS({jJh - (jJg + 0) - IE (g)lcosO j, 
(7.35) 

where 

(jJn = arg[E(h)], (jJg = arg[E(g)], 0 = arg[(h Ih )(glg)*], 
(7.36) 

Experimentally recognizable resonance poles generally lie 
close to the real axis (their imaginary parts are small com
pared to their real parts), in the lower half-plane, and hence it 
is of interest to consider the case when h also corresponds to 
an eigenfunction for eigenvalue E (h ), and {jJ n , (jJ g aresmall. If 

IE(g)1 < IE(h )1, 

for example, if E (g) is the eigenvalue of smallest magnitude, a 
is determined by the sign of cos O. It follows by the usual 
methodthatifE(h )#E(g),(glh) = 0, Withournotion(7.1O), 
(7.11) of "orthogonality," cos 0>0, and IE (g) I is therefore 
minimal with respect to the addition of a real multiple of 
another eigenvector [when the phase of this orthogonal ei
genvector is chosen to satisfy (7.11)J. 

In case the angles {jJ hand {jJ g are small, the imaginary 
parts of E (h ) and E (g) are also small, and the ordering in 
terms of the magnitudes is almost equivalent to an ordering 
in terms of the real parts of the complex eigenvalues. In fact, 
let us consider (for h, g eigenvectors) 

Re[E(g + €h)] = Re[E(g)] + [~/I(glgW] 
X Re[(h Ih )(glg)*(E(h) - E(g)], 

(7,37) 

The "orthogonality" condition between hand g required 
only that Re[(h Ih )(glg)*];;'O, and admits the possibility that 

Im[(h Ih )(glg)*] = 0. (7,38) 

Assuming (7.38), it follows that the coefficient of ~ is posi
tive ifRe[E (h )] > Re[E (g)], i.e" thatE (g) has the smaller real 
part. One can see that a similar conclusion is reached for the 
imaginary part. Again, assuming (7.38), we obtain 

Im[E(g + €h)] = Im[E(g)] + [~/I(glgW] 
XRe[(h Ih )(glg)*]Im[E(h) - E(g)] 

(7,39) 

so that the coefficient of ~ is positive ifIm[E (h )] > Im[E (g)]. 
The minimal properties of the form E (g) that we have ob
tained above refer to h as an eigenvector with eigenvalueE (h ) 
satisfying the "orthogonality" conditions (7.11) and possibly 
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(7.38) [(h Ig) = 0 was not actually used]. Hence a variation 
g---+g + €h for any h satisfying (7.11) and (7.38) will have 
these properties provided that IE (h ) I > IE (g) I, Re[E (h )] 
> Re[E (g)] or Im[E (h )] > Im[E (g)]. It is possible to order ei
genvalues in this sense, but, for arbitrary h, these inequalities 
cannot be assured; hence the variational principle cannot be 
used directly to establish a bound. In particular, suppose 
!g; l to be eigenfunctions, and 

n 

h = I a;g;, 
;~ 1 

(7.40) 

where(g; Igo) = o for i#O, and(g; Igj) = 8ij' Then we can take 
(h Ih ) = ~;""oa; = 1, and the coefficient of il in (7.28) would 
be 

I a;Eig;) - Eigo)· (7.41) 
;",,0 

Since the aT are not real, the ordering of (E ig;)} does not 
determine the sign (for n > 1) of the real part or the imaginary 
part of(7.41), or ofRe[~aTEig;)E(go)'" - IE(goWJ. 

VIII. CONCLUSIONS 

We have shown that complex poles of the resolvent of 
an operator which is self-adjoint in L 2 can be put into corre
spondence with complex eigenvalues of an analytic exten
sion (if it exists) of the operator, with eigenfunctions in a 
space D (a,/3). These eigenfunctions are not normalizable, 
and their scalar products with other elements of D (a,/3) may 
not be defined. There is another, dual, space, D ( - p, - a), 
however, with which one can define linear functionals on 
D (a,/3 ) and construct bilinear forms with some of the proper
ties of a scalar product in Hilbert space. In particular, the 
analog of the Riesz theorem is valid, and the geometrical 
interpretation of the bilinear form, with appropriate choices 
of phase, has some features in common with that of L 2 scalar 
products. 

In this (II-) product, the extended Hamiltonian, and the 
projection operators associated with its discrete complex ei
genvalues, are II-self-adjoint. The symmetry property dis
cussed by Schieve and BaileylO, though discussed in a more 
complicated way, corresponds to II-self-adjointness. The 
space of eigenfunctions D (a,/3 ) and its dual space, together 
with L 2, in which they are dense, form a partial inner prod
uct space of the type described by Antoine and 
Grossmann. 16 
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The eigenfunctions corresponding to discrete complex 
eigenvalues satisfy a variational principle. Although the bi
linear form satisfies ordering relations when perturbed in the 
direction of an eigenfunction, bounds of the type obtained 
for a real discrete spectrum are not directly obtainable. 
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We study the generalized anharmonic oscillator in three dimensions described by the potentials of 
the form l:~': j Ibkr 2k. An asymptotic analysis of the Schrodinger equation yields the leading 
asymptotic behavior of the energy eigenfunctions in terms of the dominant (m + 1) coupling 
constants bk , m + 1 <k<2m + 1. Using an ansatz which incorporates this asymptotic behavior, 
we reduce the eigenvalue equation to an (m + 2)-term difference equation. The corresponding 
Hill determinant may be made to factorize with a finite determinant as a factor if a set of 
constraints on the couplings is satisfied; an infinite sequence of such sets exists. The exact energy 
eigenvalues appear as the real roots of the finite factor of the Hill determinant; the corresponding 
wavefunctions are Gaussian weighted polynomials. We consider the potentials l:~ bkr 2k and 
l:~ bkr 2k explicitly; potentials of the form l:imbjrj and l:imbjrj + 8fr containing both even and 
odd terms are also considered. Finally, we show that this method of constructing exact solutions 
fails for anharmonic potentials of the form l:imbkr 2\ of which the quartic anharmonic oscillator 
is the simplest example. 

PACS numbers: 03.65.Ge 

I. INTRODUCTION 

The existence of exact energy eigenstates for certain an
harmonic systems in one dimension has now been known for 
some time. 1-3 These states are characterized by exponential
ly weighted polynomial wavefunctions with eigenvalues giv
en by analytic functions of the couplings; recently, a new 
class of such states with wavefunctions given by integral 
transforms has also been obtained.4 Such eigenstates are not 
known for the simplest (i.e., quartic) anharmonic system; 
however, for the doubly anharmonic system, the freedom 
allowed by the appearance of two anharmonic couplings per
mits the construction of such states when certain constraints 
on the couplings are satisfied. It has therefore been conjec
tured5 that it may be possible to construct such eigenstates 
for more complicated anharmonic systems described by po
tentials with several anharmonic terms. However, earlier 
treatments, based as they were on the continued fraction 
solution to contiguous three-term difference equations l

•
3 or 

to particular solutions of second-order differential equa
tions,2.4.5 cannot easily be adapted to the general problem. 

In this paper, we consider the construction of exact en
ergy eigenstates of the generalized three-dimensional sym
metric anharmonic oscillator, described by a potential of the 
form l:im + Ibk r 2k. An asymptotic analysis of the wave equa
tion shows that the controlling factor in the wavefunction for 
large r is determined by the (m + 1) coupling constants 
bm + 1 , ... ,b2m + I' Using an ansatz for the wavefunction with 
the correct asymptotic behavior, we reduce the wave equa
tion to an (m + 2)-term difference equation.6 The corre
sponding Hill determinant whose zeroes give the energy ei
genvalues is now almost triangular. This allows us to write a 
sequence of constraints on the couplings for which the Hill 
determinant factorizes into a finite determinant multiplying 
an infinite one. The exact energy eigenvalues appear as the 
real roots of the finite determinant whose elements are ana
lytic functions of the couplings; for these energy values the 

difference equation terminates and the wavefunction, after 
the requirement of square integrability has been imposed by 
a suitable choice of an arbitrary constant, reduces to a Gaus
sian-weighted polynomial. The constraints appear in the 
form of m algebraic relations between the (2m + 1) cou
plings b l , ... ,b2m + 1 ; there is an infinite sequence of such rela
tions. The constraints arrange themselves in a natural hier
archy; the degree of the algebraic equation to be solved to 
obtain the energy eigenvalues and the number of exact eigen
states increases as one progresses up the hierarchy. Thus, 
when the Nth set of constraints is satisfied, the eigenvalues 
appear as the real roots of an algebraic equation of degree N 
and the number of exact energy eigenstates obtained in this 
fashion is S <N. While an infinite number of such states can 
be found since the sequence of constraints is infinite, it must 
be emphasized that for each set of constraints being satisfied 
only a finite number of exact energy eigenstates can be 
found. The remaining infinity of eigenvalues must be found 
as the roots of the infinite determinant which is the remain
ing factor of the Hill determinant. 

II. THE ASYMPTOTIC WAVEFUNCTION AND THE 
DIFFERENCE EQUATION 

We write the radial Schrodinger equation for the re-
duced wavefunction as 

[ 
_ d

2

2 
+ 2y

1
bkr2k+ l(l~ 1) -E]x(r)=o 

dr k~ 1 r 
(I) 

in units fJ = 2m = 1. X (r) is the reduced radial wavefunc
tion; the radial wavefunction ,p(r) = (l!r)x(r). To extract the 
leading asymptotic behavior of x(r), we note that, the equa
tion being linear and of the second order, the controlling 
factor of the leading behavior may be expected to be expo
nential. Substituting 

x(r) = e - flr)tP (r), (2) 
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where ¢ (r) goes asymptotically as a power of r: ¢ '/ ¢, ¢ " / 
¢-Q as r-+ 00, we obtain from (I) the equation 

(f/)2 _ f" - 2¢1 'f' + L _ 
¢ ¢ 

III + I) 
+E=O. 

Asymptotically, 
2m+ I 

(I'f - f" - I bkr 2k. 
k=1 

(3) 

(4) 

fIr) thus may be expected to be a polynomial in r. Indeed, 
noting that (1')2 must match the leading powers ofthe poten
tial, we use the ansatz 

f(r) = 

Thus 

m+ld I ~r2i. 
i= I 21 

m+1 m+1 
(1')2= I I didjr2Ii+j-l) 

i= I j= I 

since d i = 0, t~m + 2, the double sum in (6) may be re
ordered in the form 

2m+l( k ) 
(1')2= k~1 i~1 didk+ l _ i r2k. 

(5) 

(6) 

(7) 

Use of(7) and the expression forf" in (4) results in the asymp
totic relation 

2m+l( k ) m+1 
k~1 i~ldidk + I - i r 2k - i~1 (2; - I)d;r 2i- 2 

2m+ I 

- I bkr 2\ r-+oo. 
k=1 

Equation (8) in turn implies the asymptotic relation 

(8) 

(9) 

The (m + I) coefficients di are thus uniquely determined in 
terms of the (m + I) coupling constants b m + I ,b m + 2' 

... ,b2m + I through the (m + I) algebraic relations 
k 

Ididk+l-i=bk, m+ I <;;; k<;;; 2m + 1 (10) 
;= J 

subject to the constraint di = 0, f~m + 2. Thus, when m is 
even, we have the relations 

d ~ + I = b2m + I , 

2dmdm + I = b2m , 

The controlling factor in the asymptotic behavior of the 
wavefunction having thus been detemiined in terms of the 
(m + 1) couplings bm + I ,bm + 2 , ..• ,b2m + I' we choose for our 
wavefunction the Frobenius type ansatz 

"" x(r) = e -fir) L anr n +p (11) 
n=O 
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withf(r) given by (5) and (10). Equation (I) now reduces to 

n~oanrn+pL~I(itJ didk+l_i)r2k 

- i (2k + I)dk + I r 2k 
k=O 

-2(n+p) I dk+l r2k + In+p)(n+p-I) 
k=O r2 

+E- I(/~ I) _ ± bkr 2k ] =0, 
r k= I 

(12) 

where we have used (10) to remove the (m + 1) leading pow
ers of the potential bkr 2\ m + I <;;;k<;;;2m + 1. We therefore 
reduce the differential equation to the (m + 2)-term recur
rence relation 

m 

an+2 +An.nan + IAn.n-2kan-2k =0, (13) 
k=1 

with 

A = E - d l(2n + 2p + 1) , 
n,n (n+p+2)(n+p+I)-/(/+I) (14) 

(l:~= Ididk+ J -i) - (2n + 2p - 2k + I)dk+ 1- bk 

(n+p+2)(n+p+ 1)-/(1+ I) 
(I <;;;k<;;;m). 

The indicial equation yields p = (I + 1) for a wavefunction 
regular at the origin. Thus 

A = E - d l(2n + 21 + 3) (IS) 
n,n (n + 2)(n + 21 + 3) , 

The eigenvalue parameter E appears only in the diagonal 
coefficient A n,n whereas the off-diagonal coefficients depend 
only on the couplings. We note that the recurrence relation 
(13) generates two sequences, one for the even coefficients 
and the other for the odd ones, in terms of arbitrary con
stants ao and ai' respectively. 

III. THE HILL DETERMINANT AND EXACT SOLUTIONS 

The difference equation 

an+2 +An,nan +An,n-2an_2 + '" +An,n-2man-2m = 0 

will have a nontrivial solution if the so-called Hill determi
nant for the problem vanishes: 

Ao,o 0 0 0 

0 AI,I 0 I 0 0 

D= A2,o 0 A2,2 0 I 0 0 =0. 

0 A3•1 0 A 3,3 0 0 0 . . . 
(17) 

The eigenvalues are roots of the Hill determinant D (E). The 
recurrence relation (13) does not connect the even and odd 
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so that an eigenvalue is a root of either Li (E) or a (E) or a 
(possible) common root of both. 

Neither Li nor a is triangular; however, the matrix de
fined by omitting the first column of Li or a is triangular with 
unit determinant, i.e., 

0 0 

A 2,2 0 0 
I= 

A 4 ,2 A 4,4 0 
=1 (20) 

-. . 
and similarly 

0 0 

1= 
A 3,3 0 

A S,3 As.s 0 
=1. (21) 

We solve the recursion (13) in terms ofthe lowest coefficient 
ao(adand the truncations ofLi (a )andI (1). LetLij bethejth 
truncation of the infinite determinant Li (i.e., the determi
nant consisting of the firstj rows and columns). Then 

Ao.o 0 

A2•0 A 2,2 0 
Lij = . (22) . . 

A 2j - 2,0 A 2j - 2,2j - 2 

Similarly, iflj (1; ) define truncations of! (1), then all theIj (1;) 
equal unity: 

lj = 1; = 1 forj = 1,2, .... (23) 

The solution to the sequence of even coefficients generated 
from (13) may now be written as 

a 2j = ( - I)j(Li/lj)ao = ( - I)jLijau. (24) 

Substituting (24) in (13), we find that the truncated determi
nants Lij satisfy the (m + 2)-term recurrence relation 

Lij + 1 =A2j,2jLij 

m 

+ L (- I)kA 2j,2u_kILij_k (Lio = 1). (25) 
k~1 

Similarly for the odd coefficients we obtain 

a2j+ 1 = (- Waja
" 

(26) 
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where aj , thejth truncation of a, satisfies the recurrence 
relation 

a j + 1 =A2j + I ,2j+l a j 

m "k -+ L (- 1) A 2j+ 1,2(j-k!+ lLij_k (aD = 1). 
k~1 

(27) 
Consider, first, recursion (25) for the sequence of the trunca
tions of Li, the Hill determinant for the even coefficients. We 
find that Li N (where N> 1, is a fixed value of the variable j) 
becomes a factor of Li N + I provided 

m 

L (-I)kA 2N,2(N_kILi N_k =0. (28) 
k~1 

For Li N to be a factor of both Li N + I and Li N + 2 a second 
condition has to be simultaneously satisfied, i.e., in addition 
to (28) we must also have 

m 

L ( - l)
k
A 2(N+ 1I,2(N+ 1- kILiN+ I _ k = 0, (29) 

k~2 

which follows from (25) written in the form 

L1 N + 2 = A 2(N + 11,2(N + I)Li N + I - A 2(N + 1I,2NLi N 

m 

+ L (- I)kA 2(N+ 1I,2(N+ l-kILiN+ I-k' 
k~2 

In general, for LiN to be a factor of L1 N + I' L1 N + 2'"'' Li N + m 

we must require a set of m conditions to be simultaneously 
satisfied: 
m-S 

L (-l)k+sA 2(N+SI,2(N_ k l 
k~1 

XLi N _ k =0 forS=0,I,2, ... ,(m -1). 

These conditions ensure that Li N is a factor of Li N + I , 

(30) 

... , Li N + m; by virtue of recursion (25), Li N then becomes a 
factor of all subsequent truncations of Li and hence factorizes 
out of Li, the Hill determinant itself. 

As we have noted earlier, the energy eigenvalue E ap
pears only in the diagonal coefficient A i.i defined in (15); 
Li N (E) is therefore a polynomial of Nth degree in E. We note 
that the conditions (30) involve the off-diagonal coefficients 
Ai,j (i# j), defined in (16) and hence are constraints on the 
couplings bk (I<k<2m + 1). 

Thus when the couplings satisfy the constraints (30), 
Eq. (18) reduces to 

AN,N o 
D = a.Li N' AN + 2,N AN + 2,N + 2 o ... .(31) 

The real roots (in E ) of the equation Li N (E) = 0 are thus exact 
energy eigenvalues of the problem subject to the couplings 
satisfying constraints (30); for these values of E equations 
(24), (25), and (30) ensure that all the a2(N + k I' k;;.O, vanish 
and the wavefunction reduces to 

(32) 

We next show that the choice a l = 0 is necessary to render 
X (r) a physically acceptable solution of (1). We can see that 
the odd series l: 00 a2n + 1 r 2n + 1 does not have the correct 
asymptotic behavior as r-+ 00; indeed, if written in the form 
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alr~: = ognr 2n, the sum ~ "'gnr 2n grows as e2f(r), as r--oo; 
consequently x(r)-ef(r), r--oo, and is not square integrable. 
To prove this, we note that 

00 

e2f(r) = ~ C r 2n 
~ I! , (33) 

n=O 

wheref(r) is given by (5) and the Cn's satisfy the (m + 2)-term 
recurrence relation 

m+ I 

nC - ~ dC . =0 n £- I n-l 
(34) 

;= 1 

with the d; given by (10). 
From (13) we obtain the recursion satisfied by the gn 's: 
gn + A21! - 1,2n - , gn - I 

m 

+ 2: A 2n - 1.2n - I - 2k gn _ k _, = O. (35) 
k=1 

For large n (35) takes the form 

1 m 

gn-- 2: dk+,gn-k-" n--oo, (36) 
n k=O 

which becomes identical to (34). Since the asymptotic form 
of(35) determines the behavior of ~"'gnr 2n for large r, the 
series ~ '" gn r 2n grows asymptotically as e2flr). 

We have therefore arrived at the following result: 
Whenever the couplings bk (l<k<2m + 1) are such that 
they satisfy the constraints (30) for a specific value of N, say 
N = N I , thenp (0< p<N I ) exact eigenvalues [corresponding 
to the real roots of Ll N (E) = 0] can be found. Corresponding 
to each eigenvalue an' exact exponentially weighted polyno
mial solution of the form 

Nj-l 

x(r) = e -flr)r ,+ I 2: a2n r 2n (37) 
n=O 

exists, where the coefficients an satisfy a finite recursion rela
tion (13) subject to (30). The remaining infinity of eigenvalues 
must be obtained as the roots of the two infinite determi
nants in (31). 

A similar sequence of exact solutions and correspond
ing constraints follow from the Hill determinant for the odd 
coefficients. When the couplings are such that they satisfy 
the constraints 
m-S 

2: (-I)k+sA2IN+sI+,.2IN_kl+' 
k=' 

XJN_k=O, S=O,l, ... ,(m-l), (38) 

for a specific value of N, say N = N z, thenp (0<p<N2 ) exact 
eigenvalues can be found as the real roots of J N, (E) = O. The 
odd series terminates as all a21N, + k I +, vanish for k>O; we 
choose ao = 0 to obtain physically acceptable wavefunc
tions. Corresponding to each eigenvalue, the exact Gaus
sian-weighted polynomial solution then is 

E-d,(21 + 3) 

2(21 + 3) 
(N - l)d2 

(21 + 5) 

o 

E-d l (2/+7) 

4(21 + 5) 

o 

o 

N,-' 
x(r)=e-f1r)r'+1 ~ a r 2n +1 

4- 2n+l , 
n=O 

(39) 

where the odd coefficients satisfy the recursion (13), ren
dered finite by the constraints (38). 

The exact energy eigenvalues and eigenfunctions of the 
generalized anharmonic oscillator in 1 dimension described 
by the potential V(x) = ~~': j'bkx 2\ - 00 <x < 00, maybe 
obtained by identical methods. Since x = 0 is an ordinary 
point of the corresponding Schrodinger equation, one re
places Eqs. (13) and (14) with their counterparts in which 
p = 1=0. 

IV. THE POTENTIALS V(r) = .I~= lbkr2k AND 
V(r) = .IZ= lbkr2k 

To illustrate the power of the general method devel
oped, we examine a few of the simpler anharmonic potentials 
which have been studied in the literature by different meth
ods applicable to special cases. 

Consider the potential VIr) = blr 2 + bzr 4 + b3r 6. The 
choice of the ansatz 

'" x(r) = e-flr1r'+ , 2: anr " 
n=O 

with 

f(r) = ~d,r z + !d2r 4, 

where 

(40) 

(41) 

d, = b2/2b/ 12
, d2 = b/ 12, (42) 

corresponding to Eqs. (5) and (10), yields a three-term recur
rence relation for the an's: 

an+2 +An,nan +An,n-2an_2 =0, 
where 

(43) 

and 

An.n -[E - d,(2n + 21 + 3)]I(n + 2)(n + 21 + 3) (44) 

An.n _ 2 =[Y - (2n + 21 + 1)]d2/(n + 2)(n + 21 + 3) 
(45) 

(46) 

From (30) it follows that the couplings have to satisfy only 
one constraint to ensure that LlN (N = 1,2, ... ) emerges as a 
factor in Ll. Thus Eq. (30) reduces to 

A 2N,2N-2 = 0 (whenLl N _, #0), (47) 

which is ensured by the couplings bl , b2, b3, satisfying the 
equation 

Y= 4N + 21 + 1. (48) 

The exact eigenvalues are the real roots of the N X N deter
minantal equation: 

=0. (49) 

2N(2N + 21 + 1) 

E-dl(4N+21-1) 

2N(2N + 21 + 1) 
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The eigenfunction corresponding to each eigenvalue is given 
by 

N-I 
x(r) = e-/1r)rl+ I I a2n r 2n• (50) 

n=O 

Here the an (O<.n<.N - 1) satisfy the recursion (43) rendered 
finite by the constraint (48). 

We note that the solutions for I = 0 are those obtained 
earlier for the 1 - d doubly anharmonic oscillator corre
sponding to odd parity. 3 For low N the explicit solutions are 
easily obtained algebraically. For N = 2, the constraint on 
the couplings is given by r = 21 + 9. The roots of ..1 2(E) are 

E± =dl(2/+5)±2[d~ +2d2(2/+3)]1I2. (51) 

The corresponding exact eigenfunctions are of the form 

X ± (r) = aoe -f(r)r 1+ 1[1 + (al lao)r 2], (52) 

where, from (43), (44), and (49), we have 

al [d l (2/+3)-E±] 

ao 2(21 + 3) 

4d2 (53) 

A similar set of eigenvalues and eigenfunctions are generated 
by the odd sequence of coefficients in (43). Whenever the 
couplings satisfy the constraint 

A2N + I ,2N-1 =0 (withJN_I#O), 

i.e" 

r=4N + 2/+ 3, (54) 

the real roots of IN(E) = 0 provide the eigenvalues; corre
sponding to each eigenvalue, the exact solution is 

N-I 

x(r) = e - Ilr)r 1 + I I a
2n 

+ I r 2n + I, (55) 
n=O 

where an's satisfy the recursion (43) rendered finite by(54). 
For N = 2, the constraint on the couplings is given by 
r = 21 + 11; the eigenvalues and eigenfunctions are 

E± =d l (2/+7)± [d~ + 6d2(/+ 2)]112, (56) 

X ± (r) =a l e-f(r)r l + 2 [1 + (alla l )r
2
], 

where 

[d l (21 + 5) - E ± ] 

3(21 + 4) 

4d2 

[E ± - d l (21 + 9)] 

We next examine the potential 
5 

Vir) = I bkr 2k. 
k~1 

(57) 

(58) 

(59) 

Equations (5) and (10) now show that the functionf(r) is now 
a polynomial of third degree in r 2; the coefficients d I' d2, and 
d3 in the ansatz are given in terms of the three leading cou
plings b3 , b4 , and bs by the relations 

864 

d l = (l/2bs
1l2)(b3 - b~/4bs), 

d2 = b4/2bs
l12

, 

d3 = bs
1Iz. 
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(60) 

The relation for the coefficients an is now a four-term recur
sion . ..1 N (N = 1,2, ... ) becomes a factor ofthe Hill determi
nant..1, whenever the couplings satisfy the following two 
constraints: 

A 2N,2N _ 2..1N _ I - A 2N,2N _ 4..1 N _ 2 = 0 

and (61) 

A 2N + 2,2N-2 = 0 (with..1 N _ I #0). 

Similarly for J N (N = 1,2, ... ) to emerge as a factor in J, the 
couplings b k (1 <k <. 5) must satisfy the following constraints: 

A2N+I.2N_IJN_I -A2N+I,2N+3JN_2 =0 

and (62) 

A 2N + 3,2N-I = 0 (withJN_ I #0). 

For N = 1, the relations (61) are 

bl = (l/4bs)(b3 - b ~/4bsf - (21 + 5)b4/2bs
l

/
Z 

and (63) 

b2 = (b4/2bs)(b3 - b ~/4bs) - (21 + 7)bs
l

/
2

; 

when these constraints are satisfied,..1 1 emerges as a factor in 
..1. The eigenvalue is given by 

(64) 

and the corresponding eigenfunction is 

x(r) = e - Ilr)r 1 + I (ao has been chosen to be unity). 
(65) 

This solution, and (52), are the ones obtained by Flessas and 
Das.s 

Similarly, whenever the couplings satisfy the con
straints 

bl = (l/4bs)(b3 - b ~/4bs)2 - (21 + 7)b4/2bs
l

/
2 

and 

b2 = (b4/2bs)(b3 - b U4bs) - (21 + 9)bs
1l2. 

(66) 

J I is a factor of the Hill determinant J, and one obtains the 
exact solution given by 

x(r) = e -f(r)r 1 + 2 (a l has been chosen to be unity)(67) 

with the corresponding eigenvalue 

(68) 

v. THE POTENTIALS V(r) = If: fbjr i AND If: fbirj + 8/r 

Recently, there has been some interest in anharmonic 
systems and confinement potentials with both odd and even 
terms; examples of such potentials with some exact solutions 
may be found in the literature,7-9 Here we merely note that 
the methods developed in Sec. III apply to these cases also, 
though they have to be applied with some caution. The lead
ing asymptotic behavior of the wavefunction is determined 
uniquely in terms of the leading couplings as before; how
ever, the eigenvalue parameter now appears in the off-diag
onal elements Aj,i (i# j) of the Hill determinant. Thus the m 
conditions of constraint which ensure that..1 N (N = 1,2, ... ) is 
a factor in the Hill determinant..1 now involve E; further, ..1 N 

is a polynomial of order p (0<. p<.N) in E. The conditions of 
constraint and the eigenvalue equation for exact solutions, 
..1 N(E) = 0, have now to be used in conjunction to obtain the 
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exact energy eigenvalues and the corresponding constraints 
on the couplings, Thus for the potential 

(69) 

the coefficients determining the controlling factor e - fer) of 
the leading asymptotic behavior of the wavefunction as giv
en in (2) are 

k+1 

L d idk + 2_ i = bk , 2<k<4, 
;=1 

where now 

3 d.r i 

/(r)= L -'-, ' 
;= I I 

This yields 

dl = ~ (b2 - b V4b4 ), 
2b4 

d2 = b3/2b4
1/2, 

d 3 = b4
1/2, 

(70) 

(71) 

(72) 

The four-term recursion relation satisfied by the coefficients 

a" is 

0"+1 +A",nan +An,n_Ian_ 1 +An.n-2an_2 =0, (73) 

where 

An.n = - 2(n + 1+ IJdI/(n + l)(n + 21 + 2), 

[E + d~ - (2n + 21 + IJd2] 
An•n _ 1 

(n + l)(n + 21 + 2) 

A = [2dl d2 - b l - 2(n + IJd3] 
".n-2 (n + 1)(n + 21 + 2) . 

(74) 

The two constraints ensuring that .d I is a factor in.d are 

E + d~ - (21 + 3)d2 = ° 
and 

(75) 

with 

(76) 

Used in conjunction with .d I = 0, they yield the two con
straints on the couplings, 

b2 = bV4b4 , b l = - (21 + 4)b4
1/2, (77) 

and the energy eigenvalue 

E = (21 + 3Jd2' 
with the wavefunction 

x(r) = r 1 + I exp( _ !d2r 2 _ !d3r 3). 

This is the solution written down by Khare.7 

(7S) 

(79) 

For.d 2 to be a factor in.d (with.d I #0) the two condi
tions of constraint are 

d l [E + d~ - (21 + 5Jdd = bl + (21 + 4)d3 - 2d ld2 

and (SO) 

b l = 2dld2 - (2/ + 6)d3 , 

with 

.d 2 = [(21 + 3)(di + d2) - E ]/2(21 + 3); (SI) 
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used in conjunction with.d 2 = 0, Eqs. (SO) yield the con
straints on the couplings, 

b l + (21 + 4)b4
1/2 [l- (1ISb !)(b2 - b V4b4 f] = 0, 

(21 + 6)b4
1/2 + b l - (b3/2b4 )(b2 - b V4b4 ) = 0, (S2) 

and the energy eigenvalue 

E = (21 + 3)(di + d2), (S3) 

with the wavefunction 

x(r) = r 1+ I exp( - dlr - !d2r 2 - !d3r 3)(1 + dlr). (S4) 

Confinement potentials ofthe form l:;: I bjr j + 8/r 
present no new features: a sequence of exact eigenvalues and 
eigenfunctions may be constructed in an identical fashion. 

VI. THE POTENTIALS V(r) = ~~': Ib"r2" 

Finally, we note that the circumstance that the simplest 
anharmonic system, viz., the quartic oscillator, does not ad
mit of such exact solutions is a particular instance of a wider 
phenomenon. The Schr6dinger equation for even anhar
monic potentials in which the highest power of the relevant 
coordinate variable is 4m (m = 1,2,00') may, with a suitable 
ansatz, be reduced to a (2m + 2) recurrence relation: 

m 

on+2 + L A".n_2k+IO"_2k+1 +An.non 
k=O 

m-I 

+ L A n.n - 2k 0" _ 2k = 0, 
"=1 

where 

An.n =(E + d i )/(n + 2)(n + 21 + 3), 

A".n - 2k + I 

- 2(n + I + 2 - k Jdk + I 

(n + 2)(n + 21 + 3) 

[Ct: di dk + 2 _ i ) - bk ] 

(n + 2)(n + 21 + 3) 

(S5) 

(S6) 

Here the dj are given, as before, by the leading anharmonic 
couplings through the relations 

k+1 

L di dk + 2_ i = b", m<k<2m, (S7) 
;= 1 

subject to d j = 0, t~m + 2. 
The structure of the coefficients (S6) shows that it is now 

no longer possible to find a sequence of constraints which are 
consistent and ensure that the Hill determinant factorizes 
into a finite determinant times an infinite one. 

VII. CONCLUSION 

We have shown how an infinite sequence of exact ener
gy eigenvalues and eigenfunctions for generalized three-di
mensional anharmonic oscillators described by potentials of 
the form l:~: i Ibk r 2k may be obtained. A set of constraints 
on the couplings ensures that the Hill determinant for the 
difference equation to which the Schr6dinger equation may 
be reduced factorizes with a finite determinant as a factor. 
The exact energy eigenvalues are the real roots of the finite 
determinant; the corresponding eigenfunctions are Gaus
sian-weighted polynomials. For each set of constraints only 
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a finite number of such energy eigenvalues may be obtained; 
however, an infinite sequence of such sets exists. Analogous 
results hold for the one-dimensional system and for poten
tials of the form "L2mbjrj and "L 2mbjrj + o/r with odd and 
even terms; however, in the latter cases there arise a coupled 
set of constraints involving the energy eigenvalue and the 
couplings which have subsequently to be decoupled to ob
tain the energy eigenvalues. The method does not, however, 
yield a similar solution for potentials of the form "L 2mb k r 2k of 
which the simplest case is the quartic anharmonic oscillator. 

Note added in manuscript: After the submission of this 
note for publication, our attention has been drawn to the 
work ofE. Magyari [Phys. Lett. A 81, 116 (1981)], in which 
similar solutions have been obtained for the one-dimensional 
problem; however, in contrast to the results here obtained, 
he obtains only coupled equations for the energy eigenvalues 
and the constraints on the couplings. 
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I show that the class of potentials given by V (r) = Ar 2d ~ 2 - Br d ~ 2 possesses partial accidental 
degeneracy given by En,,l, = En,.I, in case d = (/2 -/1)/(n 2 - nl)' B = [I + dn + (1 - d )12] 
X (2A IfL)I/2. It is further shown that, for a given potential, as the number of dimensions change, 
the accidental degeneracy pattern also changes except when d = 1 and 2. Using these results, it is 
then shown that for the bottom quark-antiquark (bb ) bound system, most likely E3S < ElF < Ew' 
Finally I also make some conjectures about the ordering of levels for a wide class of potentials. 

PACS numbers: 03.65.Ge, 03.65.Fd 

I. INTRODUCTION 

It is well known that the Coulomb and the oscillator 
potentials are the only examples possessing accidental de
generacy in nonrelativistic quantum mechanics. I In particu
lar, whereas the energy eigenvalues of the Coulomb potential 

VIr) = -air 

satisfy 

En+ 1.1 = En.l + 1= 00', 

those of the harmonic oscillator potential 

V(r) = !Kr 
satisfy 

En + 1.1 = En.1 + 2 = .... 

(1) 

(2) 

(3) 

(4) 

The remarkable thing about Eqs. (2) and (4) is that they are 
valid for any value of n and I. Here En•1 denotes the energy 
eigenvalue corresponding to a state of angular momentum I 
(I = 0,1,2,00') and the number of nodes of the reduced radial 
wavefunction including at r = 0 being n (n = 1,2,3,00'). 

Even thought it is known that there are no other poten
tials possessing such accidental degeneracy, there are a num
ber of questions which, to my best knowledge, have re
mained unanswered in the literature. Some of these are: 

(i) Are there potentials which possess at least a partial 
accidental degeneracy? For example, we know that for the 
Coulomb potential E2S = EIP while for the oscillator poten
tial E2S = Ew. It is then natural to inquire if there exists a 
potential for which E2S = ElF or E2S = EIG or in general 
E2S = Ell? Clearly for large / this would (if at all) only be 
possible for a potential which is highly singular as r--+~. 

(ii) A somewhat related question is if there exists a po
tential for which E IP = E3S or E4S or in general Ens? Obvi
ously such potentials (if they at all exist) have to be more 
singular then - 1/ r and less singular than - 1/ r as r--+ ~ . 

(iii) For the Coulomb potential we also know that 

En.s =En~l.P = 00' =EU~n~I' 

while for the oscillator potential we have 

En.s =En~ I.D = 00' = EI./~2n~2' 

a)Present address. 

(5) 

(6a) 

En.p =En~ I.F = 00' = EI./~2n~ I' (6b) 

Thus it is natural to inquire if one can generalize these state
ments and find a potential which at least for a given nl' n2, II' 
and 12 satisfy 

00' = E2n , ~ n,.2/, ~ I, = En,.I, = En,.I, 

= E2n2 - "1,21. - 12" .• (7) 

The number of accidentally degenerate levels are of course 
restricted since n> 1 and 1>0. 

The purpose of this paper is to provide answers to the 
questions raised above. In particular, I prove the following 
theorem2

: 

Theorem 1: The class of potentials given by 

V(r)=Ard~2-B'p~2, A,B>O, (8) 

where d is any positive rational number, exhibits partial acci
dental degeneracy as given by Eq. (7) provided that 

d = (/2 - Id/(n2 - nd, (9) 

B = (2A IfL)I/2[1 + dn + (1 ~ d) l (10) 

Here fL is the reduced mass of the system. It must be empha
sized here that the above theorem is not merely of academic 
interest. Some possible applications are: 

(a) Suppose in a certain spectrum one observes that 
En,.I, = En,.I" and further let us assume that the dynamics of 
the system can be understood in terms of nonrelativistic 
quantum mechanics. Clearly, the knowledge of the potential 
possessing such an accidental degeneracy would be of ut
most importance in understanding the dynamics of the sys
tem under consideration. 

(b) Even if En,.I, is close to En,.I" though not exactly 
equal, the knowledge of the potential for which they are ex
actly equal could be quite useful as the perturbation theory 
around it is likely to be pretty accurate. 

(c) In fact, even if En,.I, > ( <) En,.I, in a given spectrum 
the knowledge of the potential for which they are equal 
would provide considerable restrictions on the form of the 
potential. For example, in the charmonium spectrum, one 
experimentally observed that 

Ew >E2S >EIP ' (11) 

Since for the Coulomb potential we know that Ew = E3S > 
E2S = E 1P while for the oscillator potential Ew = E2S > 
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E IP' one concludes that the charmonium potential should be 
something in between the two, i.e., the confining part of the 
potential is at best like r as r_ ao .3 As a further illustration 
of these ideas, I propose to answer the question iffor the 
bottomonium system (made out of b quark and antiquark) 

(12) 

This question is quite relevant because if it turns out that 
ElF <E35' then one could hopefully produce and detect the 
1 'l F3 level via the transitions 

r"-l 'lF2 + y-Y' + 2y. (13) 

(d) Finally the knowledge of the potential having En"" 
= En"I, could help a la Grosse and Martin3 in deriving theo
rems about the ordering of levels for a wide class of 
potentials. 

The plane of the paper is as follows: In Sec. II, I solve 
the SchrOdinger equation for the potential (8) and obtain 
conditions under which it possesses partial accidental degen
eracy. The expression for total degeneracy is also given here. 
In Sec. III. I consider potential (8) inp space dimensions and 
show that if p changes, the accidental degeneracy pattern 
also changes except when d = 1 or 2. In Sec. IV. I consider 
the potential in classical particle mechanics and show that 
closed particle trajectories exist for E = O. I also show here 
that for E = 0 the Bohr-Sommerfeld quantization condition 
reproduces the accidental degeneracy pattern obtained in 
Sec. II. Finaly, in Sec. V, I consider some possible applica
tions of the results obtained in this paper and make several 
conjectures about the ordering of levels for a wide class of 
potentials. 

II. DEGENERACY IN THREE SPACE DIMENSIONS 

The solution of the SchrOdinger equation for the poten
tial (8) can be written as 

r{!(r, 8. </J) = Ylm (8.</J )RI(r)/r. (14) 

where RI(r) is a solution of the equation (Ii = 1) 

R i'(r) + [2E,u + 2B,ur" - 2 

- 2A,urd 
- 2 - I (I + l)/r ]R1(r) = O. (15) 

On substituting 

R,(r) = r l + 1(r) exp {[ - (2A,u)1/2/d ]rd J, (16) 

it can be easily shown that if E = O. then/satisfies the conflu
ent hypergeometric equation 

x!"(x) + ( d + ~ + 1 _ X )r'(X1 

+ [ ! ( ~ )112 _ 21 + ~ + 1 If(X) = 0, (17) 

wherex = 2(2A,u)1/2r" /d. Thus. if the bound state condition 

!!... ( ~ y/2 _ 21 + ~ + 1 = n _ I, n = 1,2,3, ... , 

d (18) 

is satisfied. then the eignvalues and eigenfunctions of the 
SchrOdinger equation for the potential (8) are given by 

En.! = 0, (19a) 
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t/J(r.8.</J) = N n1 r'Ylm(8.</J) exp {[ - (2A,u)1/2/d ]rd J 

X IFI( - n + 1.(d + 21 + 1)/d;{2/d)(2A,u)IIZr"I. 
(19b) 

Let us now turn to the question of accidental degener
acy. To that purpose. let us writed = d l /d2• wheredl andd2 

are both integers which can take any value 1, 2, 3,.··, and, to 
avoid duplication, let us demand that. for a given d. d I and d2 

do not have any common factor. In that case condition (18) 
[which is identical to Eq. (lO)] can also be written as 

(20) 

where 

N = (n - l)d) + Id2 (21) 

is an integer. Hence for a given N one has the accidental 
degeneracy as given by Eq. (7) provided that 

(n1 - l)dl + i2d2 = (n2 - l)d l + Ild2' (22) 

which is equivalent to Eq. (9). Thus we have shown that, as 
long as Eqs. (9) and (10) are satisfied for a givenN. the poten
tial given by Eq. (8) possesses accidental degeneracy as given 
by Eq. (7). Since n> 1 and 1>0, the number of degenerate 
levels are obviously limited. 

It must be emphasized here that the relation (20) be
tween the coupling constants A and B depends on N. Further 
even for a given value of d. different values of N imply differ
ent potentials. Hence. the class of potentials as given by Eq. 
(8) possesses only partial accidental degeneracy. The only 
two exceptions being when d = 1 and d = 2. 

(i) d = I: In this case the potential (8) reduces to the 
Coulomb potential. i.e .• 

VIr) =A -B/r. (23) 

ThusA is essentially - E so that the bound state condi
tion (20) gives us the energy eigenvalues of the Coulomb po
tential. In other words, different values of N do not imply 
different potentials but just different eigenvalues of the same 
Coulomb potential, and hence one has full accidental degen
eracy for any value of N as given by Eq. (2). 

(ii) d = 2: In this case the potential (8) reduces to the 
oscillator potential, i.e., 

V(r) =Ar-B (24) 

so that B is essentially E, and hence. as above. different val
ues of N just correspond to different energy eigenvalues of 
the same oscillator potential. Needless to say that, for d = 1 
and 2. the eigenfunctions as given by Eq. (19b) reduce to 
those of the Coulomb and the oscillator potentials, respec
tively. 

To understand further the partial accidental degener
acy question for the class of potentials (8), let us concentrate 
on Eqs. (20) and (21). From these we note that if N <d l d2• 

then there is no accidental degeneracy. In fact, for a given d I 
and d2 , and N = 1.2.3.···. min(d j - 1. d2 - 1), etc. are not 
even allowed as Eq. (21) cannot be satisfied in those cases. It 
is not difficult to convince oneself that for a given d I and d2 

the number of N values not allowed are 

(25) 
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N = 0 is, however, always allowed, and it corresponds to 
n = 1, I = 0, i.e., IS state, and is, as expected, nondegener
ate. Thus, for the class of potentials (8), E ls = 0 provided 
that 

B = ~(2A /,u)1/2(1 + d). (26) 

The accidental degeneracy starts occurring when 
N>dld2. In particular, if 

d ld2,N<:,2tild2 - 1, (27) 

then two levels are accidentally degenerate except for those 
~(dl - 1)(d2 - 1) values of N given by 

(28) 

for which there is no accidental degeneracy. Generalizing, it 
is not difficult to convince oneself that if 

(29) 

then m levels will be accidentally degenerate. The only ex 
ceptions are those ~(dl - l)(d2 - 1) values of N given by 

N = Nforbidden + (m - l)d ld2 , (30) 

for which only (m - 1) levels are accidentally degenerate. 
Since the number of accidentally degenerate levels depend 
only on the product d Id2, it is clear that for a given N the 
accidental degeneracy is same for d and d - I. 

Total degeneracy: Since a level with angular momen
tum / is (21 + 1 I-fold degenerate, it may be worthwhile to 
calculate the total degeneracy for a given value of N and see 
as to how it varies with d l , d2, and N. Clearly, if 

N = 0, dl> 2d1, ••• ,(d2 - l)d l , (31) 

then from Eq. (21) it follows that 1 = 0 so that the total de
generacy D = 1. On the other hand, if 

N = d2, d2 + d l, ... ,d2 + mdl,mdl < (dl - 1)d2' (32) 

then from Eq. (21) it is clear that 1 = 1 and hence D = 3. Of 
course, for the ~(d I - 1 )(d2 - 1) forbidden values of N, 
D=O. 

Now, as N increases by d l d2 units from those given by 
Eq. (31), it is clear that both I = 1 and 1 = d I are allowed and 
hence D = 2d I + 2, while, if N increases by d Id2 units from 
those given by Eq. (32), then I = 1 and d l + 1 so that 
D = 2d I + 6. Thus it is not very difficult to convince oneself 
that in general if 

(i) N = md2 + kdl, md2 + kdl + d ld2,.·· (33) 

(m, k = 0, 1,2,.··), then 

D = (lIdld~ )(N + d1d2 - kdl - md2) 

X(N + md2 - kdl + d2 )· (34) 

Note that here either md2 + kdl <dld2 or 

md2 + kd l = Nforbidden + d ld2. (35) 

(ii) N = Nforbidden' D = O. (36) 

In the special case of the Coulomb potential, d = 1 so 
that the total degeneracy formula given by Eq. (34) takes the 
well-known form 

D = (N + 1)2, N = 0, 1, 2,.··. (37) 

On the other hand, for the oscillator potential, d = 2 (d I = 2, 
d2 = 1), and Eqs. (33) and (34) give, as expected, 
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D=~(N+ I)X(N+2), N=O, 1,2,···. (38) 

At this stage it may be worthwhile to discuss a few spe
cific examples which would also help in answering some of 
the questions raised in the Introduction. From Eqs. (9) and 
(10) it is clear that 

E2S =EIF =0 

would be true for the potential 

V(r) = Ar4 
- 5(2A /1l)1/2r. 

(39) 

(40) 

The corresponding eigenfunctions are given by Eq. 
(19b) withd = 3. Clearly the total degeneracy Dis 8. On the 
other hand, 

E2P =EIG = 0 

is true for the potential 

V(r) = Ar4 
- 6(2A /1l)1/2r, 

and hence D = 12 while 

(41) 

(42) 

EI,I=N = E 2,N_ 3 = ... E n+ I,N-3n = ... = 0 (43) 

would be valid for the potential 

V(r) = Ar4 
- (N + 2)(2A /,u)1/2r. (44) 

On the other hand, E2S = EI,I would be valid for the 
potential (8) with d = I, i.e., 

V(r) =Arl
-

2 
- ~(31 + 1)(2A /1l)1/2';-2, (45) 

and in this case D = 2(1 + 1), which also follows from the 
formula (34) by using d l = I, d2 = 1, N = I, and m = k = O. 

Proceeding in the same way, it follows that 

E IP =E3S =0 

would be valid for the potential 

V(r) = ~ - i (2A /,u)1/2r-3/2, 
r 

while 

E IP =En+I,s =0 

would be true for the potential (8) with d = lin, i.e., 

V r = _A _ _ (3n + 1) (3:!)tl2_1_. ( ) r -2In 2n Il r - tin 

(46) 

(47) 

(48) 

(49) 

Finally let us inquire about the degeneracy structure for 
a somewhat nontrivial case say d = 8/5. From Eqs. (8HIO) 
it follows that the bound state spectrum with E = 0 is possi
ble provided 

B = ! (2A /,u)1/2(N + 1/), (50) 

where 

N = 8(n - 1) + 51. (51) 

From the formula (25) it is clear that there are 14 missing 
values of N, and they are given by 

Nmissing = 1,2,3,4,6,7,9,11,12,14,17,19,22,27. (52) 

The accidental degeneracy can occur only if N>4O. For ex
ample, if 

(53) 

then 

(54) 
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TABLE I. Variation of accidental degeneracy pattern with d t and d2• 

N=I+I 

2 
N=2(/+I) 

3 
N= 3(/+ I) 
n 
N=n(/+ I) 

The variation of accidental degeneracy with d I and d2 is 
given in Table I [of course, B and A have to be appropriately 
related in each case as given by Eq. (10)]. 

III. VARIATION OF DEGENERACY WITH DIMENSIONS 

In the last section we have shown that the potential (8) 
possesses partial accidental degeneracy in three space di
mensions provided Eqs. (9) and (10) are satisfied. It may, 
therefore, be worthwhile to inquire if the accidental degener
acy continues to be there inp space dimensions or not, and, if 
yes, then how does the accidental degeneracy pattern change 
with p for a given potential. In this context it may be noted 
that in the exceptional cases of the Coulomb and the oscilla
tor potentials the accidental degeneracy pattern does not 
change withp, i.e,. Eqs. (2) and (4) are valid inp space dimen
sions; only the magnitude of energy eigenvalues changes 
withp. 

If I write the solution of the SchrOdinger equation in p
space dimensions for the potential (8) as 

.M () A. A. A. ) m,.m,.···.mp - 2 R ( )1 (55) 
'f',r, ''f'I,'f'2,···,'f'p-2 =YII().<I>,.<I>, ..... <I>P-2) Ir r, 

then it is not difficult to show that R I (r) satisfies Eq. (15) with 
I being replaced everywhere by a where a = I + (p - 3)/2. 
Thus the whole discussion of Sec. II up to Eq. (22) goes 
through with I being replaced everywhere by a. In other 
words, the potential (8) possess partial accidental degeneracy 
as given by Eq. (7) provided Eq. (9) is satisfied, and, in addi
tion, B and A are related by 

B= "!'[N+ pd2 + dl -2d2 ](~)1/2, (56) 
d2 2 2 /-l 

with N being given as before by Eq. (21). Since the relation 
(56) between coupling constants A and B depends onp, it is 
clear that for a given potential the accidental degeneracy 
pattern is going to be different in different dimensions. In 
other words, what potential will exhibit a given degeneracy 
pattern, e.g., En,./

2 
= En,.I, will also depend on the value of p. 

However, since the relation (9) is p-independent, it is clear 
that the class of potentials exhibiting En,.I, = En,.I, will, nev
ertheless, be restricted to having same d. 

Let me now discuss a few specific examples. Consider, 
for example, the potential (42), i.e., 

VIr) = Ar4 - 6(U 1/-l)1/2r, (42) 

which possesses the following accidental degeneracy in three 
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2 3 n+1 

E t•l + t = E •. 1 _ n 

Et.l+' =En + •. 1_ 2 

space dimensions 

Ew =E2P =0, p=3. (41) 

Let us now see as to how the degeneracy pattern changes 
withp. Since the relation (9) is still valid inp dimensions, it is 
clear that if there are degenerate levels, then they will satisfy 

(/2 -II) = 3(n2 - nt!. (57) 

Using Eqs. (8) and (42) it is clear that in this case B = 6 
(2A 1/-l)1/2, which when substituted in Eq. (56) gives (note 
d l = 3, d2 = 1) 

6(n -1) + 21 +p = 11. (58) 

Clearly, the relation (58) cannot be satisfied ifp is even. In 
fact, even when p is odd, it can only be satisfied if p< 11 as 
n> 1,1>0. Further, in addition to p = 3, the accidental de
generacy can only occur in five space dimensions for the 
potential (42) in which case it exhibits 

ElF = E2S = 0, P = 5. (59) 

Let us now look at this problem from another angle, i.e., 
instead of concentrating on the same potential (42), let us 
concentrate on the degeneracy Ew = E2P and inquire as to 
what class of potentials will exhibit it in various space dimen
sions. Clearly, this class must have d = 3 and 
N = (n - 1)d1 + Id2 = 4 so that Eq. (56) will simplify to 

B = [4 + (p + 1)/2](2A 1/-l)1/2. (60) 

Hence the class of potentials given by 

VIr) = Ar4 - [4 + (p + 1)/2](2A 1/-l)1/2r (61) 

will exhibit the degeneracy Ew = E 2P = 0 inp space dimen
sions. 

From the structure ofEq. (56) it is clear that, for integer 
d, it can only be satisfied either for even or for odd p. In fact, 
even for fractional d the same is still true as long as d2 is an 
odd integer. On the other hand, if d2 is even, then it is possi
ble to satisfy Eq. (56) in both even and odd space dimensions. 

From Eq. (56) it is also clear that even inp dimensions, 
the potential (8) will possess at least one exact solution pro
vided N~O, and hence 

B>!(2A 1/-l)1/2(d + p - 2), (62) 

while accidental degeneracy can only occur inp dimensions 
if N>d l d2, which implies 

B>!(2A 1/-l)1/2(2d1 + d + p - 2). (63) 

Avinash Khare 870 



                                                                                                                                    

In the special case of one space dimension, I = 0, and 
obviously there is no degeneracy, and we merely obtain a 
class of exact solutions for the potential (8) given by 

En = 0, (64a) 

tPn(X) = Nn exp [ - (2AIl)1/2Xd /d] 

X IFI( - n + I,(d - 1)/d;(2/d )(2AIl)1/2Xd), (64b) 

provided that 

B=(2A/Il)1/2[nd-(I+d)/2], n=I,2,. .•. (65) 

In order to ensure that tPn (x)-o as x- ± 00, one should 
perhaps restrict oneself to only even vaues of d. In that case, 
one has only an even class of solutions, i.e., with an even 
number of nodes. It is, of course, quite straightforward to 
obtain the odd class of solutions, i.e., one can show that the 
exact odd solutions for the potential (8) are 

~=~ ~~ 

tPn(x) = Nnx exp {[ - (2AIl)1/2/d JXd 1 
X IFI( - n + 1,(d + 1)/d;(2/d)(2AIl)1/2xd), (66b) 

provided that 

B = (2A /1l)1/2[nd - (d - 1)12], n = 1,2,···. (67) 

IV. THE ORIGIN OF THE PARTIAL ACCIDENTAL 
DEGENERACY 

In the last section we have shown that the potential (8) 
exhibits partial accidental degeneracy in p dimensions in 
case Eqs. (9) and (56) are satisfied. Now it is well known that 
the accidental degeneracy for the Coulomb and the oscilla
tor potentials is in a sense related to the fact that, in classical 
particle mechanics, closed particle trajectories exist in these 
fields.4 It may therefore be worthwhile to inquire if, at least 
for E = 0, the potentials given by Eq. (8) have closed particle 
trajectories. 

The equation for the path of the particle in the central 
potential (8) is given by4 

(2Il)1/2t,6 

f Ldr/"z - + const, 
- [E_A"zd-2+ByJ-2_L 2/2p,,,z]I12 

(68) 

where L is the angular momentum of the particle. In order to 
show that for E = 0 the path is closed, one has to demon
strate that 

2L frma• dr/"z 
11¢ = (4tA )1/2 rmin [(B /A)yJ _ ~ _ L 2/2IlA ]112 (69) 

is a rationalfunction of21T, i.e.,I1¢ = 21Tn1/n2, wheren 1 and 
n2 are integers. On substituting rd = tin Eq. (69), it is not 
very difficult to integrate Eq. (69) and show that 

11t,6 = (2/d)[sin-l(l) - sin- I (1)], (70) 

i.e., 11¢ is indeed a rational function of 21T and hence for 
E = 0 closed trajectories exist for the class of potentials (8). 

In the case of the Coulomb and the oscillator potentials, 
it is also well known that the exact eigenvalue spectrum can 
be obtained from the Bohr-Sommerfeld quantization condi
tion [with, of course, the usual replacement of I (I + 1) by 
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(I + 112)2 and that the higher order WKB corrections are all 
zero.s It may therefore be worthwhile to inquire if, at least 
for E = 0, the Bohr-Sommerfeld-quantization condition re
produces the bound state constraint (10) and further if the 
higher-order WKB corrections are indeed zero or not. 

In the case of the potential (8) the Bohr-Sommerfeld 
quantization condition leads us to 

f:~~ [E - A"zd - 2 + ByJ - 2 - (I + ~)2 /21l"z j112dr 

= (n - !)h /2(2Il) I 12. (71) 

For E = 0 (and Ii = 1) this reduces to 

frm .. [ B yJ _"zd _ (I + !)2 ]112 dr 
rmin A 21lA r 

= (n -!) (2p,; )1/2 (72) 

On using yJ = t, it is not difficult to integrate the Ihs ofEq. 
(72) and obtain 

B1T ---
2Ad 

(I + !)1T _ (n - !)1T 
(2IlA )1/2d - (2IlA )1/2 ' 

(73) 

which is equivalent to the bound state condition (10). Thus 
we have shown that for the class of potentials (8) the Bohr
Sommerfeld quantization condition reproduces the bound 
state constraint (10) in case E n•1 = O. Following Ref. 5, one 
can also calculate the higher-order WKB corrections and 
show that they are all zero. 

In the case of the Coulomb and the oscillator potentials 
we also know that I1rl//(r) 1/-+0 as 1-00, i.e., in the semi
classical limit the particle is practically localized in the vicin
ity of a sphere. Let us see if it is also true for the class of 
potentials (8). To that purpose, we have to first calculate the 
normalization constant NI/ appearing in Eq. (19b). On using 
the formula6 (Rev> 0; n is an integer) 

f~ e - kzzv - I LFI ( - n,y,kzW dz 

F(v)n! 

kVr(y+ I).··(y+n-l) 

[ 
n~ ... n(n - 1) ... (n - s) 

X 1 + £.. 2 
s=o [Is + I)!] 

X (y-v-s-I)(y-v-s) ... (y-v+s) ], (74) 
r(y + 1) ... (y + s) 

it easily follows that 

2 _ 2(2A1l) I 12 ( 2(2A1l)1/2 )(21+ 3)/d- I 

N 1/ - F((21 + 3)1d) d . (75) 

Using formula (74) and Eq. (19b), one can easily calculate the 
expectation value of rand "z 

F((2/+4)/d) ( d ) lid 
(r)l/= F((2/+3)1d) 2(2A1l)1/2 ' (76a) 

("z) _ F ((2/ + 5)/d) ( d ) lid 
1/ - F((21 + 3)1d) 2(2A1l)1/2 . 

(76b) 

Hence it easily follows that 

I1rl/ = [F((21 + 3)/d)F((21 + 5)/d)) _ 1]112 (77) 
(r)lI F2((21 + 4)/d)) 
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so that, as 1-00, .Jr{1 (r) 1/-0, i.e., the particle is practically 
localized in the vicinity of a sphere. Thus from various angles 
we see that the class of potentials (8) exhibits similar features 
to those of the Coulomb and the oscillator potentials. 

What is the origin of the partial accidental degeneracy 
exhibited by the class of potentials (8)? For example, in the 
case of the Coulomb potential we know that, in addition to 
L2 and Lz , there is another object, called the Runge-Lenz 
vector. which commutes with the Hamiltonian for this po
tential. 7 Similarly in the case of the oscillator potential the 
Hamiltonian is invariant under SU(3) group,1 which is wider 
than the three-dimensional rotation group 0(3). It is there
fore natural to inquire about the extra symmetry possessed 
by the Hamiltonian for the class of potentials (8). Unfortu
nately, so far we have not succeeded in our endeavor. A 
somewhat related question is to inquire if, at least for E = 0, 
the Schrooinger equation for the class of potentials (8) can be 
solved in any other coordinate system. Note that the Schro
dinger equation for both the Coulomb and the oscillator po
tentials can be solved in more than one coordinate system. 
Again, we have not been successful in answering this 
question. 

V. APPLICATIONS 

In this section we shall discuss some of the applications 
of the result that the class of potentials (8) exhibit accidental 
degeneracy as given by Eq. (7) in case Eqs. (9) and (to) are 
satisfied. 

IF level of bottom onium: The first application which we 
have in mind is to the bottom quark-antiquark (bb) bound 
system which, at least to zeroeth approximation, can be un
derstood in terms of nonrelativistic quantum mechanics 
along with v2

/ c2 corrections. 8 The exact form of the bb po
tential is not known. However, from the asymptotic freedom 
argument, we expect that at short distances the potential 
should behave like - a.lr (with logarithmic corrections) 
while at long distances the quark confinement plus flavor 
independence of the potential and the fact that E ~~ > E ~~ 
indicates that the confining part of the potential Ve(r) could 
at most behave like3 ? as r_ 00. Finally, the fact that 
r(J /~+e-»r(1//-e+e-) indicates that most likely 
Ve(r) is concave in nature,9 i.e., Ve(r) = f6P(a)t>da, p(a)-;;.O. 
The question which we would like to raise here is if ElF> or 
< E3S for the bb system. As has been noted in the Introduc
tion. if ElF <E3S' then at least the 1 3F2 state could be pro
duced and detected via the transitions 

Y"(3 3Stl_l 3F2 + y_Y'(2 3SI ) + 2y. 

To begin with let us note that the charmonium data and the 
flavor independence of the potential tell us that E r~ 
>Er~ >E~~. Since for the Coulomb potential ElF = E4S 

,while for the oscillator potential ElD = E3S >EIF = E2P 
,> E2S' it is not clearfrom here if ElF> or < E3S in the case 
of the bb system. However, from Eqs. (7)-(9) we notice that 

ElF = E3S (78) 

is true for the potential 

V(r)=Ar-lj-(2Alp)1I2r-I/2. (79) 
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Since for the Coulomb potential ElF = E4S while for the 
oscillator potential ElF < E 3S and further since the bb poten
tial is most likely of the form (79) but with the - r - 0.5 term 
being replaced by - [rIog (r/ro)] -I and Ar replaced by 
f6P(a)t> da, p(a)-;;'O. it appears that for the bb system 

E2D>EIF>E3S' (80) 

Since Y"'(4 3Stl is above Zweig threshold. it will predomi
nantly decay to bb mesons. Of course, since E (1 3 F2 ) < FIF 
while E (3 3Stl > E (3S). it is quite possible that 
E (3 3SI ) > E (1 3F2 ). However. the splitting would be quite 
small so that there is no realistic chance of detecting the 1 3 F2 
level of the bb system. 

Ordering of levels: Finally I wish to make few conjec
tures about the ordering of levels for a wide class of 
potentials. 

Conjecture I: For the class of potentials 

Vir) = f~ t(a)t>€(a) da. p(a)-;;.O, (81) 

I speculate that 

(82) 

The following arguments provide some support to this con
jecture: (a) For the special case of n = 1 and 1= ° this has 
already been rigorously proved3

; (b) for d = 2, i.e., for the 
oscillator potential, Eq. (82) is known to be an equality; (c) for 
d = 1, i.e., the Coulomb potential, the inequality (82) is in
deed satisfied. 

Conjecture 2: For the class of potentials 

Vir) = 100 

p(a)t> da. p(a)-;;.O. (83) 

I propose the opposite inequality 

En+I,I-;;'En.I+2' (84) 

Support to this conjecture comes from the fact that: (a) For 
the special case of n = 1. I = 0, it has been rigorously 
proved3

; (b) for d = 2, Eq. (84) is known to be an equality; (c) 
for d = 3. 4, 5.· .. , etc., it can be explicitly seen from Eqs. (7)
(10) that the inequality is indeed satisfied; (d) for some specif
ic anharmonic oscillator models the inequality (84) with 
n = 1 has been explicitly proved. 10 

Conjecture 3: For the class of potentials given by 

Vir) = 100 

p(a)t> da, p(a)-;;.O, 

I conjecture that 

E n+1,I-;;.En.I + 3 • 

(85) 

(86) 

Support for this conjecture comes from the fact that: (a) 
From Eqs. (7)-( to) it is known that equality En + 1.1 = E n.1 + 3 

is true for the class of potentials given by Vir) = Ar4 
- Br 

(i.e., d = 3); (b) for d = 4,5,.··,etc., Eqs. (7)-( to) offer numer-
0us examples which indeed satisfy En + 1.1 > E n.1 + 3 • 

Conjecture 4: Generalizing, for the class of potentials 
given by 

Vir) = i: _ /(a)t> da, p(a)-;;'O, m> 1, (87) 

I conjecture that 
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(88) 

In support of this let us note that Eq. (88) is an equality in the 
case ofthe potential VIr) = Ar2m 

- 2 - B~ - 2 and that Eqs. 
(7HlO) offer explicit examples in which, for d = m + 1, 
m + 2,··· etc., one has indeed E" + 1,1 > E",I + m • Generaliz
ing, I also conjecture that, for the class of potentials 

l
ao 

VIr) = p(a)r" da, 
2(1, - 1,)/(", - "') - 2 

p(a»O, 12 -II >n2 - n l , 

one has the inequality 

(89) 

(90) 

Can one say something about the form of the potentials 
satisfying E""I, <E""I,? Apart from Conjecture 1, I have no 
definite answer to this question. Is it that if for given n l , n2, 

and II' and 12, that equality E""I, = E""I, is satisfied for say 
d = d I' then E""I, < E""I, will be satisfied by all these poten
tials with d <d l ? 
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We study canonical transformations in phase-space path integrals in the Schrodinger 
representation. Using the example of a contact transformation implemented in each short-time 
propagator via the midpoint method, we show that the "measure" (dPN/2trli) nj"= I [dpjdqJ 
(2trli)], apart from the unpaired dp N, cannot be considered as a product of Liouville measures. 

PACS numbers: 03.65.Fd 

I. INTRODUCTION 

It is well known that path integration in phase-space is 
encumbered with a number of ambiguities. These are princi
pally concerned with operator ordering I and the implemen
tation of canonical transformations. It is the latter problem 
which is to be discussed in this paper. 

It has recently been claimed that the path integral has 
direct meaning only in Cartesian coordinates. 2 Nevertheless 
it has been shown that transforming to polar coordinates in 
the Lagrangian path integral, for example, actually enlarges 
the class of problems solvable by direct path integration.3 

Even when the exact propagator is not calculable, point ca
nonical transformations of a nonlinear type, when correctly 
implemented, do yield useful information such as the correct 
semiclassicallimit.4 

In the discussion above, the emphasis has been on the 
Lagrangian form of the path integral which in one dimension 
is symbolically written as 

K(q",q';r) = ff J 9) q(t) exp {~ f L (q,q;t )dt }(1.1) 

(vYbeing a normalization factor), where it appears that only 
contact transformations are relevant. On the other hand the 
form of the phase-space path integral 

K(q",q';r) 

= J 9) p(t) 9)q(t )exp {~ f [pq - H(p,q)]dt }, (1.2) 

whereH(p,q) = !p2 + V(q),hasledmanyauthorstobelieve 
that more general canonical transformations are possible. 
For instance, Clutton-Brock5 and more recently Duru and 
Keyman6 have attempted to use the machinery of Hamil
ton-Jacobi theory to obtain path integral solutions for some 
simple potentials. In doing so they have tacitly assumed that 
formal manipulations of the path integral using the classical 
formalism are possible. As an illustration, consider a parti
cular time lattice version ofEq. (1.2), e.g., 

(1.3) 

The measure in the above could be written 

fi -.!!!!L Nif dqj = dPN Nrf dpjdqj, (1.4) 
j = I (2trli) j = 1 (2trli) j = 1 (2trli) 

which gives the impression that, except for the unpaired 
dp N, Eq. (1.4) consists of a product of Liouville measures 
df-li = dpi A dqi and that under a canonical transformation 
(q,p)-(Q, P) one has 

dpN ~tf dpjdqj = dPN Nil I dPjdQj (1.5) 
(2trli) j = 1 (2trli) (2trli) j = 1 (2trli) 

where it is assumed that 

J(Pj' Qj)! J(Pj' qj) = 1 

for l(j(N - 1. However, it should be remembered that de
spite appearances, Pj is not really considered to be canonical
ly conjugate to qj in this lattice version of (1.2), rather it is 
taken as fixed over the interval (j,j - 1). This is a manifesta
tion of the uncertainty principle. Equation (1.5) makes sense 
only if q and P are canonically conjugate and therefore cast 
suspicion on the possibility of implementing general canoni
cal transformations. In fact the idea was shown to be ques
tionable by Garrod7 who noted that with the propagator for 
the harmonic oscillator written in terms of action-angle var
iables, the energy spectrum is obtained without the zero 
point energy and furthermore, the propagator does not sa
tisfy the unitarity condition. In any case it is not clear how a 
direct transformation would be performed because of the 
mismatch in the number of P and q integrals (this is not true 
for the coherent-state integrals8

). We thus expect that for Eq. 
( 1. 3) only contact transformations are relevant. 

Restricting attention to contact transformations such 
that Q = Q (q), P = p( Jq/JQ), Klauder writes the trans
formed propagator as 

lim J (JQ ") fi ~ Nill dQ 
N~oo Jq" j= 1 (2trli) j= I } 

- tH'(Pj,Qj)}], 

where 

H'(Pj,Qj)=H(Pj ~~; (Qj),qj(Qj)). 

In the continuous limit we have 

( 1.6) 
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~~: f ~ PIt )~Q(t) exp { ~ [ [PQ - H'(P,Q)]dt}. 

(1.7) 

Here again it has been assumed that (1. 5) is valid and thatthe 
factor (aQ " I aq") arises from the unpaired dp". However, 
using a harmonic oscillator coupled to external sources 
H (p,q) = !( p2 + UJ

2q2) - Jq, Gervais and levicki9 used the 
Feynman diagram technique to show that (1.6) leads to erro
neous results. They went on to show that starting with the 
Lagrangian form of the path integral, that the correct propa
gator is obtained by making the transformation q = f(Q) in 
each short-time pro~gator expandingf(Qj) andf(Qj_l) 
about the midpoint Qj = (Qj + Qj _ I )/2 and 10 retaining 
terms up to order (.1Qj)4IE_E. The extra terms can be cast 
into a correction term to the potential of the form 

.1 V(-Q ) - 1ft 1 !"'(Qj) 
j - 8 [f'(QjW 

_ ~[(f"'@j))2 _ f"'(gj)] [f'(-Q.)]2} (1.8) 
8 f'(Qj) f'(Qj) J' 

where the primes refer to derivatives with respect to Q. 
We felt it is instructive to examine contact transforma

tions starting from the phase-space path integral rather than 
the Lagrangian form. In the next section we discuss a version 
of the midpoint method suitable for transforming Eq. (1.3). 
In the foregoing discussion it will become clear that Eq. (1.5) 
is false for all contact transformations but a scaling of co
ordinates. Finally it should be pointed out that we begin with 
the classical variables rather than unitary transformations in 
quantum mechanics as in the work of Fanelli. II 

II. CONTACT TRANSFORMATION IN THE PHASE· 
SPACE PATH INTEGRAL 

From classical mechanics, 12 canonical transformations 
are obtained from a generating function F such that 

pq - H (q, p,t ) = PQ - K (P, Q, T) + dF , (2.1) 
dt 

where 

8f" dF dt = O. 
" dt 

With F = FI(q, Q,t) we obtainp = aFI/aq, P = - aFllaQ, 
and K = H + aF/ at. To obtain contact transformations we 
write FI = F2(q, P,t ) - QP with F2 = Q (q)P so that K =H 
and 

p = aF2 = aQ(q) P, 
aq aq 

(2.2) 

Q(q) = a;;. (2.3) 

Assuming that Eq. (2.3) can be inverted to yield 
q = f(Q), we follow Gervais and levicki9 and expandf(Qj) 
andf(Qj _ I ) about the midpoint Qj = (Qj + Qj _ I )/2, re
taining terms to order E. We obtain 
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qj =f(Qj) + !f'(Qj).:iQj + i/"(Qj)(.1Qj)2 

+ isf"'(Qj )(.1Qj)3 + '" , 
qj -I = f(Qj) - !f'(Qj ).:iQj + kf"(Qj )(.1Qj )2 

- isf"'(Qj )(.1Qj)3 + ... . (2.4) 

Now instead of using (2.2) directly in (1.3) as was done by 
Klauder8 in Eq. (1.6), we write it as 

Pj = Pj(.1Qjl.1qj)' (2.5) 

as the momenta are defined over the interval rather than the 
endpoints. We have .1qj from Eqs. (2.4) so that Eq. (2.5) be
comes 

(2.6) 

where it is to be understood thatf' andf"', etc. are evaluated 
at Qj. Now from Eq. (1.3) the short action 

SIt) -tj_I)=pj.1qj -E[pJ12m+ V(qj)], (2.7) 

using (2.5) and (2.6), becomes 

[
P 2 

S(tj -tj_d=Pj.1Qj -E 2~(f')-2-
P~f'" 

24~(f')3 (.1Qj)2 

+ V [f(Qj)] ]. (2.8) 

where we have retained the term EP 7(.1 Qj )2 as it is of order E. 
We now consider the transformation of the measure. 

For the reasons previously discussed, we treat dqj and dpj 
separately. To begin we symmetrize dqj about Qj and Qj _ \ 
to obtain 
N-\ N II dqj = [f'(Q ")f'(Q')] -1/2 II [f'(Qj)f'(Qj- dP/2 
j= \ j= \ 

(2.10) 

We expandf'(Qj) andf'(Qj _ \ ) about Qj to get 
N-\ II dqj = [f'(Q")f'(Q')]-1/2 
j= \ 

where 

(2.12) 

For the momentum measure we simply use Eq. (2.6) to write 

dpj = dPj(f')-\ [ I - 2~ 'j": (.1Qj )2]. (2.13) 

Thus, combining Eqs. (2.11) and (2.13) we have, to order E, 
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fi.!!..J.L Nlf dqj = [('(Q")/,(Q')]- 1/2n dPj NrfdQj 
j= I (211'1i) j= I j= I 2rrli j= I 

N[ (11"' 1) ] X II 1- --, + -A (..dQj)2 . 
j= I 24 f 8 

(2.14) 

Now, ~ining the results of Eqs. (2.9) and (2.14) we 
have tlac tJaUformed propagator 

K [((0 "),/((1'),1"] 

= lim [f'(Q ")/,(Q')] -1/2f n dPj Nrf dQj 
N~", j= I (2rrli) j= I 

xexp'{i. i[pj..d Qj - €PJ(/,)-2_EV[((Qj)]]} 
Iij=1 2m 

X nN {I _ (.!I"' + ~)(..dQ.)2 i€ PJ fill (..dQ.)2} 
j = I 24 f' 8 '1 + Ii 24m (Ff '1 • 

(2.15) 

To olKain a mQCe useful form we do the following. We note 
tut if~ replace Qj in/,,J", etc., by Qj_ I the difference in 
Eq. (2.1S) will be on order e/2 or higher. Next we use the 
idontities 

dx dy e-ay' + bxYX
2 = -- - - ,(2.16a) I'" Joo 1T ( b 2 ) - 3/2 

- '" - '" 2.j(i 4a 

s: '" S: '" tlx dy e - oy' + bxyxV 

= ; ( _ ~) - 3/2 [ 1 + 1
3
6 ( _ ~) - I] 

to see that (2.15) diffe11l from 

K V(Q "),J(Q '),1" ] 

(2.16b) 

f 
N dP N-I 

:z: 1iBl V'ta ")/,(Q ')] - 112 II -=..L II dQj 
H ..... "" j= I (2rrli) j= I 

xeJtP{l- i [pj..d Qj - € PJ (f'(Qj))-2 
I1 j =1 2m 

-tV[((Qj)] -€..dV(Qj)]}, (2.17) 

wbore..c:lY~Qj) i6 given by Eq. (1.8) by terms of order el2 or 
kiPer. OM ~ now perform the momentum integrations to 
obtain the Lagrangian path integral 

K ff(e "),f(Q ');1" ] = lim [('(Q ")/,(Q 'I] - 1/2 
N~"" 

(2.18) 
whiGh is tu QRe~ensional version of the results of Ger
vaisan4 JevWki9 Asspming thatK(q", q';7") propagates the 
wave funet.ii¥l y,(q,t) via 

t/J(q" ,1' ) = f K (q" , q';7" )tP(q' ,O)dq', (2.19) 

then tt.e propalator 

Ktf) \Q';T) = [('(Q ")/'(Q')]1/2K [((Q "),/(Q');7"] 
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propagates the wave functions 
¢(Q,t) = [('(Q)] -1/2t/1(f(Q),t), as 

~(Q" ,1") = f K (Q" ,Q ';7")~Q ',D)dQ '. (2.20) 

We have previously used the results above to calculate 
radial path integrals semiclassically.4 In order to perform 
the semiclassical path integration it is necessary to transform 
from the radial variable r whose range if [0, 00 ) to one whose 
range is ( - 00,00). In the radial path integrae the effective 
potential is 

1i2/(/+l) 
U Urjrj _ 1 ) = + VUrjrj _ 1 ). (2.21) 

2mrj rj _ 1 

A transformation which maps the semi-infinite range of r 
onto the infinite range of x is r = eX. Applying this in Eq. 
(1.8) yields 

..d V(Xj) = W/8m)e - 2Xj (2.22) 

so that the effective potential gets modified to 

U (eXj) + ..d V (x
j

) = 1i
2

(1 + !)2e - 2Xj + V (exl (2.23) 
2m 

The transformation r = ~ has effectively modified the an
gular momentum term: I (I + 1)_(1 + !)2. This is the Langer 
modification which is necessary to obtain energy levels with 
the correct degeneracy for the Coulomb and harmonic oscil
lator potentials. It should be pointed out that the transfor
mation r = ~ as opposed to any other which maps [0,00) to 
( - 00,00), is used as only it yields phase shifts in semiclassi
cal scattering which vanish as V (r)-D. 

III. DISCUSSION 

We have used here a particular procedure, the midpoint 
method, to implement a contact transformation in the 
phase-space integral. It is not clear how other canonical 
transformation could be implemented for path integrals in 
the Schrodinger representation since they are not symmetri
cal in the p and q integrals. Furthermore, the procedure used 
here may not be unique as, indeed, a particular lattice space 
version of path integrals is not unique.8 Nevertheless, the 
results here are known to be correct as they have been tested 
via the diagrammatic technique in perturbative field theory9 
and in nonrelativistic semiclassical quantum mechanics.4 

The main point of the work is that formal manipulations of 
phase space paths using the classical formalism are unjusti
fied. In particular, Eq. (1.4) cannot be treated as a Liuoville 
measure except, as can be seen from (2.14), a scaling of the 
coordinates. It seems likely that the correct results obtained 
in Refs. 5 and 6 are due to the fact that they have treated 
simple potentials such as the harmonic oscillator, where ex
act and semiclassical results coincide. 13 

It would be interesting to see how the results here are 
related to other definitions of the phase path integral which 
do not rely on a lattice space formulation followed by a lim
it.14 One should also consider the coherent-state path inte
gral which is symmetrical in p and q and presumably exhibits 
covariance under general canonical transformations.8 It is 
likely, however, that one might expect there to arise correc-
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tions to the Hamiltonian as happens in the SchrOdinger re
presentation. These matters are being investigated and will 
be reported elsewhere. 
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A recurrence relation for the phase shifts of exponential and Yukawa 
potentials 

B. G. Sidharth a) 

Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy 
International Centre/or Theoretical Physics, Trieste, Italy 

(Received 23 July 1981; accepted for publication 25 January 1982) 

Using the Born approximation for high energies, we deduce a recurrence relation for the higher 
order phase shifts ofYukawa and exponential potentials and their superpositions. Thence a 
formula for the total cross section is deduced. It is shown that these formulae are particularly 
useful when the energy is very high. Next, using the low energy technique of expansion in powers 
of the energy, we deduce an asymptotic formula when I is large, for 0, + 1 /0,. The remarkable 
thing is that the recurrence relation is identical to the asymptotic formula. It is verified that the 
formulae for the phase shifts give satisfactory results, which are better than the Born 
approximation, from I = 1 onwards, for scattering by helium and hydrogen atoms, while the 
formula for the total cross section gives better results than an improved variational technique or 
the Born approximation. 

PACS numbers: 03.65.Nk 

I. INTRODUCTION where 

In this paper, we first obtain a recurrence relation for 
the higher-order phase shifts ofYukawa and exponential 
potentials and also a superposition of the two, for high ener
gies and/or weak potentials, for which the first Born approx
imation is known to be good. 

B, = -100 

[rj,(KrWU(r) dr. (5) 

Next, for the same class of attractive potentials, we ob
tain an asymptotic formula for large I at low energies, in 
which case, the phase shifts can be expanded as a power 
series in K. 

The remarkable feature is that, though these are well
separated energy domains, the recurrence relation and the 
asymptotic formula are equivalent. 

II. THE RECURRENCE RELATION 

We consider high energies and/or weak potentials. Our 
starting point is the radial Schrodinger equation, 

u;' + [K 2 -/(1 + 1)/r -AU(r)]u, = 0, u,(O) = 0, 
(1) 

for which it is known that l the phase shifts 0, are given by 

(2) 

while Eq. (1) can be written in integral form as 

u, = rj,(Kr)cosO, + AKrn, (Kr)fr'J,(Kr')U (r')u,(r') dr' 

+ AKrj,(Kr)i
oo 

r'n,(Kr')U(r')u,(r') dr'. (3) 

Introducing (3) in (2), we get, 

(4) 

alPermanent address: Birla Planetarium, 96, Chowringhee Road, Calcutta 
700071. India. 

So, for small A, (4) becomes 

tano, = AKB" (6) 

which is the first Born approximation for 0,. As is well 
known, (6) can be obtained directly from (1) and (2): If 
IAU(r)1 <K2 except near the origin, where -I (I + 1)/r 
dominates anyway, then u, approximately satisfies the 
equation 

u;' + [K 2 -/(1 + 1)/r]u, = 0, 

with the only admissible solution 

u, = rj,(Kr). 

When this is substituted in (2), we get 

sino, =AKB,. (7) 

This is an equivalent form of (6), because, at the high 
energies or low potential strengths at which the Born ap
proximation (6) or (7) is valid, the phase shift 0, is small, so 
that tano, ::;::sino, ::;::0,. So (6) or (7) is valid for high energies 
and/or weak potentials, for any form of the potential. 

We will now deduce a recurrence relation for the B, for 
the exponential potential, U (r) = Aexp( - br), and the 
Yukawa potential, U(r) = (A /r)exp( - br). 

Following (5), let us define 

B \m l= 100 

,mexp( - br) [rj,(KrW dr, m = - 1,0. 

Next, we use the formula2 

100 

exp( - br) J~(Kr)dr 
= (1/11'K)Qv_I/2((b 2 + 2K 2)/2K 2), 

where Q, is the Legendre function of the second kind. 
Remembering that J, + 1/2 (r) = [(2r/11') j,(rW /2, we get, 
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on putting v = I + !, 

B\-'} = (l/2K2)'QI(b 2/2K2 + 1). 

Now applying the formula3 

(I + I)QI + I (z) - (21 + I)zQrlz) + IQI_ I (z) = 0, 

we get finally 

(8) 

(9) 

2(/ + I)BI~ \} + 2IB\= \} = (21 + 1).(b 2/K2 + 2)B\-'), 
(10) 

which is a recurrence relation for the B \ - I}. 
To obtain a recurrence relation for the B 1°}, we observe 

that it can be easily proved that the integrals for B \ - I} are 
uniformly convergent with respect to b. So differentiating (8) 
with respect to b, within the integral, we get 

B(O) - __ 1_~ [Q (~+ 1)]. (11) 
I - 2K 2 db I 2K 2 

Next, using the formula (cf. Ref. 3), 

Q;+ I (z) - Q ;_1 (z) = (21 + l)QI(z) 

in conjunction with (9), further manipulation yields 

(2/+ 1)(b 2/K2 + 2)B\O} = 2IB)Ol, +2(1+ l)Blo~" 
(12) 

which is a recurrence relation for the B 1°). 
Owing to the smooth behavior of the spherical Bessel 

functions with respect to I, we can write (BI+ ,/BI) ........ p as 
1 ........ 00, in (10) and (12). 

For large I, (10) and (12) yield 

(2+b 2/K2)/3= 1 +p2. (13) 

We choose 

p = ![(2 + b 2/K2) - ( ; }4 + b 2/K2)1/2]. (14) 

(For the other root, which is > 1, the series for the scattering 
amplitude diverges.) 

In view of(6) or (7), we can therefore write, owing to the 
fact that 01........0, as 1- 00 , 

tanol + I sinol + I 01 + I P t' I I ----.:....:....:...- :::::--:::::, lor arge , 
tanol sinol 01 

(15) 

for high energies (K 2> 1 ) and/or weak potentials (A. < 1). 
We now show that, forlarge I, (15) is valid for potentials 

which are a superposition of an exponential and a Yukawa 
potential, viz., 

U(r) = [A + (B /r)]exp( - br). 

For such potentials, we define 

BI = LO(A + B /r)exp( - br)[11(Kr)] 2 dr. 

Also, (10) and (12) take, for large I, the asymptotic forms 

B(-'}+B(-'}= (~+ 2)B(-I) 
1+ I I-I K2 I' 

B (0) + B (O) = ( ~ + 2)B (0) 
1+1 I-I K2 I' 

respectively. 
Multiplying the first of these by B and the second by A 

and adding, we get 

BI+' +BI _ I = (b 2/K2 + 2)BI· 
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TABLE I. Phase shifts for scattering by helium atoms. 

K 

3 
4 
5 

62 (exact)" 

0.0946 
0.1304 
0.1524 

"The exact values of 62, 
4 

62 (formula) b 

0.0920 
0.13088 
0.1569 

62 (Born) 

0.0769 
0.1130 
0.1378 

"The values of 62 as computed from formula (16), using exact values of 6, as 
obtained from Ref. 4. 

So, if B I+ I /BI_P as 1 ........ 00, we get back Eq. (13) for P 
and then (15). 

Equation (15) can be used to calculate the cross sections. 
For example, if the equation 

sinol + I/sinol =P (16) 

is a good approximation for t>L, then 

(7 = ~ L (2m + 1)sin2om 
4 [L-I ] 
K m=O 

+ 4~ [ .f (2m + 1)Sin20m ]. 
K m=L 

Using (16), the second summation above can be written 
as 

sin20 
__ L [(2L + 1).82L + (2L + 3).82L+2 + ... ] 

p 2L 

= sin
2
0L ~ [ .f p2m + I] 

p 2L dP m=L 

(2L + 1) - (2L - 1)/32 . 2£ 
= sin u 
. (1 _P 2)2 L> 

whence 

(7 = ~ L (2m + 1 )sin2om 
4 [L-I ] 
K m=O 

417' (2L + 1) - (2L - 1)/32 . 20 (17) 
+ K2 (1 _P2)2 ~tn L' 

In particular, if L = 0, (17) becomes 

(7 = ~~ .[ (11 ~ :2~2 ]sin
2
00. (18) 

We now make two remarks: 
In the high energy case, b / k < 1, and so, from (14), we get 

p::::: 1 - b /K::::: 1. In this case, the relation (15) or (16) is par-

TABLE II. Phase shifts for scattering by hydrogen atoms. 

K 

0.5 
0.25 

"The exact values of 62•
6 

62 (exact)" 

0.0178 
0.0056 
0.0014 

62 (formula)b 

0.01909 
0.0059 
0.0014 

"The values of 62 as computed from formula (16), using exact values of 6, 
given in Ref. 6. The agreement is good considering that we are not in the 
high energy case. We also have that, for energies K2 equal to 1.75 and 1.5, 
sin6,/sin6o, as given by (16), is, respectively, 0.247 6431 and 0.2251483 
while its actual values are, respectively, 0.215 4928 and 0.1975663. 7 
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TABLE III. Total cross section 0' for scattering by hydrogen atoms. 

0' (exact) 0' 
K2 is greater than" (formula)b 0' (variational) C 0' (Born)d 

I 2.62 2.70 2.34 1.54 
1.75 1.40 1.48 1.34 1.04 
2.25 1.09 1.136 1.05 0.854 

4 0.60 0.64 0.587 0.522 

"The cross section calculated using accurate values of the first few phase shifts. 8.9 

"The cross section using formula (18). 
<The total cross section using a sophisticated variational technique. 
dThe total cross section using the Born approximation. 8 

ticularly useful. For, as is usually done, one could calculate 
the first L phase shifts and then compute the cross section, 
neglecting the contribution of the {)I for [> L. However, even 
though these {) I may be individually small, (17) shows that, 
owing to the factor [(2L + 1) - (2L - 1)/3 2]/( 1 - P 2)2, their 
collective contribution to the scattering cross section is ap
preciable. 

Next we note that (15) holds for small values of I {) I I. In 
fact, in the absence of resonances, if I {) II is small, then so are 
the subsequent phase shifts, because they fall off monotoni
cally.4.5 A large value of I{)II, like 21T + 10 I is associated with 
a resonance. In such a case, neither the Born approximation 
nor (15) hold for that particular [. 

Formulae (15) or (16) and (18) are numerically illustrat
ed in Tables I, II, and III for two cases of practical interest: 
for scattering by the static field of the hydrogen atom, in 
which case 

U(r) = - 2(l/r + l)exp( - 2r); 

for scattering by an approximate static field of the helium 
atom, in which case 

U(r) = - 2(l/r + z)exp( - 2zr), z = 27/16. 

It is seen that formula (16) for the phase shifts gives 
good results from [= 1 itself, even though the energies are 
not high and even though, for the potentials considered, the 
large [ version of (10) and (12) are required in the derivation 
of (16), so that when [ is not large, (16) is only approximate. 
Moreover, for the total cross section, formula (18), which 
uses (16) from I = 0 itself, already gives better results than a 
refined variational technique or the Born approximation. 

III. THE ASYMPTOTIC FORMULA 

First we quote the following results lO
: 

At low energies, the phase shifts can be computed from 
the function t/(r) = tan{)/(r), where til 00) = tan{)/, {)/ being 
the usual phase shifts, and where 

t/(r) = K2/+ 1 [a/(r) + O(K2)]. 

Ifwe write 

ak)=a/(r)/! [(21 + I)!!] [(2/- I)!!] J, 
the a,(r) are known to satisfy the Riccati equation 

a'(r)= -AU(r) [';+I+r~/a(r)]2 
, (21 + 1) I 

(19) 
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with the following behavior near the origin, 

a l(r)_rl + 3 - m as r-o, 

where 

U(r)_r- m as r-o. 

(20) 

In the subsequent discussion we will be interested only 
in the case m < 2, and attractive potentials, AU (r) < 0 every
where, and also sufficiently large [ for which there are no 
bound states. 

In the absence of bound states it is known that {)I(r) is a 
continuous function of r. From (19) and (20) it now follows 
that, as adO) = 0 and a;(r) > 0, so 

(21) 

Also, it is seen from (19) that ai(r) itself is a continuous 
function of r. Substituting (21) in (19), we get the lower bound 

al==al(oo» _ A ("" U(r)rl + 2dr. (22) 
(21 + 1) Jo 

Next we will deduce an upper bound for al' From the 
known behavior of a/(r) for small r, given in (20) and from 
(21), it follows that 

a/(r)l(pr/+ I)_r-m-o + as r-o, 

where p is an arbitrary positive number. So, 

a/(r)<pr/+ I, for small r. (23) 

We shall prove that, given an arbitrarily small p > 0, 
there exists an L such that (23) is true for all r whenever I > L. 

First, we observe that as al(r) andpr/+ 1 are both con
tinuous functions, and, in view of(23), there can be only two 
possibilities: 

(A) There is at least one number r) > 0 such that 

a/(r) <pr/+) for r<r l , 

a/(rI! =pii/+ \ (24) 

(25) 

We first consider case (A). We divide both sides of(19) 
by ! a/(r) J2, and then substitute the third relation of (24) and 
integrate between r) and R. This leads to 

_1 ___ 1_< -A (lIp + W (R U(r)r-2/ dr. 
a/(r l ) a/(R) (21 + 1) Jr, 
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Our choice of the potential ensures that 

-AU(r) = IA (U(r)1 <A Ir, for all r>O, 

where A is some (a priori) fixed number, whence we get, after 
using the second relation in (24), 

1 1 1 (1+1/p)2 [ (r,)21+'] 
al(R) > p~l+ , - ~I+ " (21 + W A 1- Ii . 

Now (r,IR )21+ '-0 as 1-00, because (r,IR )< l. So we 
can write 

p~1 + '[ A ( 1) ] 
al(R) > 1- (21 + W p + p + 2 (1 + €,) , (26) 

for I>L" 

where L, is some large positive number. 
Let us choose a number B, such that AlB = €2 is as 

small as desired. Also p is arbitrary and as yet unspecified. 
Let us write 

p = B 1(21 + 1)2 (27) 

and consider values of! > L 2 , say, for whichp = €3 is as small 
as we please. Specifically, 

L2 = !(B 1€3) 112 = !(A 1€2€3)'12. 

We note that r, > 0 depends on the choice of p and I, but 
we need not bother as long as this choice leaves us in case (A). 
If this choice is possible only under (B), this will be discussed 
separately. 

To sum up, we choose p according to (27), whereB is any 
I-independent number, which merely satisfies the require
ment (A IB )<1, A being some given (positive) number. 
Further, we choose L2 such that if I > L z, then p< I. 

Inequality (26) now becomes 

p~l+ '/al(R»! I - (A IB)(I + €,) + o (€2€3)} 

= [1-€2(l +€,)] 

for I> max(L, ,L2)==L. 
Finally, on using the last inequality of(24), this becomes 

(r,IR)ZI+'>p~I+'/al(R»(I-€2) for I>L. (28) 

As (r,IR) < I, (r,IR )ZI+' can be made arbitrarily small by 
choosing I suitably large. Hence (28) is impossible. 

For completeness it may be added that inequality (28) 
may hold if the zeroes of the function al(r) - prl+' are un
bounded and further if the distance between successive ze
roes becomes arbitrarily small as 1_ 00 where 
p = B 1(21 + I f In that case, if r, > 0 and r2 > 0 are succes
sive zeroes and r, <R <r2, then (r,IR )_1 as 1-00. Butthis 
possibility is ruled out owing to the smooth behavior of al(r) 
andprl + '. 

Thus we are left only with case (B). That is 

al(r)<prl+' for r>O and l>L, 

where p is given by (27). 
Substituting this in (19) and integrating, we get the de

sired upper bound 

al(oo)<[ -A(l +p)2/(21+ l)]fo U(r)rl+2dr, 

where p-o as 1-00 . 
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TABLE IV. Phase shifts for scattering by hydroaen atoms (lowC!Rergy). 

0.25 
0.10 
0.010 

82 (exact)" 

0.0014 
0.0002 
0.0000 

0.0016 
0.0002 
0.0000 

"The exact values of 82•
6 

"The values of 82 as computed from formula (32). using exact values of 6 1 as 
given in Ref. 6. 

Comparing this with inequality (22), we deduce that 

a l ;:::: [ - A 1(21 + 1)] 1"0 U(r)rl + 2 dr. (29) 

We remark that no specific form of the potential has 9cen 
assumed in deducing (29). 

Using the definition of 81 in terms of ad 00 )==a l , we can 
easily deduce that 

81+, K2 f;'U(r)rl+4 dr 
--= 

81 (21+3)2 f;'U(r)rl + 2dt· 

We first consider (30) for the attractivt potentie1, 

U (r) = - r"'exp( - brIo 
Then we get 

81+, K2 (2I+3+m) K2 
--= . -+-

81 (21 + 3)2 2b 4bI 

(30) 

(31) 

for large I. This result is identical to the known relation for 
any energy. for this class of potentials. II This provKies a 
check on the validity of (29). 

We next use (30) for U(r) = - Ar"'exp( - ht). ThiUitnf 
we get, for large I, 

81+,/81 = (K Ib)2. (32) 

It can be verified that, for large I, (32) also holds twr 
U(r) = - (l:7= ,A;rm')exp( - br), where A; areen > 0 MId 
the m;, which need not be integers, are all > - 2. 

It is remarkable that (32) can be deduced frOlllllS) lrith 
P given by (14), in the limit K-o. [If b is so small tUt 
(K Ib) > I, it means that the potential is so stroftl that dlIU' 
assumption that there are no bound states or zer~y 
resonances is no longer credible, and our low-enerIY approx
imation is not valid. However, for fixed 11, (3<2) or (29) is oor
rect for sufficiently low energies.] 

Formula (32) is illustrated in the case of 8'Calteriq by 
the static field of the hydrogen atom, in Table tv. Thth
mula is seen to give good results from 1 = 1 itSC!llf. 

IV. CONCLUSION 

We have deduced a recurrence relation f0r the hither
order phase shifts of exponential and Yukawa potaKiall allel 
their super-positions, for high energies, .nd an aeymptotic 
formula for 81 + 1181 for low energies. The r~ rdtl
tion is identical with the asymptotic fOrinula! (32, ami ( 1~ [~ 
(16)] can both be written as 

81+ ,/81 =P, (33) 

wherep, which is independent of I, satisfies (l<f). 

B. G.;SidfiIalttt'I 



                                                                                                                                    

Thence we have deduced an expression for the total 
cross section, involving only a few phase shifts, viz., (17) and 
(18). 

Further, if the energy is high (K> 1), then 
{3,;::;; 1 - b /K,;::;; 1, and we have seen that the relation (33) is 
indeed useful, particularly in computing the cross sections. 

In any case, (33) shows that for the energy ranges consi
dered, the phase shifts do not fall offvery rapidly, as rapidly, 
for instance, as Gaussian potentials, which, according to 
(31), fall off like the inverse factorial of I, or finite range po
tentials, which fall off even faster. 11,12 

We have also verified that formula (33) [or (16) or (32)] 
gives satisfactory results from I = 1 onwards, for scattering 
by atomic hydrogen and helium, while formula (18), for the 
total cross section, gives better results than an improved 
variational technique or the Born approximation. 

ACKNOWLEDGMENTS 

I would like to thank Professor Abdus Salam, the Inter
national Atomic Energy Agency, and UNESCO for hospi
tality at the International Centre for Theoretical Physics, 
Trieste. I would also like to thank Professor P. Budinich and 
Professor L. Fonda for inviting me to the International 

882 J. Math. Phys., Vol. 24, No.4, April 1983 

School for Advanced Studies, Trieste. I am very grateful to 
Professor G. C. Ghirardi for useful discussions in connec
tion with this paper as also to the referee, in the light of 
whose constructive comments the paper has been rewritten 
and the practical aspects of the work have been 
incorporated. 

Ip. Roman, Advanced Quantum Theory (Addison-Wesley, Reading, Mass., 
1965), pp. 175-9. 

2G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge 
V.P., Cambridge, 1962). 

'E. T. Whittaker and G. N.Watson, A Course of Modern Anaylsis (Cam
bridge V.P., Cambridge, 1969), p. 318. 

'N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Oxford 
V.P., Oxford, 1965), pp. 571,465. 

SM. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 
1964), p. 258. 

"T. L. John, Proc. Phys. Soc. 76, 532 (1960). 
7S. Chandrashekhar and Breen, Astrophys. J. 103,41 (1946). 
8S. Altshuler, Phys. Rev. 87, 992 (1952). 
"Smith, Miller and Mumford, Proc. Phys. Soc. 76, 559 (1960). 
lOF. Calogero, Variable Phase Approach to Potential Scattering (Academic, 

New York, 1967), pp. 67-70. 
liB. G. Sidharth, Nuov. Cimento 46A(3), 419 (1978). 
12L.1. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1955), p. 107. 

8. G. Sidharth 882 



                                                                                                                                    

A coordinate-free derivation of a generalized geodesic deviation equation 
N. S. Swaminarayan 
Department of Mathematics, Chelsea College, University of London, Manresa Road, London SW3 6LX 
United Kingdom 

J. L. Safko 
Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 

(Received 27 July 1982; accepted for publication 22 October 1982) 

A simple, coordinate-free exact derivation of the geodesic deviation equation is given. This result 
includes the possibility of non vanishing torsion. We then show that this form of the geodesic 
deviation equation can be specialized to various results given previously in the literature. 
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I. INTRODUCTION 

The motion of a test particle along a geodesic of the 
space-time plays the same role in the general theory of relati
vity as the uniform linear motion of a test particle plays in the 
Newtonian mechanics. The Riemann curvature tensor, 
which is the indicator for the presence of the gravitational 
field does not enter the geodesic equation; however, it does 
show up in the geodesic deviation equation. This equation 
was first formulated by Levi-Civita 1 and independently pro
posed by Synge2 and Schild,3 while considering a two-pa
rameter family of curves. The geodesic deviation equation 
gives the relative acceleration between two nearby particles 
moving along nearly identical geodesic paths. 

Pirani4 used a parallelly propagated tetrad and put the 
geodesic deviation equation into a form comparable to the 
"Newtonian" case. In his work the tetrad components of the 
Riemann tensor were seen to correspond to the tidal forces 
due to a "Newtownian" gravitational potential in the ob
server's rest frame. 

Manoff 5 has discussed the relation between the geode
sic deviation equation and the Lie derivative of the defining 
vector fields. He has given a summary of various formalisms, 
methods and/or modifications of the geodesic equation used 
by several authors to investigate different physical situa
tions. 

Dolan et al.6
•
7 have shown that the magnitude of the 

deviation vector satisfies a scalar equation, which can be 
solved to obtain formal solutions. Novello et al. 8 have gener
alized the geodesic deviation equation to the idea of a Jacobi 
field. Further generalizations have been given by Weber,9 
Bazanski,lO.ll and Hodgkinson, 12 

In this paper we give in a coordinate-free way a simple 
derivation of the geodesic deviation equation allowing for 
the possibility of non vanishing torsion. The plan of the paper 
is as follows: 

The basic equation is derived in Sec. II. In Sec. III, we 
show how this equation reduces to the results of several oth
er authors. The relevance of the Lie transfer for the deviation 
vector is considered in Sec. IV along with the work of several 
other authors on the higher-order geodesic equation. Final
ly, in Sec. V we summarize our conclusions. 

II. THE BASIC EQUATION 

Let u, v, W be vector fields on a four-dimensional Rie
mannian manifold M4 that is locally Lorentzian, and is en
dowed with a connection and a metric g. This connection 
defines the operation of covariant differentiation, V, of vec
tors and tensors on M 4 • [u,v] denotes the Lie bracket of the 
vector fields U and v. The basic definitions of the torsion 
vector field T and the curvature operator Rare 

T(u,v)=VuV-VyU- [u,v], (2.1) 

R (u,v)w = Vu Vyw - Vy Vuw - Vlu.ylw. (2.2) 

The Lie derivative of v via the vector field u is given by 

2"uv=[u,v]. (2.3) 

Let u and 1) be two vector fields on M4 ; then Eq. (2.2) 
becomesR (1),u)u = VTJ Vuu - Vu VTJu - VITJ.u lU' 

which upon substitution of Eq. (2.1) gives 

R (1),u)u = VTJ Vuu - Vu [Vu1) + T(1),u) + [1),u] J 

- VITJ.ulu. 

The last equation can be written as 

V~1) + R (1),u)u = V TJ(V u u) + Vu T(u,1)) 

+ Vu [u,1)] + Vlu.TJlu. (2.4) 

Equation (2.4) is a direct consequence of the definitions 
of the curvature and the torsion. No other ideas or calcula
tions are needed to obtain Eq. (2.4). We will refer to it as the 
basic equation. 

Consider a congruence of curves, which are parame
trized by the same parameter s, at least on a small compact 
domain. 13 Each curve of this congruence is a possible world
line for an observer or a test particle. The tangent vector field 
to the congruence is denoted by u, and 1) denotes the devi
ation vector field, which connects points on two infinitesi
mally neighboring curves of the congruence with equal val
ues of the parameter s. The parameter along an integral 
curve for 1) will be denoted by v. With this specification Eq. 
(2.4) is a generalized deviation equation. It includes the pos
sibility of non vanishing torsion. 
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III. SPECIAL CASES 

An observer is following a curve r, a member of the 
congruence in M 4 • The velocity vector of the curve is de
noted by the unit tangent vector u, to the curve r. The accel
eration of the curve V u u is denoted by 8. 

U·U = 1 (3.1a) 

and 

(3.1b) 

Except when otherwise stated, it will be assumed that 
the vector 1) is carried along r by Lie transport, i.e., 

(3.2) 

We shall return to the discussion of Lie transport in Sec. 
IV. Ifwe assume that torsion vanishes, the basic equation 
(2.4) now reads9 

V; 1) + R (1),u)u = V",a. (3.3) 

Case (i): a = O. In this case r is a geodesic, and the refer
ence frame of the observer is carried along r by parallel 
transport. Equation (3.3) reduces to 

V;1) + R (1),u)u = O. (3.4) 

Following Matte,14 let us set 

Eab = - Rapbqupuq, i.e., ~( ) = - R ( ,u)u. (3.5) 

Notice that Eab is trace-free in empty space, where Rab = O. 
We have 

D 2'T}a a b . 
--2- = E b'T} ,1.e., V;"l = E'1), (3.6) as 

where E'1) = E(1)). 
Any 1) is called a Jacobi vector field along r, if it satis

fies an equation of the type Eq. (3.6). 
Case (ii): 8#0. Then ris not a geodesic, and the Eq. 

(3.6) is modified to read 
D2 a 
as; =Eabr/+rfVpaa, i.e., V; 1) =E'1) + V",a. 

(3.7) 

If the nongravitational forces present are such that we 
may set 

Vbaa=Nab -Ea
b, 

then we get 

(3.8) 

D2 a 
_'T}_ = Nab 1]b. (3.9) 

as2 

Novello et al. 8 call the solutions of Eq. (3.9) a General
ized Jacob Field (GJF). They discuss possible forms of Nab 
and consider several particular cases, where Nab is a polyno
mial function of the curvature tensor. 

Case (iii): a # O. In this case it is more appropriate to use 
Fermi-Walker transport (FWT) along r for the reference 
frame ofthe observer. FWT assures a nonrotating set of axes 
along r and reduces to parallel transport when r is a geode
sic. The Fermi-Walker derivative D F/ as along r for a vector 
field X is defined by 

DFX DX 
- = - + (X·a)u - (X·u)a. as as 

(3.10) 
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and 

Notice that 

DFu 
--=0, as (3. lOa) 

(3. lOb) 

where 1 denotes the part of the vector perpendicular to u. 
Any vector X can be split up into two parts, 

x = Xl + (X.u)u, (3.11) 

where X1'u = O. The perpendicular component can be cal
culated by the use of a projection operator; 
hab = gab - uaub· 
A straightforward calculation shows that Eq. (3.3) becomes 

D~1]~ _ 
- R ~cdUbUd'T}1 + h ~'T}1 V cab - ab'T}taa. -----ar -

(3.12) 

The last equation may be expressed in either of the fol
lowing ways: 

D~1)l ---aT = - R (1)1 ,u)u + (V'11 a)l - (a"1)1)a (3.12a) 

(Da) DFa - R (1)1>u)u + - - (u"1'))-7-
av 1 as 

- (a'1)l la, (3.l2b) 

where D /av = 'T}aVa' 
1) can be interpreted as the separation between two 

neighboring test particles, as measured in the rest frame of 
one of them, and the second FW derivative of 1) gives the 
relative acceleration between the two test particles. Thus use 
of FWT is fully justified and the equations (3.12) give an 
appropriate generalization of the geodesic deviation equa
tion for accelerated curves. Since Eq. (3. lOb) implies that 

D~1)l (D(D )) ---aT = as &111 
1 l' 

these results are equivalent to those proposed by Hawking 
and Ellis. 15 

Case (iv): a#O. 2"u1)#O. In this case we give up the 
assumption that 1) is Lie transported along r, and use the 
notation of Lie derivative. The vanishing of the torsion im
plies that 

V'" a - V.1) = [1),a 1 = 2"", a, 

i.e., 

V",a = 2"",a + V.1). 

The basic equation can be written as 

V~1) + R (1),u)u = V",a - Vu (2' ",u) - V .Y"uu, (3.13) 

which becomes 

V~1) + R (1),u)u = V.1) + 2' ",a - Vu(2' ",u) - V Y..,uu. 
(3.14) 

This is the coordinate-free representation of "the gener
alized deviation equation" of Manoff 5 (his Eq. 2.6). He has 
considered several cases by choosing 2'", u equal to suitable 
(different) vectors in some detail. 
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IV. LIE TRANSPORT 

The statement that 11 is Lie transported along r is obvi
ously equivalent to saying that u is Lie transported along the 
integral curve of 11. The derivation of 

2"u11= [U,11] =0, (4.1) 

given by Kilmister,16 clearly shows that (4.1) is a covariant 
generalization of a frame-dependent equation, obtained by 
assuming 11 to be small and neglecting terms involving the 
products of 11 with itself. This together with the assumption 
about the parametrization of the curves of the congruence by 
the same parameter s restricts the use of the standard geode
sic equation to the case where 11 and its rate of change are 
small. 

This suggests that to generalize the geodesic deviation 
equation to the case where 11 and/or its rate of change are not 
necessarily small, we should consider the cases where 2" u 11 
is nonzero. This also implies an investigation into the rela
tionship of parameters along two curves of the congruence. 
This has been done by Hodgkinson 12 and Bazanski. 10,11 A 
coordinate-independent formulation remains to be dis
cussed. 

Another way to consider this is that 11 and u are usually 
considered as belonging to the tangent space at each point. 
Physically we are interested in' particles which have finite 
separation in the Riemannian space. Thus, when the lowest 
order is not sufficient it will be necessary to look at the rela
tions among the successive tangent spaces to the manifold. 

We must indicate a possible error in Manoffs5 paper, 
where he considers the reduction of his generalized equation 
to that due to Hawking and Ellis 15 (EH equation). Si~ce the 
EH equation can be obtained from Eq. (3.3), 2"'1 u necessar
ily vanishes. However, Manoff (his case 6 in Sec. 3.1) obtains 
the EH equation under the assumption 2"'1 u = (V u (u·11))u. 
The supplementary condition [Manoffs Eq. (3.19)], viz., 
a·11 = 0, is also difficult to understand in the context of this 
case. 

V.SUMMARY 

With Eq. (2.4), we have given a simple coordinate-free 
derivation for a generalized geodesic deviation equation, 
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which would allow the possibility of non vanishing torsion. 
Equation (3.3) provides the most common specialization to 
either geodesic motion or motion with external (nongravita
tional) forces. The most appropriate generalization of the 
geodesic equation to non geodesic motion is given by either 
Eq. (3.12) or Eq. (3.14). 

Clearly further work is needed since the coordinate-free 
formulation of the deviation equation has not been done for 
Do/ av or Dt]/ as nonnegligible. This will be the subject of 
future work. 
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I. INTRODUCTION 

The general theory of relativity is based on the view that 
the geometrical structure of space-time be considered a dy
namical quantity. The metric evolves according to Einstein's 
equations. This metric is taken to be a real bilinear form 
which acts on the tangent space at each point of the space
time manifold. In this paper, we will examine the conse
quences of enlarging the tangent bundle in a particularly 
simple way to introduce additional geometrical structure. 
The procedure is completely analogous to the complexifica
tion of the tangent bundle. • Instead of allowing the functions 
to take their values in the field of complex numbers, which 
leads to complexification, we shall assume that they take 
their values in the ring of hyperbolic complex or "double" 
numbers. Such numbers have been studied extensively by 
mathematicians. 2

-4 Here we will show that this procedure 
leads naturally to the introduction of a sesquilinear inner 
product which can then be used as the dynamical basis for a 
generalized theory of gravitation. 5.6 We will demonstrate 
that in addition to the gauge structure associated with the 
diffeomorphism group of the manifold, such a theory is in
variant under an internal GL(4,R ) symmetry which is asso
ciated with a change offrames in the extended tangent bun
dle. 

In Sec. II, we briefly review the properties of hyperbolic 
complex numbers, and show how to extend the tangent bun
dle. In Sec. III, we introduce a metric and connection as the 
dynamical geometrical quantities. Finally in Sec. IV, we dis
cuss the physical significance of the construction and present 
some conclusions. 

II. HYPERBOLIC COMPLEX NUMBERS 

It is known2
-4 that the field of complex numbers can be 

generalized in a natural way. These generalized complex 
numbers are of the form 

a+€b, (1 ) 

where € is a "number of a special kind" which obeys 
c = - 1 for ordinary complex numbers, C = 0 for dual 
numbers and c = + 1 for double or hyperbolic complex 
numbers. Addition, subtraction and multiplication can be 
carried out in the usual way, although division requires spe
cial attention in the hyperbolic case, where the norm of a 
nonzero number 

(2) 

can be zero. It is for this reason that hyperbolic complex 
numbers constitute a ring, but not a field. Nonetheless it is 
possible to generalize the concepts ofholomorphism, analy
ticity, etc., in order to do analysis with hyperbolic complex 
numbers. 

We wish to analyze the consequences of allowing the 
functions on a real four-dimensional manifold M to take 
their values in the ring of hyperbolic complex numbers. The 
physical motivation for this will be discussed in the last sec
tion. Had we chosen to use ordinary complex numbers, a 
complexification of the tangent bundle would have been the 
result. The consequences of this alternative have been dis
cussed previously.· Given hyperbolic complex-valued func
tions of the form 

(3) 

wheref R (x) andf I (x) are real-valued functions on M, it is 
natural to define vectors A H which take their values in the 
ring of hyperbolic complex numbers as well. These vectors 
map f H (x) into (A Hf H )(x) and can be interpreted in the usual 
way in terms of directional derivatives of hyperbolic com
plex-valued functions on M. To accommodate such vectors, 
it is necessary to enlarge the tangent space Tx at each point 
xEM. We will work with a real representation for the hyper
bolic complex numbers. In particular, we define an eight
dimensional vector space 

(4) 

so that elements of T ~ are ordered pairs of vectors (X, Y) such 
that X, YETx ' with the multiplication law 

(X,Y): = (.tlX".iY) 

and the addition law 

(X,Y) + (X',Y') = (X + X',Y + Y'). 

(5) 

(6) 

In general, the entire group GL(8,R ) can act on T ~, so 
that we can construct an associated GL{8,R ) bundle Y'(M) 
over M with typical fiber T ~ ~ R 8 by patching together di
rect products of the form T~ X Ux , where Ux is some neigh
borhood of M. Actually, we are constructing the fiber bundle 
L '(M) associated to the frame bundle L (M) with fiber 
GL(8,R) (see Kobayashi and Nomizu7

): 

L '(M) = L (M)XGLI4.R IGL(8,R), (7) 
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where GL(4,R) has a natural (subgroup) right action on 
GL(S,R ). L '(M) can also be considered the bundle space for a 
principal GL(S,R ) bundle. The bundle Y'(M) is then a bun
dle with fiber R 8 associated to L '(M) treated as a principal 
GL(S,R ) bundle: 

T'(M) =L '(M)XGL(8,R)R 8. (S) 
Since we wish to consider T; as a real eight-dimension

al representation for the space of hyperbolic complex-valued 
vectors, we must introduce the analog of a complex struc
ture, i.e., hyperbolic complex structure E, say, and restrict 
the structure group of Y'(M) to those transformations 
which preserve E. In the ordinary complex case, we intro
duce J such that J 2 = - 1, and reduce the structure group 
to GL(4,q. In order to obtain double numbers, we require 

E2 = + 1. (9) 

It is straightforward to show that the subgroup of GL(S,R ) 
which preserves E is isomorphic to GL(4,R ) ® GL (4,R ). In 
particular, let us take 

(10) 

where I is the four-dimensional unit matrix. Then the most 
general M€GL(S,R ) such that 

ME=EM (11) 

is of the form 

(12) 

where A,B are arbitrary 4 X 4 real matrices [i.e., elements of 
G L(4,R )]. Let us now choose the basis of T; in which E takes 
the form given in Eq. (10): 

!e~I=!e~,e~l, A=I,oo.,S, 

a = 1,2,3,4, ii = a + 4 

= 5,6,7,S. (13) 

Thus 

Ee~ = e~ , 
(14) 

Ee~ = e~ . 

In this basis, there exists a canonical choice for a real 
four-dimensional subspace; namely, the subspace spanned 
by ! e~, a = 1,00.,41. Vectors lying in the orthogonal sub
space ! e~, a = 1,00.,41 are then purely hyperbolic imaginary 
vectors. In other words, any hyperbolic complex-valued vec
tor A 'ETx can be decomposed as 

(15) 

so that in a four-dimensional representation, we would have 

A = (A ,a + €A ,a)ea , (16) 

where (ea 1 spans Tx· Note that the analog of complex con
jugation also exists. The conjugation operator in our case (in 
the eight-dimensional real representation) takes the form 

(17) 

so thatA' ': = CA '= A uea - A aea' and in the four-dimen-
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sional hyperbolic complex representation, this corresponds 
tO€---€: 

A' = (A a - €A a)ea . (IS) 

In the next section, we shall introduce the affine and 
metric structure which will serve as the dynamical founda
tion for a generalization of general relativity. The hyperbolic 
complex structure is fixed a priori and is not dynamical. 

III. GEOMETRICAL STRUCTURE 

It is possible to define an inner productg' on each eight
dimensional vector space T;. Naturally it must be symmet
ric: 

g'(A',B')=g'(B',A') VA', B'ET;, (19) 

but we do not as yet specify a signature. In component form 
we have 

g~B =g'(e~,e~)=g~A' A,B= 1,00.,S. (20) 

So far g' is independent of the hypercomplex structure E. We 
now impose the compatibility condition 

g'(EA ',EB ') = - g'(A ',B '), (21) 

which, as we shall see, leads to the sesquilinear, hyperbolic 
complex-valued metric we seek. Note the minus sign on the 
right-hand side of Eq. (21). For ordinary complex structure, 
this would be positive. In component form, Eq. (21) implies 

g~{3 = - g~fi ' 

g~fi = - g~{3 . 

Consequently, we have 

(22a) 

(22b) 

g'(A ',B ') = ga{3(A uB{3 - A aBfi) + ga{3(A aB{3 - A UBfi) . 
(23) 

In addition to the symmetric bilinear form g'(A ',B '), we can 
also define a symplectic form on T;, namely 

g'(EA ',B ') = - g'(EB ',A ') , (24) 

where the antisymmetry follows from Eqs. (19) and (21). 
Thus we have the following hyperbolic complex-valued, ses
quilinear form: 

g(A,B) =g'(A ',B') + €g'(EA ',B') 

= gp"A PB v , (25) 

where 

A P = A 'P + €A 'ji , (26a) 

jj P = B 'P - €B 'ji , (26b) 

and 

gpv = g~v + €g~,. (27) 

so that 

g(pv) =g~v (2Sa) 
and 

glpv I = g~v . (28b) 

In Eqs. (28a) and (2Sb) we use the standard notation g(pv) 
= !(gpv + gvp) and glpv I = !(gpv - gvp)· 

In general relativity, the introduction of a metric re
duces the structure group of the frame bundle from G L( 4,R ) 
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to the group oftransformations which preserves the metric, 
namely, SO(3,1). In the present case, the subgroup of 
GL(4,R ) ® GL(4,R ) which preserves the metric is isomorphic 
to GL(4,R ). Thus for any given sesquilinear hyperbolic com
plex-valued metric, there exists an internal GL(4,R ) gauge 
symmetry (analogous to local Lorentz invariance in general 
relativity), which corresponds to "orthogonal" (i.e., metric 
preserving) rotations of the generalized frames. It is re
markable that GL(4,R) appears as an internal symmetry 
group, which is not a priori related to coordinate transforma
tions of the underlying space-time manifold. 

In order to make the geometrical structure truly dyna
mical (i.e., so that we can construct a nontrivial Lagrangian 
containing derivatives), it is necessary to define covariant 
differentiation of the hyperbolic complex-valued vectors. 
That is, we need to define a connection which tells us how to 
parallel transport a vector in the fiber T ~ over xEM to the 
fiber T', over x' EM. Since Mis a four-dimensional real mani-x 

fold, (x' - x) locally defines a vector in Tx. Thus, the covar-
iant derivative operator V maps Tx X T ~ into T ~ : 

V:(X,A )-~V xA ' = A ,A (x)V xe~ + (XA ,A (x))e~. (29) 

Since A ,A (x) is a real-valued function on M and X is a 
real vector, (XA ,A )(x) is well defined: 

XA A =X!'~AA(x) 
ax!' 

(30) 

in a coordinate basis for Tx. It remains only to define 

Vxe~: =X!'r!Ae~, (31) 

where r!A is the desired connection. Note that Jl = 1, ... ,4; 
A,B = 1, ... ,8 so that the connection has 82 X 4 independent 
components. We now restrict the connection to be compati
ble with the hyperbolic complex structure E introduced ear
lier. Namely, we require (V E) = 0, so that 

V x(EA ') = E(V xA '), (32) 

which in the basis of Eq. (31) yields the restriction 

r:f3 = r ~1J ' (33a) 

r:1J = r~f3 . (33b) 

This is in fact a very strong restriction on the connection; it 
requires that the eigenspaces of the hyperbolic complex 
structure operator E be preserved under parallel transport. 
Of course, the real and hyperbolic complex imaginary sub
spaces (which are eigenspaces of the conjugation operator C ) 
are not separately preserved. Thus, a pure real vector will in 
general become hyperbolic complex-valued under parallel 
transport. The condition (32) ensures that r defines a con
nection on the bundle L '(M) of hyperbolic complex-valued 
frames; it now has only 2 X 43 independent components. In a 
four-dimensional hyperbolic complex-valued representation 
we have 

W a rlU + r'ii (34) !'f3 = !'f3 c!'/3' 

The metric and the connection are as yet independent 
geometrical objects defined on M. We can further restrict 
them in the standard way, by requiring the lengths of vectors 
to be preserved under parallel transport. The condition 
(Vg') = 0 can be written 
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V x (g'(A ',B')) = g'(V xA ',B') + g'(A 's xB') . (35) 

In component form, Eq. (35) gives the following condition on 
the metric: 

a, r ,c, + r ,C , -gAB = !,AgCB !'BgAC' 
ax!' 

(36) 

This can be reduced to a more familiar form I by expressing 
the metric and connection in terms of their hyperbolic com
plex-valued components g!''V, W:f3 : 

(37) 

where W~p = r~; - cr ~; is the conjugate of W~p' and g!''V 
is defined in Eq. (27). 

IV. DISCUSSION AND CONCLUSIONS 

We have investigated the fiber bundle gauge structure 
which results when the tangent bundle of a real four-dimen
sional manifold is extended to admit hyperbolic complex
valued vectors. A sesquilinear (nonsymmetric) metric can be 
defined in terms of a real, bilinear form in an eight-dimen
sional representation for the extended tangent space over 
each point of M. The "hypercomplexified" tangent bundle 
defines a fiber bundle with typical fiber R 8 associated to the 
principal bundle L '(M) of hyperbolic complex-valued 
frames, which has GL(4,R) ® GL(4,R) as a structure group. 
The structure group of the bundle of hyperbolic complex
valued frames is reduced from GL(4,R ) ® GL(4,R) to 
GL(4,R ) by the introduction of the metric g'. Technically, 
this metric is a cross section of the fiber bundle 
E (M,GL(4,R ) ® GL(4,R )lGL(4,R ), 
GL(4,R ) ® GL(4,R ),L '(M)) associated to L '(M) (we use the 
notation of Kobayashi and Nomizu7

). 

A theory of gravitation has been developed using a non-
. . , , dr A r,A symmetnc metnc g!''V = g(j1V) + cgl!'v I' an !'1' = !'V 

+ cr i~v i' where g~v and r ~~ are real valued, but c = - 1 
( + 1) is the generator of ordinary complex (hyperbolic com
plex) numbers, respectively. When c2 = + 1, corresponding 
to the use of hyperbolic complex numbers, the theory is 
found to be free of ghost poles.6

.
8 The physical interpretation 

of the theory is based on interpreting c as a fermion number 
"charge," so that hyperbolic complex conjugation 
g!'v = g&,v) - cgl!'v 1 = gv!, corresponds to the fermion num
ber conjugation operation which turns a fermion into an an
tifermion. In fact, a conserved Noether current does exist in 
the theory and the generator of the associated symmetry op
eration is proportional to c. Thus the theory leads to a funda
mental explanation of the stability offermionic matter, pro
vided that the conserved charge associated with the Noether 
current is identified with fermion number.6 In other words, 
fermion number and its conservation are provided with a 
geometrical interpretation in the theory, which relates to the 
additional internal degrees offreedom of the extended frame 
bundle. 
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The extended conformal field theory of gravity is discussed, and its local symmetries are 
compared to those of Einstein and standard Weyl theories. It is then shown that the local 
symmetries of the extended conformal geometry are also natural for the construction of SU(N)
extended conformal supergravity theories in superspace. The natural superspace for the 
formulation of such theories is one with two sets off our-component fermionic variables which 
transform oppositely under scale transformations. 

PACS numbers: 04.50. + h, 1l.30.Pb, lUO.Lm, 1l.30.Ly 

I. INTRODUCTION 

Local space-time symmetries differ from internal sym
metries in a number of ways. Perhaps the most significant 
difference is that local space-time symmetries are not arbi
trary: whereas in, e.g., a grand unified theory the choice of a 
guage group is limited not by any known principle but by its 
a posteriori phenomenological implications, the very exis
tence of a four-dimensional space-time imposes an upper 
limit to the extent of local space-time symmetries. For ex
ample, in an n-dimensional (psuedo) Riemannian manifold, 
the number of allowed one-parameter groups of conformal 
transformations is at most (n + l)(n + 2)12.1 Moreover, this 
maximal group of conformal transformations is realized if, 
and only if, the corresponding manifold is conformally fiat. 
In other words, if the space-time manifold of interest is not 
conformally fiat, its local space-time symmetries must be 
smaller than the maximal group. 

In four dimensions, (n + l)(n + 2)/2 = 15, and the cor
responding maximal group is SO(4,2)~SU(2,2). Thus in a 
conformally fiat 4-manifold such as Minkowski space, i.e., 
one for which the components C!-'vp A ofWeyl's curvature 
tensor vanish, SO(4,2) transformations can be realized as 
space-time symmetries. However, if the 4-manifold pos
sesses nontrivial curvature, then the corresponding group of 
conformal transformations is, according to the above 
theorem, smaller than SO(4,2). Moreover, as part of the 
group of general coordinate transformations these (angle
preserving) transformations have to do with reparametriza
tion invariance of the intrinsic properties of a manifold, and 
no gauge fields are associated with them. Gauge fields (con
nection) are, instead, associated with the structure group of a 
manifold. For a four-dimensional space-time manifold, the 
largest structure group is GL(4R ) or its affine extension 
IGL(4R ). These transformations are related to the freedom 
in choosing a basis at any point of the space-time manifold, 
and their algebra specifies the connection associated with 
manifold. So the question we must deal with is: What sub
group ofG L(4R ) or! G L( 4R ) transformations are conformal 
(angle-preserving)? Clearly GL(4R ) does not contain 
SO(4,2). In fact the largest conformal subgroup ofGL(4R ) is 
SO(3,1) ® SO(I,I), where SO(3,1) is the homogeneous Lor
entz group and Sot 1,1) is the one-parameter group of scale 
transformations. The only other freedom left is to work with 

IGL(4R ), in which case four more commuting generators 
become available. 

There are two celebrated theories of gravitation which 
satisfy this requirement: Einsten's theory2 with local space
time symmetry SO(3,1) and Weyl's theory2 with local sym
metry SO(3, 1) ® SO(I, 1). In fact, one may regard3 Weyl's 
theory as modification of Einstein's theory in which the local 
space-time symmetry is increased from SO(3,1) to 
SO(3, 1) ® SO(I, 1), where SO(I, 1) is the one-parameter group 
of scale transformations. It has recently been pointed out4 

that, consistent with the above stringent requirement, this 
local symmetry can be increased even further to T ~ /\ SOt 3, 1 ) 
® SOt 1,1), where the abelian group T ~ is isomorphic to ordi
nary translations. One of the main objectives of this work is 
to describe in more detail how this can be carried out consis
tently. 

The structure of local space-time symmetries is not 
only important for the construction of a pure gravity theory, 
it also specifies the basic group with respect to which the 
matter field multiplets which couple to gravity must trans
form. Thus in Einstein's theory matter field multiplets are 
linear representations of the Lorentz group SO(3, 1). Since, in 
supergravity theories, gravity is coupled to matter fields, one 
can then ask whether the increase in the local space-time 
symmetry is compatible with the algebraic structure of con
formal supergravity. The positive answer to this question 
will be one of the new results present in this paper. Another 
by-product of this investigation is that whereas the fermionic 
coordinates of the superspace are often taken to be dotted 
and undotted (two-component) spinors, the natural super
space from the point of view of the extended conformal sym
metry is one with two sets off our-component spinors which 
transform oppositely under scale transformations. As a re
sult, the structure of scale invariant actions in SU(N )-ex
tended conformal supergravity in superspace become inde
pendent of N. 

The plan of this paper is as follows: In Sec. II the ex
tended conformal geometry is discussed and its consistency 
is demonstrated. This is mainly an elaboration of the results 
reported in Ref. 4. In Sec. III this analysis is applied to con
formal supergravity in extended superspace. Section IV is 
devoted to a discussion of the results and concluding re
marks. 
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II. THE EXTENDED CONFORMAL GEOMETRY 

A. The method 

It will be recalled that Einstein's and Weyl's theories, in 
addition to the invariance under their respective local sym
metries, are invariant under general coordinate transforma
tions. A local symmetry such as SO(3,1) or SO(I,I) is a linear 
symmetry, which can beformulatedasa Yang-Mills theori 
in which the transformation laws of the gauge fields are lin
ear and inhomogneous: 

BI'_UBI'U- 1 + (l/e)Ual' U- 1
• (2.1) 

But, by their very definition, general coordinate transforma
tions are not linear and cannot be represented directly in the 
form (2.1). Therefore, in trying to recast gravitation as a the
ory based on a local gauge principle, one must either treat 
general coordinate transformations separately as having 
nothing to do with (2.1), or to supplement (2.1) with the re
quired conditions so that all the invariances could be based 
on a local gauge principle. Of course, as far as the gravita
tional field equations and their solutions are concerned, the 
choice between these alternatives is immaterial. But if the 
formulation of gravity as a gauge theory is regarded as a step 
toward its inclusion in a unified gauge theory, then the sec
ond alternative is more desirable. 

It was with this application in mind that the method of 
nonlinear realizations of a gauge symmetry was developed.6 

In this approach one regards the general coordinate trans
formations as a four-parameter group of transformations 
with generators {Xi j, i = 0,1,2,3, as if these generators be
longed to an ordinary Lie algebra. For example, in Einstein's 
theory in which the linear gauge symmetry is SO(3,1), one 
can start with a set often generators IXij' Xi J ~nd in analogy 
with Yang-Mills theory consider a quantity DI' with values 
in this algebra: 

DI' = al' + H%Xij - K ~Xj 
=DI' - K~Xi = DI' - Kw (2.2) 

If we require that D I' as a whole determine the covariance 
under the local gauge transformations generated by IXij' 
X j J, then D I' is the usual expression for the covariant deriva
tive in Yang-Mills theory, and the resulting theory is a linear 
realization of a gauge symmetry. Alternatively, if we require 
that, in (2.2), DI' and KI' be separately covariant under the 
transformations generated by IX ij' Xi J, then the resulting 
theories are nonlinear realizations ofa local symmetry. The 
proof that in the second case one obtains nonlinear realiza
tions is quite simple: Yang-Mills solution contains all the 
linear realizations, so that any other realization, if it exists, 
must be nonlinear. The existence of other possibilities can 
then be shown by explicit construction (see below). 

Nonlinear realizations are distinguished by the nature 
of the constraints which make them nonlinear. In general 
relativity, the constraint must be such that the transforma
tions generated by I Xi J represent general coordinate trans
formations. The correct differential constraint for this non
linear realization turns out to be6 

(2.3) 
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For then one can solve for KI' and regard the equality as a 
change of basis in a manifold with structure group SL(2,C): 

KI' = K~Xi = Dw (2.4) 

As a result of this constraint, the gauge fields K ~ are identi
fied with the tetrad matrices which satisfy with their inverses 
the orthonormality conditions 

K i K v - ~v KI'K j - "i (2.5) 
f.L i -uJ..l' i j.l-lJj " 

Moreover, the algebra is no longer the global Poincare alge
bra. In fact, from (2.4) it follows that 

[Xu Ai] = - KfK;[ R;v "Xm " + T~vXd 
(2.6) 

where the components of the curvature and torsion tensors 
are given by 

[DI',Dv] = -R%vXij (2.7) 

T,,/ = DI'K~ - DvK~. (2.8) 

To the commutator (2.6) we must add the remaining com
mutation relations of the local algebra, which remain the 
same as their global form: 

[Xij,Xktl =/;7k7Xm"' [Xij'Xk ] =/;j ;;'Xm (2.9) 

It now remains to show that, subject to the constraint 
(2.4), gauge transformations also account for general coordi
nate transformations. In Yang-Mills theory for every ele
mentg ofa gauge group G, we haveDI'_gDl'g-l, or, infini
tesimally, 

DI'_(1 + ~XA )DI'(1 - ~XA)' (2.10) 

where the index A runs over the generators of G. For the 
elements of the subgroup H = SO(3, 1), which is realized lin
early, the constraint (2.4) has no effect on (2.10), as expected. 
But for A = i, we get 

(2.11) 

(2.12) 

8R ij" = - ~D,!R ij"; (2.13) 

That these transformations are equivalent to general coordi
nate transformations can be seen by computing the variation 
of a global tensor. For example, for the metric tensor 

gl'v = 17ijK~K~ 
we get 

8gl'v = g~v(x) - gl'v(x) 

= - (gvAal'~ + gl',!av~ + ~aAgl'v)' 

(2.14) 

This is identical with the expression for 8gl'v computed from 
the familiar law of tensor analysis 

ax'p ax''! 
gl'v(x) = ---- g;,! (x'). 

axl' axv 

The above approach is quite general and not limited to 
the example just given. In particular, in Weyl's theory, 
where the linear gauge group is SO(3, 1) ® sot 1, I), we have an 
II-parameter group of transformations with generators 
IX ij' D, Xi J. Here the linear gauge symmetry is enlarged. 
But since (i) the enlargement falls within the restriction dis
cussed in the Introduction1 and (ii) the dim(G /H ) is still = 4, 
the above discussion trivially extends to this case also. 3 

Freydoon Mansouri 891 



                                                                                                                                    

B. The extended conformal theory 

We have seen that both Einstein's and Weyl's theories 
can be regarded as nonlinear realizations of a space-time 
gauge symmetry. In both cases, the local (nonlinear) trans
formations associated with the generators I X j } realize gen
eral coordinate transformations. In both theories the group 
SOt 3,1) is a local gauge symmetry. The two theories differ in 
that in Weyl's theory the local gauge symmetry is enlarged to 
SO(3,1) ® SO(I,I). We know, of course, that at energies 
which are small compared to Planck energy, SO(3,1) is the 
correct local symmetry of space-time, so that scale invar
iance must be broken at some stage. But it is, nevertheless, 
significant that such an enlarged local space-time symmetry 
exists and might playa role at very high energies. Given this 
premise, we want to show that the linear gauge symmetry 
SO(3, I) ® SOt 1,1) can be further enlarged. From the discus
sion given in the Introduction, it is clear that such a symme
try must be smaller than SO(4,2). Ifwe demand, on physical 
grounds, that the extended conformal symmetry H have the 
nested property 

SO(3,I)CSO(3,1) ® SO(I,I)CH, 

then the only choice consistent with the four-dimensional 
symmetry of the geometry is 

H= T~ ASO(3,1)®SO(I,I), (2.15) 

where the abelian group T ~ is isomorphic to translations in 
Minkowski space, so that T ~ A SO(3, 1) is locally isomorphic 
to the Poincare group. Let I Yk } be the generators of T; . 
Then the algebra of the group H (not G) will be the set IXij' 
D, Yk }. Since, as before, we want the generators I X j } to 
realize general coordinate transformations, there will be, in 
all, 15 generators in the local algebra. We have already seen 
in (2.6) that I X j } do not commute, so that, e.g., in Einstein's 
theory the algebra IX ij' X k } is a deformation of the Poincare 
algebra. It will be seen below that, in the same sense, the 15-
parameter algebra 

IXij,D, Yk,Xk } (2.16) 

may be thought o/as a deformed SO(4,2) algebra, although 
this is not necessary. 

We want to construct a nonlinear realization of the 
gauge algebra (2.16). Following the method outlined above, 
we start with the analog of (2.2) for this case: 

DI' = al' + HZXij + SI'D + C~ Yk - K~Xj 
=DI' - K~Xj = DI' - KI" (2.17) 

The "interlocking" procedure specified by (2.3) and (2.4) is 
also applicable to this case without any alterations. But in
stead of Eqs. (2.5) and (2.7), we now have 

[Xi' Xj ] 

= -KfKj[R;"nXmn +SI'VD+CI'~Yk +TI'/Xk ] 

= - [Rj} nXmn +SijD + CjfYk + TjfXk]' (2.18) 
j' C ky [DI',Dv] = -R~vXij -Sl'vD- I'V k' 

where 

R ij =Hij -Hij +/ij H IkHm n 
p:v p..v 'V.p klmn It 'V' 

SI'V = SI'.v - Sv.I" 
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(2.19) 

(2.20) 

(2.21) 

k_ k k k ij I k k 
CI'V -CI" v -Cv' I' +2]; ijHI'C v +SI'CV -SvCw 

(2.22) 

To the commutator (2.18) we must add the commutators of 
the remaining generators. Since the subgroup H is realized 
linearly, its algebra is unaffected by the interlocking con
straint. In addition to (2.9) we have 

[Xij,D] = [Yk, lj] =0, 

[lj,D] = -lj, [lj,Xkd =/ikIXm' (2.23) 

[Xj,D]=.tj. 

The one remaining commutator [ X j , lj] will be determined 
below by requiring that it be compatible with the constraint 
(2.4). 

All the transformation laws of the fields are again given 
by (2.10), where now the index "A" runs over 15 parameters. 
Under the transformations specified by the parameters E"(x), 
we get, in addition to (2.11 )-(2.13) 

'A ...A 8SI' = elKjSAI' = t' SAl" 

8C~ = eiKfCA~ = E"CA~' 

8Cjf = - E"DA Cjf, 

(2.24) 

(2.25) 

(2.26) 

For the elements of the subgroup H which is realized linear
ly, the transformation laws of gauge fields are Yang-Mills 
transformations. For example, under scale transformations 
with parameter A. (x), 

SI'-SI' - al'A. (x), 
(2.27) " .. k k 

H~_H~, CI'-CW 

The behavior of K ~ under these transformations .is obtained 
from the identity 7 [D 1" D ] = 0 and the constramt (2.4): 

DK~ =K~. (2.28) 

The same identity also determines the scale dimension of 
various gauge fields: 

DH Z = DSI' = 0, (2.29) 

DC~ = - C~. (2.30) 

Similarly, the action of the generators lj on various fields 
can be read off from the identity [lj, DI'] = 0: 

ljH;n = ljSI' = 0, 

ljC~ =fj~nH; n + 8fSw 

It follows from these that 

(2.31) 

(2.32) 

lj Y1C ~ = O. (2.33) 

Let () k = () k (x) be parameters corresponding to the infinite
simal gauge transformations generated by Yk • Then from 
(2.10) we have 

DI'_[ 1 + ()k(X)Yk ]DI'(l - ()kyk) 
= DI' - DI'()kyk. (2.34) 

This means that 

8HZ = 8SI' = 0, (2.35) 

8C~=DI'()k. (2.36) 

To determine the action of Yk on K ~, we again start with the 
identity7 [DI" Yk ] = 0 and make use of the interlocking 
constraint D I' = K ~ X j to obtain 
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(YkK~)Xi - K~ [Xi> Yk ] = O. 

One solution of this equation is 

[Xi> Yk ] =0. 

More generally, we must have 

[Xi> Yd CX/. 

(2.37) 

(2.38) 

(2.39) 

Here we consider only the special case (2.32). But in either 
case it is clear that the commutator [Xi> Yk ] is different 
from what might have been inferred from a naive compari
son with SO(4,2) algebra.8 In other words, such an inference 
would be incompatible with (2.37). From (2.37) and (2.38) we 
have 

YkK~ = O. (2.40) 

This together with (2.31) and (2.35) shows that (a) HZ, Sf" 
and K ~ are all annihilated by Yk and that (b) under these 
transformations 8H Z = 8Sf' = 8K ~ = O. In other words, 
the action of T ~ on these fields is trivial. Therefore, this 
sector of the theory is self-contained. As long as we remain in 
this sector, any scale, Lorentz, and general coordinate invar
iant action will be, automatically, and trivially, invariant un
der T ~ transformations.9 Now recall that HZ, Sf" and K ~ 
are fields which enter the gravity sector ofWeyl theory. 
Therefore, the restriction to this sector makes the gravity 
sector of the extended theory equivalent to that ofWeyl the
ory. Of course, if it turns out that space-time structure at 
extremely short distances has additional degrees offreedom 
which are describable by C ~, then the above equivalence 
with Weyl's theory would no longer hold, and it is the ex
tended theory which would then be viable. 

Now we tum to the structure of matter multiplets in the 
extended theory. We know that in Einstein's theory, where 
the local symmetry is SO(3, 1), matter fields transform as lin
ear representations of this local symmetry. Similarly, in 
Weyl's theory, matter fields become linear representations of 
SO(3, 1) ® SOt 1, 1). Therefore, in the extended theory, matter 
fields must form linear representations of T~ 1\ SO(3,1) 
® SOt 1,1). Since T ~ 1\ SOt 3,1) is locally isomorphic to the 
Poincare group, its linear representations are well known. 
But, since T ~ transformations are no longer translations (or 
conformal boosts) in Minkowski space, the eigenvalues qk of 
the generators yk do not have the interpretation of 4-mo
menta in space-time. In fact, these quantities, hereafter re
ferred to a pseudomomenta, give rise to conservation laws 
which could make sense only at very short distances. In an 
originally scale invariant theory, we must select those repre
sentations of T ~ 1\ SO(3, 1) which are the analogs of massless 
Poincare states, that is those which correspond to qqj = O. 
Thus a matter field would be labeled by its helicity A and its 
pseudo momentum q. 

We know that, at presently accessible energies, the cor
rect local symmetry of space-time is the Lorentz group. 
Therefore, just as SO(3,1) ® SO(I,I) symmetry must be 
broken down to 50(3,1), the linear gauge symmetry of the 
extended theory must be broken down, presumably dynami
cally, to SO(3, 1). One possibility is that this symmetry break
down takes place in two stages. In the first stage scale invar
iance is broken. 10 This allows for the appearance of 
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dimensional parameters such as the gravitational coupling 
and the cosmological parameters in the gravity sector and a 
mass scale in the matter field sector. At this stage the local 
symmetry of space-time is T ~ 1\ SO(3, 1), and matter fields 
will either remain massless or acquire masses of the order of 
Planck mass. In the next stage of symmetry breakdown, T ~ 
symmetry is also broken, so that the remaining local space
time symmetry is SO(3, 1). To see the effect of this symmetry 
breakdown, we note that if we restrict the gravity sector of 
the extended theory to the degrees offreedom of the Weyl 
theory, then, as we have seen, T ~ symmetry is already acting 
on it trivially. So its breakdown will have no effect on the 
gravity sector. Its only effect would be (a) to reduce the local 
space-time symmetry of matter mUltiplets to SO(3, 1), i.e., to 
that of Einstein's theory, and (b) to provide an additional 
mass scale for the matter field multiplets. This might provide 
a clue to the origin of the grand unification scale. In the 
presently popular (nonsupersymmetric) grand unified mod
els the grand unification scale appears to be 3--4 orders of 
magnitUde smaller than the Planck mass scale where, ac
cording to the above scenario, gravity and matter field sec
tors part company. Of course, it is not enough to know that 
an additional mass scale could arise naturally. The full im
plementation of the above idea requires the construction of 
concrete models in which the breakdown of T ~ invariance 
does provide the correct numerical value for the grand unifi
cation (or some other) scale. Explicit models of this type will 
be reported elsewhere; cf. also the following section. 

Instead oflooking for a symmetry breaking scheme, one 
can, of course, break the T ~ as well as the scale symmetry 
explicitly by simply starting from field theories which from 
the beginning violate these symmetries. That might be a sat
isfactory approach as long as one does not raise such ques
tions as to how the dimensional parameters arise or how 
many scales there are. 

Ill. APPLICATION TO EXTENDED CONFORMAL 
SUPERGRAVITY 

The preceding work finds an immediate application to 
the construction of conformal supergravity theories in su
perspace. A minimal method of constructing such theories 
based on the supersymmetric extension ofWeyl's theory has 
been given elsewhere.6 It was constructed in the superspace 
ofor~inary supergravity consisting of(Xi, (Ja, e a), where (J a 

and (J.a are, respectively, undotted and dotted two compo
nent spinors. II Although such a formalism can be made in
ternally consistent, the scale invariant actions which can be 
obtained that way have the unconventional feature that they 
involve fractional powers of the square of the curvature ten
sor. Moreover, these powers depend on the number N of the 
SU(N i-extended geometry. As a result, if one insists on scale 
in variance of the initial theory, the structure of the theory 
changes in a discontinuous manner when one goes from one 
N to the next. 

It was later pointed out l2 that this peculiar feature can 
be avoided if one uses a supers pace S with coordinates Z I 

=. (X i, (J a, ",a'J, where both (J a and ",a' are four-component 
spmors under SL(2,C), but transform oppositely under scale 
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transformations. Once such a superspace is constructed, one 
can also construct nonconformal supergravity theories in it. 
Before this can be done, one must make sure that the algebra
ic and geometrical properties of such an extended super
space are internally consistent. For one thing, this extension 
changes the dimension of S, and this might adversely affect 
the interlocking procedure. The proof of the consistency of 
the formalism used in Ref. 12 was left to another publication. 
Here we want to supply the missing proof and draw further 
conclusions from it. 

To accomodate fermionic degrees offreedom, we will 
alter our notation from the previous sections in the following 
way: Consider a superspaceSwith coordinates !Z/J = lXi, 
() a, 1Ja

' J, where the indices! a J and! a' J stand, respectively, 
for! aA J and! a'A j, and 

a, a' = 1, ... ,4, A = I, ... ,N = internal symmetry index, 

1, J = i,j,.··(even), a, /3, ... , a', /3', '" (odd). 
(3.1) 

We have seen in previous sections that the geometries and 
invariances of Einstein, Weyl, and the extended theories can 
each be interpreted as a nonlinear realization of an appropri
ate gauge symmetry G, which is linear with respect to a sub
group H. In each case we have also seen that the correspond
ing algebraic structures have undergone significant 
deformations from Poincare, inhomogeneous Weyl, and 
SO(4,2) algebras. In particular, in the case of the extended 
theory, there is the additional departure (2.38) from the 
SOt 4,2) algebra. Therefore, in going to supers pace S and con
structing a nonlinear realization, we expect that our algebra
ic structure closely resembles SU(2,2IN), but, to satisfy all 
the consistency conditions, there will occur significant de
partures from this algebra. Let the generators of the super
Lie group G be the set 

(3.2) 

where the caret on top of an index implies that it is a group 
(algebra) index. Since we want the generators !Xi J to simu
late general coordinate transformations in supers pace, their 
number must be equal to lXi, (}a, 1Ja'J: 

(3.3) 

This means that if we construct a nonlinear realization 
which is linear with respect to the subgroup with generators 
I A =1= 1 J, then dim( G / H) = dimension of S. It will be seen 
below that this equality of dimensions is crucial for imple
menting the interlocking scheme in superspace. Therefore, 
the choice of the (maximal) subgroup H (tangent space sym
metry) is not purely a matter of taste. After the geometry has 
been set up, it is, of course, possible, as discussed in previous 
sections, to break the local symmetry H to a smaller sub-
group. 

It will be recalled that the algebra ofSU(2,2IN) consists 
of the generators 13 

!X;/l = IXI,Xij,D, Yi,Xa,rJ, (3,4) 

where (Xi J are given by (3.3) and where some of the impor
tant nonzero commutators are: 

[Xi' D ] = X,, [Y" D ] = - Y" 

[X;z,D] =~a" [Ya"D] = -~Y"" 
(3.5) 
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[Xi,Xj] =f.JXA, 

[lj, X,d = - 2(1Jjk D + M jk ), 

[l},X,,] =J;~'Yl3" 

(3.6) 

(3.7) 
(3.8) 

To construct a local nonlinear realization of the gauge sym
metry associated with t~e al~ebra (3.4), which is line~ with 
respect to the elements A =1=1, consider the quantity DI de
fined as follows: 

~ - k 
DI =al +H'fXij + SID + C IYk 

+H~Xa +AIF-K~Xj 
=DI -KI' (3.9) 

where 
j - ~ ~, 

KI=K IXj = K~Xj + K~X" + C~ Y",. (3.10) 

Note that the right-hand side of(3.9) differs from the corre
sponding term in Ref. 12 by the additional term C;Yk' To 
construct the desired nonlinear realization, we (a) require 
that KI and DI be separately covariants under the local ac
tion of the group and (b) impos~the interlocking constraint. 
To this end, we define a basis {Xi J by 

A A I A AA 

Xi = K IDJ, DI = K;Xj, 

where 
A~Aj 1 AiAI J 
K MK I = 8M, K MK I = 8M 

and require that Di = 0, i.e., 

KI =K~Xj =DI . 

Then, as in the previous sections, we obtain 

[DI,DJJ 

(3.11) 

(3.12) 

(3.13) 

= - [RjJXij +SlJD+CJY Y" +R~JXa +AlJF ], 

--R3X1:, {.IJ = !AIA =l=IJ, (3.14) 

where 

R ij _(_)UPJHij -Hij +fij'~_HinnH"i (3.15) lJ- I,J J.I klmn I J' 

SlJ = (- (PJSI,J - SJ,l' (3.16) 

AlJ = (- (PJAI,J -AM' (3.17) 

C in ( )UPJc;n c;n +jj ;n (HijC" CkHij) IJ = - I.J - J,l k ij I J - I J 
+ (cfj'SJ - SIC;). (3.18) 

From these it follows that 

[Xi, Xj J = - RifX1: - TifXM, 

where 

R-j: - (_ )rrj,UJ+f7J)KIKIR 1: IJ - J I IJ' 

T.iI - (_ )cr,;uJ+f7J)K{KIT M 
lJ - J I IJ' 

(3.19) 

(3.20) 

(3.21) 

T/j =DIKY - (- (PJDJK[M. (3.22) 

Comparing the right-hand sides of the brackets (3.6) and 
(3.19), we find that, as expected, the constraint (3.13) has 
resulted in a locally deformed SU(2,2IN) algebra. As for the 
rest of the algebra (3.4), we note that the subalgebra H con
sisting of the elements lXA IA =1=1 J is realized linearly and is 
not affected by the constraint (3.13). In the language of fiber 
bundles,7 these are generators of vertical (linear gauge) trans
formations. Moreover, since such transformations commute 
with the horizontal transformations generated by I DI J, it 
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follows that the commutators (3.5) also remain the same. 
To check the remaining commutators (3.7) and (3.8), we 

again note the I Yk J are generators of vertical transforma
tions, so that 

Using the constraint (3.13), this translates into 

(YkK:)XJ + K:[ Yk> X.d = 0. 

(3.23) 

(3.24) 

This is the analog for superspace of the condition (2.37) for 
the extended theory. Its possible solutions are 

or, more generally, 

[Yk> XJ] eXJ. 

(3.25) 

(3.26) 

Clearly, the commutator (3.7) is incompatible with either 
(3.25) or (3.26), although the commutator (3.8) is, in princi
ple, consistent with (3.26). If we limit ourselves to the case 
(3.25), then it follows from (3.24) that 

(3.27) 

Except for the gauge transformations generated by Yk, 
the behavior of various fields under local gauge transforma
tions was given in Ref. 12. As in Sec. II, it is based on insist
ing that all invariances, including general coordinate invar
iance in superspace, be derivable from the single rule D[ 
~gD[g-l, gEG, or, infinitesimally, 

D[~(1 + ~XA)D[(1 - ~XA)' (3.28) 

For use in subsequent discussions we quote the results for X A 
= XI andXA = D: Under local superspace translations gen

erated by 

IE" J = I el, ~, ~, ~'J (3.29) 

we have 

15K: = D[€' - ~T M:' 
t5B! = cR 3[, 

where 

~=€'Kr· 

(3.30) 

(3.31) 

(3.32) 

The variations of various fields under local scale transforma
tions with parameter € D' as well as their scale dimensions, 
can be found from (3.13) and the identity [D, D[] = 0. We 
have 

t5Hj = t5C~ = t5H~ = t5A[ = 0, (3.33) 

t5S[ = - a[€D' 

DHj =DS[ =DH~ =DA[ =0, 

DC~= -C~, 

(3.34) 

(3.35) 

(3.36) 

DK~ = K~, DKr = VCr, DCr' = - !cf. (3.37) 

From these one can also compute the variation of 
K = detK: under local scale transformations. Since4

•
14 

15K = ( - (IKoK:K}, 

we get 

t5D K = 4€DK. (3.38) 

Thus this determinant transforms in exactly the same way as 
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the determinant of the vierbein field in four-dimensional 
space-time. It is this property which makes the form of scale 
invariant actions in our N-extended superspace independent 
ofN. 

Finally, consider the behavior of various fields under 
local transformations generated by Yk. Let pk be the param
eters of these transformations. Then from (3.28) we get 

t5p Hj = t5S[ = t5H~ = t5A[ = 0, (3.39) 

t5C~ = D[C~. (3.40) 

Moreover, from the identity [1], D[ ] = 0, it follows that 

YFtHj = YnS[ = YFtHf = YnA[ = 0, (3.41) 

Y~C~ = t5~S[ - fn~H~, (3.42) 

Y;j YmC~ = 0. (3.43) 

It ca~ be seen from (3.27) and (3.41) that with the excep-
tion of C ~ the action of the generators Yk on all fields is 
trivial, and any theory based on covariants which does not 
involve C ~ is automatically invariant under the transforma
tions generated by Yk. Therefore, all the results of Ref. 12, 
which were obtained by leaving out Yk from the beginning, 
remain intact. 

IV. CONCLUDING REMARKS 

A number of general conclusions can be drawn from the 
results of the previous sections: Since we have ruled out 
SO(4,2) as the structure group of a nontrivial space-time, the 
bestonecanhopeisa T~ A SO(3,1) ® SO(I,I) symmetry. The 
actual local symmetry could be, and usually is, smaller than 
this. Since we know that for distances larger than about 
10- 16 cm the Lorentz group is the correct local linear sym
metry of space-time, we expect that any larger symmetry 
would be relevant, if at all, at shorter distances. But since in 
grand unified theories, in which gravity is not included, one 
already encounters very short distances, then it is possible 
that the extended symmetry would be relevant at such a uni
fication scale. For one thing, contrary to SOt 1,1) symmetry 
which, when broken, endows both the gravity and the grand 
unified sectors with a common scale, the Planck mass, e.g., 
the T ~ symmetry seems to affect only the grand unified sec
tor. Therefore, if the grand unification mass remains distinct 
from the Planck mass, the extended symmetry provides a 
rationale for the existence of another mass scale. 

The application to conformal supergravity in super
space has both advantages and disadvantages. One of its de
sirable features is that the formulation in extended super
space provides a closer link to the gauge theories of internal 
symmetry. This is because the conformally invariant actions 
in extended superspace which bear a close relation to the 
conformally invariant actions in 4-space-time, are quadratic 
in the components of curvature and torsion for all N. More
over, the dimensionless coupling constants in superspace re
main dimensionless when all the fermionic coordinates are 
integrated out. This makes the identifications of these quan
tities with their 4-space-time counterparts in, say, Wess
Zumino gauge possible. This is to be contrasted with the 
formulations of conformal supergravity in the superspace of 
Poincare supergravity, in which both the coupling constants 
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and the fields acquire peculiar dimensions. On the other 
hand, one undesirable feature of working in the extended 
supers pace is that there will, in general, be a larger number of 
auxiliary fields, and one needs more constraint equations to 
eliminate the unwanted fields. This can, in principle, compli
cate the solution of constraint equations. But since in this 
case the formalism is independent of N, the hope is that the 
solution for one nontrivial N will pave the way for obtaining 
the solutions for other N's. 
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The virial coefficients for a quantum gas (including quantum statistics) are expressed as sums of 
cumulants of connected (generalized) Mayer diagrams, the cumulants being built on the 
irreducible blocks of the diagrams. The Mayer diagrams are defined for the quantum case in terms 
of imaginary time-ordered exponentials, the quantum statistics being incorporated in the guise of 
multiparticle interactions. In order to extend Mayer diagrams to multi particle interactions, we 
utilize terminology and methods from the theory of hypergraphs. The virial coefficients naturally 
separate into a quantum Boltzmann gas contribution, an ideal quantum gas contribution, and a 
final term expressing correlations between dynamics and statistics. In the classical limit, 
connected Mayer diagrams factorize into their irreducible blocks; the cumulants over irreducible 
blocks then vanish (by a basic property of cumulants), except for diagrams which are themselves 
irreducible, whence the classical result of Mayer (extended to multiparticle interactions). In the 
quantum case, the imaginary time ordering prevents the factorization into irreducible blocks by 
time entangling them. As a further illustration ofthe use ofhypergraph-cumulant methods, we 
directly deduce the expressions ofthe virial coefficients in terms ofUrsell-Kahn-Uhlenbeck 
cluster functions (the ideal quantum gas contribution naturally appears in that form). 

PACS numbers: 05.30. - d, 02.10. + w 

1. INTRODUCTION 

There are several different manners of deriving and ex
pressing the virial expansion of a gas (Le., the expansion of 
the pressure in powers ofthe particle number density n).l 

The most ancient method is that ofUrsell, Kahn, and 
Uhlenbeck2-6: there, one first obtains, via the grand canoni
cal formalism, the pressure as an expansion in powers of the 
fugacity (or activity) z, the coefficients of which are "cluster 
functions" closely related to cumulants.5 The fugacity is 
then eliminated in favor of the density n by iteration. The 
resulting expressions of the virial coefficients are polynomi
als in the fugacity expansion coefficients. This method, ap
plicable to both the classical and quantum cases, is very gen
eral and concise, but the expressions it yields for the virial 
coefficients are not very informative. 

In the case of a classical gas interacting via pair forces, a 
much more physically informative, and mathematically 
convenient, form for the virial coefficients is in terms of 
Mayer diagrams.7 To obtain the latter, thez expansion is first 
expressed as a sum of connected Mayer diagrams; after elimi
nation of z, the virial coefficients turn out to be sums of irre
ducible diagrams, that is a subclass of the connected dia
grams. This surprising simplification must have appeared 
somewhat miraculous to its discoverer ("due apparently to a 
numerical coincidence"S). 

Later work clarified the mathematical and physical 
meaning of this "topological reduction"; it can be achieved 
in a much more illuminating manner by way of resumma
tions,9 i.e., one resums over classes of sub diagrams attached 
by a single vertex to a core irreducible diagram, thereby 
"renormalizing" fugacity vertices into density vertices. 

In the case of a quantum Boltzmann gas (quantum dy
namics but Boltzmann statistics), one can parallel the Mayer 
method insofar as expressing the fugacity expansion as a sum 
of connected quantum Mayer diagrams, the latter being de
fined in terms of imaginary time-ordered exponentials. 
However, when attempting resummations of the same kind 
as in the classical case, one is confronted with a new feature: 
because time-ordered noncommuting operators are in
volved, subdiagrams joined at a single vertex no longer fac
torize, because of the time entanglement, and the desired 
resummations cannot be performed. To be able to perform 
resummations, one must first explicitly expand the time-or
dered exponentials entering the Mayer diagrams, thereby 
obtaining Feynman diagrams. The latter have a (imaginary) 
time dimension: each particle is represented by a line parallel 
to the imaginary time axis (taken as vertical), rather than by a 
single point, and the interaction between two particles now 
appears as a succession of horizontal lines joining the corre
sponding particle lines (one obtains a Mayer diagram by pro
jecting a Feynman diagram onto the horizontal plane). Re
summations can now be performed, but over classes of 
subdiagrams which are not only sufficiently weakly connect
ed to, but also which do not time overlap, other parts of the 
diagram. One can thereby obtain various "renormalized" 
expansions, 10 but not the virial expansion. It is in fact impos
sible to arrive at the latter in such a manner, since the vi rial 
coefficients turn out to be not sums of diagrams, but sums of 
products of diagrams. 

Another route to the virial expansion was indicated by 
Brout ll

-
13 and by Kubo 14 (independently). It consists in 

working directly with the (petit) canonical partition func
tion, and making use of the properties of cumulants. 15 It is 
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thereby possible to rederive the classical Mayer result in a 
simple and concise manner. 

Kubo l4 hinted at the possibility of using this method to 
obtain the virial expansion of the quantum Boltzmann gas, 
but did not go into any detail. Broue6 also considered the 
quantum gas, and obtained the free energy in terms of special 
diagrams containing cumulants of single particle state popu
lations; these cumulants express the correlations between 
the different populations due to the fixed total number of 
particles in the canonical ensemble. Related results were giv
en by Lee and Yang. 17 But again, it is not possible to extract 
simple expressions for the virial coefficients from these re
sults. 

Thus, in all existing treatments, the quantum vi rial co
efficients have rather complicated and un illuminating ex
pressions, whose relations to the classical Mayer expressions 
are not at all obvious. 

In the present paper, we show that the virial coefficients 
for a quantum gas (including quantum statistics) can be ex
pressed in a simple meaningful form directly related to the 
classical Mayer result. 7 This we achieve by extending the 
methods of Brout II and Kubo. 14 

Specifically, we obtain the virial coefficients as cumu
lants of connected (quantum) Mayer diagrams, the cumu
lants being built on the irreducible blocks of each diagram 
(i.e., the irreducible blocks play the role of the random varia
bles in an ordinary cumulant). In the classical limit, time 
ordering is relaxed, and the Mayer diagrams factorize into 
their irreducible blocks, i.e., the latter become statistically 
independent; it then follows (by the basic property of cumu
lants of vanishing if their arguments are not statistically de
pendent) 14.15 that cumulants of diagrams containing more 
than one irreducible block vanish, whence the classical 
Mayer result. 7 

The quantum statistics are introduced in the guise of 
effective multiparticle interactions. We are therefore led to 
treat from the outset the case of non pair forces. For this 
purpose, we generalize Mayer diagrams by making use of 
terminology and methods from the theory of hyper graphs. 18 

These tools, we find, are more flexible, and require less of an 
effort of imagination than others that have been proposed for 
dealing with multi particle interactions 19; in fact, the latter 
bring about practically no complication, both conceptually 
and notationally, once the proper notions have been intro
duced. 

In Sec. 2, we recall the definitions and basic properties 
of cumulants. In Sec. 3, generalized Mayer diagrams (hyper
graphs) allowing for multiparticle interactions, are intro
duced, and some simple lemmas demonstrated. The basic 
statistical mechanical formulas to be used are listed in Sec. 4. 
In Sec. 5, the virial expansion for the quantum Boltzmann 
gas is obtained. The quantum statistics are added in Sec. 6. In 
Sec. 7, we show how cumulant methods can be used to obtain 
directly the expressions of the virial coefficients in terms of 
the Ursell-Kahn-Uhlenbeck cluster functions. Two appen
dices contain technical details. 

The paper is essentially self-contained; the only result 
not proven is the explicit expressions of cumulants, which 
are well known. 14

•
15 
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1.1 Notation (multisets and partitions) 

We denote N = ! 0, 1,2, ... l the set of natural numbers, 
and N + = ! 1, 2, 3, ... l. For any nEN +, we denote 

.ll. ! 1, 2, ... , n l. 
A set S is a collection of objects, all distinct from one 

another. A multiset M is a collection of objects not necessar
ily all distinct from one another;20 e.g., let the set 

S = la, b, c, d); (l.la) 

then 

M = ! a, a, a, b, c, c l (l.lb) 

is a multiset with elements in S. We denote .At(S) the set of all 
multisets with elements in S. A multiset ME.A"(S) may be 
represented by an element ofNs (the set of functions from S 
to N): 

( 1.2) 

where mxEN is the number of times the element XES is con
tained in M. 

The set relations and operations (identity, inclusion, 
union, intersection, etc.) are extended to multisets in an ob
viousmanner:LetM~!ms'sES l andM'~!m;,sES l betwo 
multisets in .At(S); then 

MCM'<;::;>m,<m; for all sES, 

MuM'~!Max(ms' m;), sES L 
MnM'~!Min(ms' m;), sES l. 

We also define a direct sum 

M+M'~!m, +m;,sESl. 

(1.3) 

The number of elements (cardinality) of a setS is denot
ed IS I; likewise the number of members of a multiset M 
(counting repetitions) is denoted 1M I [e.g., in example (1.1), 
IS I = 4, 1M I = 6]. 

It is often convenient to be able to regard a multiset M as 
a set. This can be done by establishing a one-to-one corre
spondence between the members of M and the elements of an 
indexing set I; e.g., continuing example (1.1), let 

1 = ~ = p, 2,3,4,5, 6l (1.1c) 

and define the function X:1-+S as Xl = X 2 = X3 = a, 
X 4 = b, X5 = X6 = c; then 

M = !Xi> iEl L (1.4) 

which may now be handled as a set, since each member has 
been given a distinct name. 

To illustrate the notation, let !A x , XES l bea set ofalge
braic objects; we have 

I (11M!) IT Ax, (1.5) 
ME-N'IS) XEM 

where 

M! IT (mx !) ifM~!mx,XESl· (1.6) 
xeS 

It is understood that in II XEM (or ~ XeM)' repetitions of ele
ments must be taken into account; e.g., with M as in (1.1 b), 
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we have 

n Ax = (Aa)3Ab(Aj. (Ud) 
XEM 
We define a partition P (M) of a multiset M as a multiset 

of nonempty sub-multisets of M, such that their direct sum 
equalsM: 

P(M) = [MI,M2, ... ,Mpj, M-::JMj #0, 

(1.7) 

Another partition P '(M) is a subpartition of P (M), denoted 

P'(M)<;P(M) (1.8) 

if it can be obtained from P (M) by further partitioning the 
membersofP(M)(notethatF' <;Pimplies IF'I> IP 1);P(M)is 
then called a super partition of P '(M). 

When we specialize the above definitions to sets, we 
obtain the usual notions: a partition of a set S is a set 
PIS) = [SI,S2""'Sp j of non empty subsets Sj CS such that 
S/'Sj =0ifi#janduj~ISj =S;F'(S) = [S;, ... ,S;.j isa 
subpartition of P (S) if each S; is entirely contained in one of 
the Sj. We denote 1T(S) the set of all (distinct) partitions of S. 

Let the multiset M be indexed by the set I: M = [Xi> 
iElj. ToeachpartitionP(l) = [Ip I 2, ... ,Ip j ofIcorrespondsa 
partition of M, 

Pp(I)(M) = [MI, M 2, ... , Mp J, 
where (1.9) 

M j = [Xi' iElj j 

(note that M j and ~. ,j#j " may have a nonempty intersec
tion, and even be identical, in contradistinction to ~ and I j • ; 

also, to a given P (M) may correspond several different parti
tions of I). We denote 

(1.10) 

the collection of all partitions of M regarded as a set. Note 
that 1T(M) it itself a multiset. 

Examples: (i) Let M = [a,a,a,a,b,b j = [Xi' iE6j; to the 
partition P(6) = [(1,5),(2,6),(3,4)j corresponds P(M) 
= [(a,b ),(a,b ),(a,a) j. 

(ii) LetM= [a,a,bj = [Xi,iE~j;wehave 

1T@ = [[1,2,3)],[( 1 ,2),(3 )],[( 1,3 ),(2)],[( 1 ),(2,3 )],[( 1 ),(2),(3)] J, 
whence 

1rl..M) = [[(a,a,b )],[(a,a),(b )],[(a,b ),(a)],[(a),(a,b )],[(a),(a),(b )] j. 

2. CUMULANTS 

Let S be a set of stochastic variables, and denote ( ) the 
statistical averaging operation. For all multisets MEJI(S), 
M-[m x , XES JENS, we define cumulants (IlxEMX)c 

= (IlxEsXmx)c andanticumulants (IlxEMX)a through the 
relations 

(exp(ks AxX) - 1) a = exp[ (e
IAXX 

- 1)] - 1, (2.1a) 

(exp(k AxX) - l)c = In (exp(k AxX )), (2.1c) 

where the Ax, XES, are arbitrary constants. The left-hand 
sides are shorthands for [see (1.5)] 
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lexp(IAX)X -1) = I (l/M!)(n Ax)(n x) . 
\ c,a ME-J/(S) XEM XEM c,a 

(2.2) 

The right-hand sides of (2.1) are to be similarly expanded in 
powers of the A x' and corresponding coefficients identified. 
There result the explicit expressions 14,15 

(n X) = I Ai'::,) II I II X), 
XEM a,c Pe1TjM) M,EP \XEM, 

(2.3a,c) 

the sum being over all partitions 
P = [MI,M2, ... ,MIP1 jE1T(M) of the multisetM, and 

A~I= 1, 

A ~J = (p _ 1 )!( _ ) p ~ I, 

(2.4a) 

(2.4c) 

The first few c;umulants and anticumulants are given by 
(we sometimes abbreviate (XIX 2···) = (12 ... ») (we define 
(1)c = (1)a = (1) = 1) 

and 

(2.3): 

(X)c = (X)a = (X), 

(123)c = (123) - (12)(3) - (13)(2) 

- (1)(23) +2(1)(2)(3), 

(XIX 2 )a = (XIX 2 ) + (XI) (X2 ), 

(2.5) 

(2.6c) 

(123)a = (123) + (12)(3) + (13)(2) (2.6a) 

+ (1)(23) + (1)(2)(3). 

Because ( ) acts linearly, so do ( ) c and ( ) a in view of 

( ( YI + Y2 ) II X) = (YI n X) + (Y2 n X) , 
XEM b XEM b XEM b 

(2.7) 

where ( ) b stands for ( ), ( ) c' or ( ) a' Thus all the ordinary 
algebraic manipulations can be done inside ( ) c or ( ) a' so 
that (2.2) is not just a notational convenience. 

Sometimes, it is necessary to specify explicitly on which 
variables ( ) a or ( ) c operates; e.g., the left-hand side of 
(2.1c) should more accurately be written as 

(2.8) 

where [X j indicates that ( ) c operates on theX 's, not theA's 
which are scalars with respect to that operation. 

Cumulants and anticumulants are reciprocal, in the 
sense thae l 

( IIX) =(IIX) =(IIX) XEM ca XEM ac XEM ' 
(2.9) 

where (IlxEMX) ca is given by (2.3a) with ( ) replaced by ( ) c 
everywhere (likewise with ( )ac); e.g., (XIX 2 )ca = (XIX 2 )c 
+ (XI)c(X2 )c = (XIX 2 )· 

The construction (2.3)-(2.6) may be applied to any fam
ily [A M' MEJI (S ) j of objects indexed by multisets; that is, 
we may define "Ursell clusters" A ~ as 
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(2.10) 

It is possible to use tbe same notation as in (2.3)-(2.6) if we 
formally denote 

(2.11) 

where the X 's are here purely formal algebraic objects, and 
( ) a formal "averaging" operation with the convention 
(1) = 1. We then have 

AM=(IIX) 
XEM c 

(2.10') 

The present discussion applies to both the cases where the 
X's are true stochastic variables, or just a notational device. 

Two sets Sand S' of stochastic variables are said ( )
independent (or statistically independent) if 

(2.12) 

for all MEJI (S) and M' EJI (S '); otherwise Sand S ' are ( )
dependent. We say that M or (ITxEMX) is ( )-linked if the 
members of the muItiset M do not belong to two or more ( )
independent sets; otherwise M is ( )-unlinked. 

The basic property of cumulants is: 
Lemma 2.1 14

•
15

: A cumulant vanishes if its arguments 
belong to two or more independent sets, i.e., 
«(ITXEMX)(ITYEM' Y)clx.YI = Oif MEJI(S) andM'EJI(S'), 
where Sand S' are ( )-independent. 

Proof Immediate from definition (2.1c): 

exp[ (exp(~XESX + ~YES' Y) - 1)c ]12;,!c1(eH + H ) 

12;,!21(eU ) (eH)12;,!clexp[ (eU - 1)c + (eH - 1)c]' 

implying that cumulants mixing X's and Y's vanish. 
The following lemma, obvious from considering (2.3), 

will also be useful: 
Lemma 2.2: LetP'(M) = IM;,M;, ... ,M; 1 beaparti

tion of the multiset M and denote 

~= II X, j= l...p. (2.13) 
XEM; 

Ifin (ITXEMX) clX I' Eq. (2.3c), we delete all terms PE1r(M) 
which are not superpartitions of P'(M) [i.e., ~Ao17jMI is re
placed by ~Ao17jMI.P>P' ], there results 

( p) ( ) II~ -IIX . 
~= I clYI XEM elYI 

(2.14) 

Example: Let YI = XIXZ, Yz = X3; by suppressing in 
(XIXzX3) clX I all terms such as (XIX3) (Xz) which do not 
preserve the integrity of the Y 's (i.e., such that X 's belonging 
to the same Yappear in different ( ) factors), we obtain 

(XIX ZX3 ) - (XIXZ ) (X3) 

900 

= (YIY2 ) - (YI)(YZ ) 

= (YIYZ)cl YI-(XIXzX3)cl YI' 
Corollary: Let 

/x(x) = ax1x + aXl x 2 + "', XES, 
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(2.15) 

where the aXi are scalars. Ifin (fiXES/X(X) clX I' we delete 
all terms in which any given XES appears inside more than 
one ( ) factor, we get (ITxES/X(X) cl fl [remark: in (2,15), S 
serves as indexing set]. 

Example: If in (/(XIl/(Xz)clxl' we retain only the 
terms of the form (X;n X ~) and (X;n) (X ~ ), we get 

(/(XI)/(XZ) - (/(XIl)(/(X2)=(/(XIl/(Xz)cIfJ' 
Remark: Lemma 2.2 and its corollary also apply to anti

cumulants, as they do not depend on the value of Ap [Eqs. 
(2.4)]. 

2.1 Leveling operators 

Sometimes, in order to be able to use cumulant meth
ods, it is useful to express a given quantity as an exponential 
preceded by an operator which selects the given quantity out 
of the expanded exponential. As a trivial example, we can 
write any quantity X as X = LI? where LI suppresses all 
terms X m with m #- 1; more generally, 

II Xi = L 'exp(I Xi)' 
ieli ie!! 

(2.16) 

where L ' suppresses all terms in the expansion of the rhs 
which do not contain each index 1,2, ... ,N exactly once. More 
interestingly, we havel4 

u (1 + Xi) = 1 + E2;.l'j (II X;) = L exp(~ Xi). (2.17) 

where L, which may be called a "leveling operator," sup
presses all terms which contain repeated indices. The sum
mation ~ECl'j is over all subsets of 1!, i.e., 

I (II x;) = f x; + IX;.\} + I X;.\}Xk + .... 
ECN lEE i= 1 i<j i<j<k 

- (2.18) 

Lemma 2.3: Let IX" iEN 1 be a set of stochastic varia-
bles. We have -

(u X;) alXI = L 'exp L2;.l'j (II X;)] (2.19) 

= (n <X))L expLck 1>2 (II x;) ], 
- - (2.20) 

where X; X;I (Xi)' 
Proof We have, in view of(2.1), (2.16), and (2.9), 

(n Xi)alXI 

=L'(exp(~x;))a =L'exp(e
u

'-1)ac) 

= L 'exp(eH
, - 1)). (2.21) 

We may now insert L inside ( ... ) in the last line, since its 
action will simply be redundant with that of L '; we thereby 
get (2.19) in view of (2.17). If we replace each Xi by X; in 
(2.19), we obtain 

(II X;) = L 'exp(I 1; + I (II Xi))' (2.22) 
; a ;El'j ECl'j.IE 1>2 iEE 

where each 1; is to be replaced by 1 after L 'has acted; (2.22) is 
clearly equivalent to (2.20).2Z Q.E.D. 
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(a) ( b) 

(c) 

(d) 

FIG. 1. (a) Mayer diagram representing/, 2 I, 3 I.,; (b) the generalized Mayer 
diagram representing the same product; (c) generalized Mayer diagram rep
resenting the product/n / B.1567/67; and (d) the standard representation of 
the corresponding hypergraph {(1,2),(2,3,4),(5.6,7).(6,7) I. 

3. GENERALIZED MAYER DIAGRAMS (HYPERGRAPHS) 

Given a product TIi <j /;j, it is conveniently represented 
by a Mayer diagram, wherein each index i is drawn as a small 
circle labeled i, and each/;j as a line joining circles i andj 
[Fig. 1(a)]. We shall need a slight generalization of these dia
grams or graphs. 

A hypergraph 18 is a multiset 

H = [EI , E 2, ••• , En I (3.1) 

whose members Ej are nonempty sets. The elements of 

V(H)= U Ej 
j= I 

(3.2) 

are called the vertices of H, the Ej are called the edges. We 
represent Hby a diagram wherein each vertex ViEV(H) is 
drawn as a small circle labeled Vi' and each edge Ej as a dot 
with lines joining it to each vertex it contains [Fig. 1(b) and 
(c)]. These generalized Mayer diagrams clearly reduce to or
dinary Mayer diagrams when each ~ contains only two ver
tices, except that the bonds have slightly more personality 
[Fig. I (b)]. 

The standard representation of a hypergraph is as 
shown in Fig. ltd), each edge being drawn as a curve encir
cling the vertices it contains. Another possible representa
tion is in terms of simplexes. 19 However, the representation 
in Fig. 1(b) and (c) as a bipartite graph (i.e., a graph with two 
kinds of vertices, no lines between vertices of the same kind) 
is much easier to visualize. Also, it makes visually manifest 
the symmetry existing between edges and vertices; this latter 
symmetry often allows one to dualize definitions and theo
rems by simply interchanging edges and vertices. 

The multiset relations and operations ( = , C ,u,n, + ) 
apply to hypergraphs (Fig. 2). H' is a subhypergraph of H if 
H' C H. A hypergraph is simple if no two of its edges are 
identical. 
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3 

,T' ;~' 
H 1 H2. 

3 
3 

~: ;c: 2 

( 
, 

H U 
1 

H2 H, () H2 H1 + H.2 

FIG. 2. Union. intersection, and direct sum of two hypergraphs. 

We denote £'(S) the set of hyper graphs with vertex set 
equal to the set S, and H(S) = uEcs£,(E) the set of hyper
graphs with vertex set contained in S. We add a SUbscript s to 
indicate restriction to simple hypergraphs [e.g., £'S (S) is the 
set of simple hypergraphs with vertex set S]. 

Given a family [fE' ECS I of objects labeled by subsets 
of S, and a hypergraph He£'(S), we denote 

Hf=IIfE' (3.3) 
EEH 

This is the natural generalization of the product TIi < j fij 
mentioned at the beginning. 

It is often necessary to assign to the edges of a hyper
graph additional characteristics or labels; we shall globally 
call these "flavors." We define aflavored hypergraph as a 
multiset 

(3.4) 

wherein each edge (Ei, <Pi) is a couple: Ei C S is called the 
value of the edge, and the label t/Ji itsflavor. In the diagram of 
H, the dot representing the edge (Ei, t/Ji) is labeled t/Ji (Fig. 3). 
We allow for flavorless edges, simply denoted by their value. 

Wedenote£'(S;t/J I,t/J 2, ... ,t/J m)andH(S;t/J I,t/J 2, ... ,t/J m)the 
sets of hyper graphs containing the flavors t/J I,t/J 2, .•. ,t/J m, and 
having vertex sets equal to, and contained in S, respectively. 

Given a (unflavored) hypergraph He£'(S), we denote 
H (.p )e£'(S;t/J ) the flavored hypergraph obtained by assigning 

3 

t:, 
f 

(a) ( b) 

FIG. 3. (a) I-flavored hypergraph {[(1,2),J], [(1,3,4),J] 1 representing the 
product/,d134; (b) 2-flavored hypergraph {[( 1,2),J], [( 1,3,4), gll represent
ing the productf,2K13.' 
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the same flavor ¢ to every edge of H. For instance, the pro
duct (3.3) is naturally represented by the flavored hyper
graph H If) = {(E,J), EElf J EJY(S;j) [Fig. 3(a)]. 

An m-flavored hypergraph HEJY(S;¢ I,¢ 2, ... ,¢ m) can 
always be written as a union 

(3.5) 

of I-flavored hypergraphs H/<Pi)EH(S; ¢ i). We have, e.g., 

H(S; ¢ I, ¢2) = {H1uH2;HIEH(S; ¢ 1),H2EH(S; ¢2)J. 
(3.6) 

Given two families {IE' ECS J and {gE' ECS J of objects 
.. I 2 

labeled by subsets of S, and a hypergraph H = H/I' luH2(<P ) 
EJY(S;¢ I,¢ 2), we denote [Fig. 3(b)] 

H [.g HfHg - II I' II g - 1 2 - JE E" (3.7) 
EeH, E'EH2 

A flavored hypergraph is simple if no two of its edges 
are identical; i.e., two edges can have identical values, or 
identical flavors, but not both [thus H in (3.5) is simple iff 
each Hi> i = I .. ·m, is simple]. 

To illustrate the notation, let {uE , ECN J and {CE , 

ECN J be two families of objects labeled by-subsets of 
l'! = -{ I,2, ... ,N J, and denote 

IE = eUE 
- 1, gE = eCE 

- 1. (3.8) 
We have 

exp (I uE ) = 1 + I (l/H!)HU 
ECty HeH(ty) 

(3.9) 

= II (1 + IE) = 1 + I H 1', (3.10) 
ECty HeH,(ty) 

where [see (1.5)] 

(3.11) 

where mE is the number of times E C N is contained in H. 
Note that in (3.10), the sum is over siriple hypergraphs. We 
deduce 

exp [ I (UE +CE )] = 1 + I (Hf+Hg) 
ECty HeH,(ty) 

+ I H [.g (3.12) 
HeH,(ty;[.g) 

from expanding both el:.u and el.C in the manner (3.10). 
Let 

(3.13) 

so that each hi stands for either an edge or a vertex. We write 
hi-hj if hi is a vertex and hj an edge containing it, or vice 
versa (i.e., one is a dot, the other a circle joined to it by a line); 
hi and hj are then said to be incident on each other. The 
degree 1 h i 1 is the number of elements of V (H )uH incident on 
hi.

23 Two edges (vertices) are adjacent if there is a vertex 
(edge) incident on both. Apath is a sequence of distinct ele
ments h l-h2- .. ·-hk , each incident on the preceding. A 
cycle is a closed path Ch l-h2- .. ·-h). We write hi----hj if 
there exists a path between hi and hj; this is clearly an equiv
alence relation, whose equivalence classes define the con-
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FIG. 4. H, is a tree, since every vertex (whence also every edge) is a pure 
articulation; H2 is not irreducible since it contains an articulation vertex 
(arrow); H3 is irreducible since it contains no articulation vertex [even 
though it contains an articulation edge (arrow)]. 

nected components of H. H is connected if it has a single 
connected component, i.e., if hi----hj for each pair (hi> hj)' 

We write EI J~l E2 if there exists a path between edges E] 

and E2 not containing vertex v; _i~l is clearly an equivalence 
relation between edges. 24 

We shall speak of removing an edge or a vertex. This 
means that in the diagram of H, we remove the correspond
ing dot or circle, and the lines emanating from it. 

Let H be connected. hi is an articulation of order m, 
m»2, if upon its removal, Hbreaks into m connected com
ponents; it is a pure articulation if m = Ihi I. hi is dangling if 
Ih; 1 = 1. H is a tree if each hi is either a pure articulation or 
dangling, or equivalently, if H contains no cycles. H is a star, 
or irreducible, or 2-(v) connected if it contains no articulation 
vertex (it may however contain articulation edges) (Fig. 4). 

3.1 Partitions of hypergraphs 

A partition of a hypergraph His a partition of the multi
setH, i.e., amultisetP (H) = {Hj,jEJ J ofsubhypergraphsHj 

CH, such that ~ jEJHj = H; the latter equality implies 

II Hf=Hf. (3.14) 
H;EP(H) 

A partition is illustrated as in Fig. 5, with dashed lines delin
eating the different parts. 

We define a partition operator P: hypergraphs-parti
tions, as an operator which, when acted on a hypergraph, 
gartitions it according to some prescribed rule. We denote 
P1H the partition of any hypergraph H into its connected 
components, and P2H the partition into maximal irreducible 
blocks, or stars (i.e., maximal with respect to the property of 
possessing no articulation vertex). Given any vertex v, we 

3 

','ir' 
H 

3'. V 4 

I~\\ j~ S 
--------:-~ J. 

I () c....-0 I 
~I' 

I 
I 

FIG. 5. Hypergraph H = I Ea,Eb,Ec,Ed,E, I = 1(1,2,3), (1,2), (1,2), (2,3,4), 
(I,511 and partition P(H) = {(Ea,Eb), (E,), (Ed,E,) I. 
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H "V'2 
'3V'" 

'''0 '2 

:
13V '" , 

FIG. 6. The partition operators PI' P, and P2 • 

denote PuH the partition of H into the equivalence classes of 

the relation _~~l between edges. Examples of the above parti
tion operations are given in Fig. 6. 

The following two lemmas are proved in Appendix A: 
Lemma 3.1: Given any hypergraph H, we have 

I (lEI-l»IV(H)i -IP1HI, (3.15) 
EEli 

and dually, 

I (Ivl- 1»IHI-IP1HI, (3.16) 
VEVIHI 

the equalities holding iff His aforest (i.e., if each connected 
component of H is a tree). 

Remark: IH"J is the number of edges, I V(H)I the number 
of vertices, and IP1H I the number of connected components 
ofH. 

Lemma 3.2: LetHbeanyhypergraph,andP(H) = {H, 
jE.! 1 any partition of H. We have J 

I (IV(Hj)I-IP1Hjl»IV(H)I-IP1HI, (3.17) 
~EP(Hi 

the equality holding iff P(H) is a superpartition ofP2H. 

3.2 Cumulants of hypergraphs 

We shall meet cumulants of products over hyper
graphs, i.e., quantities of the form 

(H I) ci fJ = (IT IE) 
EEli cl II 

= I (- )IPI-I(IPI-I)!IT (H/) , (3.18) 
PETrl,HI HpP 
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where H is any hypergraph [1T(H) is the multiset of all parti
tions of H (see Sec. 1.1)). 

Let the partition of H into its irreducible blocks be 

P2H = {Sj,jE.! j. 

We denote by25 

(Hf)clf,irrl=1 U Sj) 
\S

j
EP2H ciS I 

(3.19) 

I A (- )IPI- I(IP I) - I)! IT (H f), 
PETrl,HI.P>P2H H,EP 

(3.20) 

the cumulant built on the irreducible blocks of H [(3.20) 
differs from (3.18) in that the sum over partitions is restricted 
to superpartitions ofP2H]. 

Lemma 3.3: Let the stochastic variables/E be such that 

(H f)=(llfE) = constX€IVIHil-lp,HI (3.21) 

for all hypergraphs H, where € is some (small) parameter. We 
then have 

(H f) cl fJ = (H I) cl f,irrl + (remainder), (3.22) 

where 

(H I) . = (const)€IVIHII - IP,H 1 
cl f,.rr I (3.23) 

and (remainder) is of order higher than I V(H)I - IPIH lin€. 
Proof Immediate from Lemma 3.2. Note that (remain

der) con~sts of the terms Pin (3.18) which are not superparti
tions of P 2H. 

4. STATISTICAL MECHANICAL FORMULAS1.13 

We consider a gas of N particles in a volume r at tem
perature T. The (canonical) partition function is defined as 

ZIT, r,N) =Tre- PH, (4.1) 

where His the Hamiltonian of the gas, andp -1 = kT, where 
k is Boltzmann's constant. The trace Tr is over symmetrized 
states, symmetric for bosons, antisymmetric for fermions. 
The free energy is 

A(T, r,N)= -kTlnZ(T, r,N) (4.2) 

and the equation of state of the gas is given by 

P= - aA jar = n2aa/an, (4.3) 

where P is the pressure, 

n=N/r 

is the particle number density, and 

a=A/N 

is the free energy per particle. 
The grand partition function is 

coo 

Zgr(T, r, Il) = I :/'z (T, r, N), 
N=O 

where Il is the chemical potential, and 

z=e!3p. 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

is called the fugacity. The grand thermodynamic potential 

J(T, r, Il) = kTln Zgr(T, r, Il). (4.8) 
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We have 

pr=J(T, 'r,f-l), 

nr = JJ /Jf-l. 

(4.9) 

(4.10) 

The equation of state must here be deduced by eliminatingf-l 
from (4.9) in favor of n by use of (4.10). 

Weare interested in the virial expansion 

'" 
P /(nkT) = 1 + I njH}+ I' (4.11) 

j= 1 

i.e., the expansion of the pressure in powers of the density. 
The virial coefficients Hj are functions of the temperature, 
and their explicit form is our main object. The virial expan
sion may be arrived at by two different routes: the more 
usual 1-10 consists in first obtaining an expansion in powers of 
z for the grand thermodynamic potential (4.8), and then de
ducing (4.11) by use of(4.9) and (4.10). The other method is to 
consider the free energy (4.5) in the thermodynamic limit 
N-oo, r -00 with N /r = n, and deduce its density ex
pansion 

- [3a = - [3ao + I nkB k + 1 , 

k=1 

(4.12) 

where aO = kTln(n) is the free energy for the classical ideal 
gas. In view of (4.3), there follows 

Hj = - (j - l)B)" (4.13) 

This latter method has heretofore only been applied to the 
classical gas. 11-14 We shall here apply it to the quantum case, 
and thereby obtain new expressions for the virial coeffi
cients, much more meaningful than those obtained via the 
grand canonical formalism. 

5. QUANTUM BOLTZMANN GAS 

In this section, we consider a gas of particles obeying 
quantum dynamics, but Boltzmann statistics. The Hamil
tonian is taken as 

H=K+U, (5.1) 

where 
N 

K= IKj (5.2) 
;=1 

is the sum of kinetic energy operators, and U is the interac
tion potential. We take U of the form 

U = I Ujj + I Ujjk + ... (5.3) 
i<j i<j<k 

(5.3') 

where the Uji--.m = U(ri' rj , ... , r m) are assumed to have the 
cluster property of vanishing when Maxli\ - rj I becomes 
larger than some distance; rj is the position coordinate of the 
ith particle. In (5.3'), the sum is over all subsets of 
l! = {1,2, ... ,N j, and we define 

UE=O ifIEI<2. (5.4) 

The partition function is 

ZIT, r, N) = (N!)-I tr e- tlH, (5.5) 
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where the trace tr (small t) is over unsymmetrized states. 
Equation (5.5) is the high temperature and/or low density 
limit of the fully quantum expression (4.1); the (N!) -I is a 
remnant of the quantum statistics ("correct Boltzmann 
counting,,).26 

We rewrite (5.5) as 

Z(T,r,N) 

= (N!)-ltr{e-PKT~exp[ - SaP dr E~N UE(r)]} (5.6) 

(5.6') 

where 

UE(r) = eTKUEe-TK (5.7) 

and T_ orders the UE(r) such that the "imaginary times" r 
increase from right to left. In (5.6'), we introduced the "aver
aging" operation ( (1) = 1) 

«( ... ) = (tre-PK)-ltr{e-PKT~( ... )j (5.8) 

and denote 

U E = - SaP dr UE(r). (5.9) 

As to Z ~), it is the ideal Boltzmann gas partition function: 

Z~) = (N!)-ltrrPK = (N!)-I(r/A 3t, (5.10) 

where 

A = (21rlf[3/m)1/2 (5.11) 

is the thermal wavelength (m the mass of the particles). 
Under the protection of T_ contained in ( ), the UE(r) 

can be treated as commuting variables. It is understood that 
T_ in (5.8) does not act outside ( ), i.e., it orders only the 
operators inside ( ). 

The excess free energy per particle is, in view of(4.2), 
(4.5), and (2.1c), 

(5.12) 

= N-I(e1uE -1)clu)' (5.13) 

where dO) = - N -lkTlnZ~) = In(n/A 3) is the ideal gas free 
energy per particle. We now introduce (3.8)-(3.10) into 
(5.13). Noticing that 

(5.14) 

if the hypergraphs HI and H2 have no common vertices (i.e., 
particles), we deduce, in view of the cluster property Lemma 
2.1 of cumulants, 

(5.15) 

if H is not connected. We thus get 

-[3(a-a(O))=N- I ± (0 I (Hf)clu) (5.16) 
k= I HEK,),,) 

= N -I ± (0 I (lIH!)(HU)clu) ' 
k= I HEKel") 

(5.16') 

where dY"'c (k ) is the set of all connected hypergraphs with 
vertex set f = { 1,2,oo.,k J, dY"'s,c (~ ) the set of all simple such 
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hypergraphs, and (f) = N !I[k !(N - k )!] are binomial coeffi
cients. 

Now, given any connected hypergraphH with k vertices 
[V(H) = ~], we have 

(HU) = (A 1'Y)ktrvIHle-PKT ~Hu 

= (A 1'Y)kS, ___ arl,,·ark (rt'"rk \e-PKT ~HU\rl,,·rk) 

= constX(lI'Y)k-l. (5.17) 

We used the fact that (rl".rk \e -PKT ~HU\rl ... rk) vanishes 
unless the coordinates rl ... r k are all clustered together (be
cause H is connected and the U E have the cluster property); 
thus the trace over k - 1 of the particles yields a finite result 
independent of the volume 'Y and of the coordinates of the 
last particle; the trace over the latter yields a factor 'Y. Given 
then any hypergraph H with c connected components, i.e., 
PIH = {HI,H2, ... ,Hc j, we have 

(H") = (UI H~) = JUI (H~) 
= constX(lI'Y)IVIHII-IP,HI, (5.18) 

"'-
where we applied (5.17) to each HjEPIH and used 
l:~= dJV(H;)\ - 1) = JV(H)\- c. 

We can now apply Lemma 3.3, with E = (lI'Y), to 
evaluate (5.16) in the limit N- 00,.-( 'Y - 00 with N I'Y = n. 
Wehave,foranyHEJ¥'c(~) [i.e., \PIH \ = landJV(H)\ = k] 

(H")clul = (H")clu,irrl + (remainder), (5.19) 

where 

(H")clu,irrl = constX(lI'Y)k-1 (5.20) 

and (remainder) is of higher order in (lI'Y). Thus, when 
(H U) cl"1 is multiplied by N -1(f)~Nk - Ilk!, and the limit 
N, 'Y -00 taken, only the first term of (5.19) survives. On 
then comparing (5.16) with (4.12), we deduce 
B~oltzmann 

= (k !)-I )' (lIH!)Lim 'Yk-I(HU)cl",irrl' (5.21') 
H~I~I r~oo 

(5.21 ") 

The second line follows from the corollary to Lemma 2.2, 
because a given U E cannot appear inside two different ( ) 
factors in any term of (H U) cl u,irr I [since two irreducible 
blocks of H share at most one vertex, and \E \>2 (or else uE 
=0)]. 

Equations (5.21) constitute one of the main results of the 
paper. In (5.21 '), we have a sum over u-edged connected hy
pergraphs (Feynman diagrams), while in (5.21 H), the sum is 
over f-edged connected simple hypergraphs (Mayer dia
grams); in either case, we have cumulants built on the irredu
cible blocks. 

5.1 Classical case 

905 

In the classical case, 

IE = e- f3UE 
- 1, 
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(5.22) 

Here, (H D factorizes according to the irreducible blocks of 
H, i.e., if P~ = {Sj,j = 1".sj, 

(H f) = (iII S /) = jiIl (S/,>; (5.23) 

thus the S (are ( )-independent variables. To demonstrate 
) . 

(5.23), it suffices to show that (H {H {) = (H () (H {) If HI 
and H2 are connected hypergraphs having a single common 
vertex. Let then V(HI) = {1,2, ... Jj, V(H2 ) = {j,j + 1, ... , 
j + m j ,j being the common particle. We have 

(H{H{) 

= 'Y- u+ mlfr arl"arj+ mH {(rt'"rj)H {(rj".rj + m) 

= 'Y-u+mJr arj'Yj-I(H{)'Ym(H{) = (H{)(H{), 

(5.24) 

where we used S rarj = 'Y and (with V(H) = 11) 

fr arl·"arn_IH f(rl·"rn) 

= 'Y-If arl".arnHf= 'Yn-I(Hf) (5.25) 

(at large 'Y, the lhs is independent of 'Y and ofrn if His 
connected). 

The factorization (5.23) implies, in view of Lemma 2.1, 
that (H f) cl irr I vanishes if H has two or more irreducible 
blocks; i.e., it is nonzero only if H is itself irreducible, in 
which case (H f)clirrl = (H f). One then recovers from 
(5.21") the classical Mayer result (extended to multi particle 
interactions) 

where Jlr's.irr (~ ) is the set of all simple irreducible hyper
graphs with vertex set k. 

In the quantum case, the time-ordering operation T ~ 
inside ( ) time entangles the different irreducible blocks of a 
diagram, and thereby prevents the factorization (5.23) to 
happen. 

6. QUANTUM STATISTICS 

We now incorporate quantum statistics. The quantum 
statistical partition function (4.1), wherein the trace Tr is 
over symmetrized states, may be expressed in terms of the 
trace tr over unsymmetrized states as27 

(6.1) 

where the symmetrizer or antisymmetrizer (acting on the set 
l'j) 

(6.2) 

The sum l: 9' is over all permutations of the N particles, 

{
I for bosons, 

E= (6.3) 
- 1 for fermions, 

and \ g; \ is 0 or 1 according as the permutation g; is even or 
odd. The operator tJ 9' permutes the particle coordinates in 
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a wave function, Le., if g; is the permutation 
! 1,2, ... ,N l-!iI,iz,··.,iN J, then 

tJ.up '/I (rl' rz, ... , rN) = '/I(rj " rj2 , ••• , rj ). (6.4) 

Let (il,iz, ... ,ik ) denote the cyclic permutation 
! il,iz, ... ,ik }-! ik ,il,···,ik _ I }. The parity of (il,iz, ... ,id is 
(k - 1) mod 2, since it takes k - 1 transpositions to displace 
i k from the last to the first position. We denote CiJ (E) the set 
of distinct cycles involving the set of indices E eN; there are 
(IE I - I)! such cycles, Le.,z8 -

ICiJ(E)1 = (IE 1- I)!. (6.5) 

E.g., CiJ(3) = 1(1,2,3), (1,3,2)j. We denote 

CE = .cI E I - I ~ &e 'f IE I 2 eLl ;;., 
CE\f(E) 

=0 if IE 1<2. 

(6.6) 

Since every permutation on Ii can be written as a product of 
cycles, with each index iEl'j appearing at most once in the 
product [e.g., 

(
123456) 
321564 = (13)(2)(465)], 

we have the following equivalent expressions for S~: 

S~ = I II CE (6.7) 
PETTj~) EEP 

= L II (1 + CE) = L exp( ICE)' (6.S) 
EC~ EC~ 

In (6.7), the sum is over all partitions ofthesetN. In (6.S),L is 
the "leveling" operator (see Sec. 2.1), which s"Uppresses all 

I 

the propagator (1\ ... 1N Ie -.8H Ir; ... 1~) vanishes when 
Maxll; - rj I is much larger than the thermal wavelength;1,; 
thus condition (6.13) is satisfied in our case, and the interac
tions CE effectively have the cluster property (at finite tem
perature). 

Using (5.7) and (6.S), we rewrite (6.1) as [compare (5.6)]: 

ZIT, r, N) = (N!)-ltr! e -.8K(T ~e};Ec.yuEJ(Le};EC~EJ) 

= Z(O)( eXpL~)UE + CE)])' (6.14) 

where Z (0) is again the ideal Boltzmann gas partition func
tion, and here the averaging operation 

«( ... ) = (tr e-.8K )-ltr [e-.8KA ( ... )j, (6.15) 

where the operator A does three things: (i) it puts all C E 's to 
the right of all uE's, (ii) it time orders the UE's (iii) it sup
presses all terms wherein two or more C E'S have common 
indices (i.e., A acts T~ on the uE's and L on the CE's). It is 
understood that A acts only inside ( ). 

Expression (6.14) is nearly identical to (5.6'), the differ
ences being that U E is replaced by U E + C E and ( ) is gener
alized. Since the two properties we used to get (5.21), viz. ( )-
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terms wherein any index appears more than once [e.g., 
L CI2 C345 = CI2 C345 but L CI2 C234 = 0]; we used 

L eCE 
= 1 + CEo (6.9) 

On comparing (6.7) with (2.3) and (2.10), we deduce that 

CE = SEc. (6.10) 

Example: Cz = E&(1,Z) , C3 = EZ[ &(1,2,3) + &(1.3,2) J 
and S3 = L exp(Cl2 + Cl3 + en + C123 + Cm ) = 1 + C IZ 
+ CI; + Cn + Cl23 + Cm (all other terms in the expanded 

exponential contain repeated indices, and are killed by L ). 
Note that under the protection of L, permutators with 

common arguments can be treated as commuting variables, 
since L acting on their product will yield zero anyhow. 

The operators C E may be regarded as effective "ex
change interactions." These multiparticle interactions do 
not have the cluster property; for instance 

(r;, r;, 1; 1&(123)111' r2, 13) 
= 8 (1; - 13)8 (1; - lIl8 (1; - r2) (6.11) 

is nonzero if 

1; = r3, r; = 11, r; = 12, (6.12) 

which can be even iL~I' rz, and r3 are arbitrarily far from one 
another. However, &(123) has a partial cluster property, in 
the sense that ifin (6.11) each r; is close to rj , i.e., if 

Maxlr;-rj l.;;;;1" (6.13) 

where;1, is some finite distance, then (6.12) implies that the 
r/s and r;'s must all be clustered together for (6.11) not to 
vanish. Now, in 

independence of vertex-disjoint hypergraphs and cluster 
property of interactions, are again present here, we obtain 
anew (5.21), but withfE replaced by 

(6.16) 

[more precisely, FE =eUE
+

CE -1; but inside (HF)ciF.irrl' 
FE becomes (6.16) in view of (6.9)]. 

Equation (5.21) with () givenby(6.15)andfE replaced 
by FE is the solution to our problem. An alternative form 
follows from (3.12): 

(6.17) 

where B~ltzmann is given by (5.21), B~deal is given by (5.21) 
withfE replaced by CE , and 

B ~orr = (k !) - I I l:im r k 
- I (H f,C ) el f,C,irr I ' 

HE<fiY",.cI"-;f,C) 'J"-oo 

(6.1S) 

where Jf"s,e(~;J,C) is the set of all simple connected 2-0a
vored hypergraphs with vertex set k. The physical signifi
cance ofB ~ltzmann and B teal is obvious; as to B ~orr, it con-
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tains, so to speak, the correlations between dynamics and 
statistics. 

The physically pleasing decomposition (6.17) can be ef
fected directly on the free energy In Z, before the limit N, 
r -+00 is taken, which may be useful for certain purposes 
(e.g., dealing with Bose-Einstein condensation); we have, 
from (6.14) and (2.1c), 

InZ(N, r, T) 

= In ZIO) + (exp [ 2: (uE + CE)]) 
ECI:f elu.C) 

= In ZIO) + (el: uE - 1)elu) + (el:CE 
-1)cjC) 

+ «(el:uE _ l)(el:CE - 1)elu.C) , (6.19) 

where we used the identity (ea + b - 1) = (ea 
- 1) + (eb 

- 1) 
+ (ea 

- l)(eb 
- 1). The four terms in (6.19) are the ideal 

Boltzmann, quantum Boltzmann, ideal quantum, and dy
namics-statistics correlations, respectively. 

Remarks: 1. As already mentioned, the time ordering 
T ~ inside ( ) prevents different irreducible blocks in a pro
duct H f from being ( )-independent (by time entangling 
them). The leveling operator Lin (6.15) has a similar effect; 
e.g., LCI2C23 = 0, so that(C,2C23 ) = 0# (C12)(C23 ) and 
(C12C23 ) elirr) = - (C12)(C23 ) #0 (beware that L operates 
only inside ( »).29 

2. The time ordered exponentials contained in (5.21), 
(6.17), etc., may be expanded in the interactions U E(7), lead
ing to imaginary-time Feynman diagrams; or, one may re
vert to ordinary exponentials, e.g., 

tr e - {3KT _ 112/13 
= tr e - {3KT _(eU

•2 + Un _ eUl2 
_ eUlJ + 1) 

= tr [e - (3(K + U l2 + UlJ) _ e - (3(K + U. 2 ) 

_ e - (3(K + UIJ) + e - 13K ]. 

6.1 Ideal quantum gas 

Let us consider the ideal gas term 

Bideal = (k!)-' " Lim rk-'(H C ) . 
k .c.. ~". el C,Irr) , (6.20) 

HEKs.c(~) , -co 

wherein 

«( ... ) = (tr e -{3K)-l tr{ e -{3KL ( .•• ) J. (6.21) 

Because of the leveling Lin (6.21), the only hypergraphs 
which contribute to (6.20) are those whose irreducible blocks 
all consist of a single edge (all other irreducible blocks are 
obviously killed by L ), i.e., trees. Thus 

Bideal = (k !)-I " Lim rk-I(T C) 
k .c.. eIC)' 

Te3'(~) r- oo 
(6.22) 

where Y(k ) is the set of all trees with vertex set k· we noticed 
that (TC)~lc.irr) = (T C

) elC) since each edge or'Tis an irre
ducible block by itself. 

Now, (TC)elc) consists of products 
llT,P'(T) (llEeT;CE) [see (2.3)]; but because of L, (llEeTCE) 
#0 only if the edges EETj are all disjoint from one an~ther, 
in which case (llEeT;CE) = llEeT; (CE). It follows that 
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(TC)eICj = a(T)n (CE), (6.23) 
EeT 

where a(T) is an integer whose value depends on the tree T. 
In Appendix B it is shown thaeo 

a(T) = ( - )ITI- 1 n (Ivl - I)! (6.24) 
veV(T) 

(I T I is the number of edges of T, and I v I the number of edges 
incident on the vertex v). We thus have 

B~deal = (k !)-I 2: a(T)Lim r k
-

I II (CE ). (6.25) 
Te3'(k) r_ oo EET 

In view of (6.5), -

(C~) =E"-I(n -1)!(&(l,2,.,n) 

= E"-I(n _ 1){~: e-{3Ifk'12m) -I(~ e-n{3l!'k'12m) 

= E" - I(n - 1)!(r /..1, 3) - (n - l)n- 3/2, (6.26) 

where we used 

t -fJK& r~e (1,2, . . ,n) 

2: e - (31i'(Q + k~ + ... + k~)/2m(kn Ik
l

) (k
l
lk

2
) 

k.,k2 ,···,kn 

... (kn _ I Ikn) = 2: e - {3nli'k'12m (6.27) 
k 

(since (k 'Ik ) = OU'), and ~ke - n{3li'k'/2m = (r /..1, 3)n- 3/2 in 
the large volume limit. Thus, noting that ~EeT(IE I - 1) 
= W(T)I - 1 by Lemma 3.1, we finally have (here 
W(T)I =k) 

B~eal = i'-IA 3(k-I)(k !)-I 2: (_ )jTI-I 
Te:T(!5) 

x n IE 1- 3/2(IE I - I)! n (Ivl - I)!. (6.28) 
EeT veV(T) 

In view of (6.10), the quantities (C E) are essentially the 
Ursell cluster functions for the ideal quantum gas, so that 
(6.25) is in fact the expression ofB~ea' in terms ofUrsell 
clusters. One can readily infer that (6.25) also holds in the 
nonideal case, provided the (C E) are replaced by the noni
deal Ursell cluster functions. This will now be shown expli
citly, as a further illustration of the use ofhypergraph-cumu
lant methods. 

7. VIRIAL COEFFICIENTS IN TERMS OF URSELL 
CLUSTER FUNCTIONS 

In this section, we express the Bk'S in terms of Ursell 
cluster functions. We proceed by direct evaluation of the 
canonical partition function, without recourse to the grand 
canonical fugacity expansion as an intermediate step. 

Let us denote by 

QE = (tre-fJHS)E = IEI!Z(E, r, T) (7.1) 

the partition function for the gas consisting of the set E of 
particles, multiplied by IE I!. The U rsell cluster functions are 
the quantities Q~ obtained by the construction (2.10), i.e., if 
we formally denote 

(7.2) 
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then 

Q~ = (II Xi' 
iEE !elXI 

(7.3) 

Alternatively, if we collectively denote RE the set of coordi
nates I rp iEE 1 and write 

QE = i~ dRE WdRE)' (7.4) 

where 

WE(RE) = (REle-PHESEIRE) 

= e - PU(R E ) (classical case), (7.5) 

then 

(7.6) 

It is usually the W~ which are termed "cluster functions." 
Since W dR E) factorizes if the set of coordinates R E sepa
rates into distant subsets, W~ (R E) correspondingly vanishes 
(Lemma 2.1), i.e., it has the cluster property; it follows that 

Q ~ is proportional to the volume 'Y. (7.7) 

As is well known, Q ~ can be expressed as the sum of all 
connected (generalized) Mayer diagrams with vertex set E. 

We will now express the B k in terms of the Q ~. We 
have, on using (7.2), (2.9), and Lemma 2.3, 

ZN = (N!)-I(XIX 2···XN) = (N!)-I(XIX 2",XN)ea 

= Z('})L exp( I DE)' 
ECl! 

(7.8) 

where L is the leveling operator, and we defined 

DE=O iflEI<2 
(7.9) = (A 31'Y)IEIQ~ } 

if IE 1>2, 
= constX(lI'Y)IEI-1 (7.10) 

the last equality by (7.7) [we used (Xi) = (A 31 'Y) and 
(N!)-ITI iEN (Xi) = Z~~n· Introducing the "averaging oper-
ation" -

«(···)1 =L( ... ) (7.11) 

(Le., just "leveling"), we get from (7.8) 

In(ZNIZ~)) = (exp I DE - 1 r 
ECl! ! elD I 

(7.12) 

= I (lIH!)(H
D

reIDI' (7.13) 
HE"(l!) 

where H(N) is the set of all hypergraphs with vertex set con

tained in /:!.. Since (H fH f'f = (H f'f (H f'f if HI and H2 
have no common vertices, (H D reiD I vanishes if H is not 
connected, and we can replace H(lY) by He (lY) the set of all 
connected hypergraphs with vertex set in lY. We thus get 

-{J(a-al°))=N- 1 ± (N\ I (lIH!)(HD'feIDI' 
k = I k) HEYi"',(~) 

(7.14) 

Now, because of (7.10). H D and (H D "'I D I are propor
tional to 
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(7.15) 

It then follows from Lemma 3.1 that in the limit N---+oo. 
V---+oo. (HD'eIDI multiplied by N-I(Z)<;;;;fNk-Ilk!, where 
k = I V (H) I. vanishes unless H is a tree. We thus obtain. on 
comparing (7.14) with (4.12). 

Bk =(k!)-I I Lim 'Yk-I(TD/eIDI (7.16) 
TE.7(,,-) 'F"-oo 

= (k !)-I I a(T)Lim 'Yk-ITD. (7.17) 
TE.7(~) 'r-oo 

We noticed that T! = 1. since a tree has no multiple edges (of 
degree >2). and we used (Bl)31; afT) is given in (6.24). 

Equation (7.17) is the sought expression. To make con
tact with more standard notation, I let us denote 

~ E = Lim 'Y-IA 3IEIQ~. 
') ~- ... 00 

VE = k!B1E1 • 

Equation (7.17) may then be rewritten 

VE = I a(T)T"Ii. 
TE.7'-(E) 

(7.18) 

(7.19) 

(7.20) 

The converse of this relation is the well-known Husimi rela
tion4 ,6 

~ E = I TV. (7.21) 
TE.~T(E) 

To terminate. let us briefly show how the activity ex
pansion ofln Zgr is deduced by use of cumulants.5 Let us 
formally denote 

(7.22) 

(this notation is self-sufficient because QN depends only on 
IlY 1= N). We then have -

00 

Zgr = I (? IN!)Ql! = (e'X). (7.23) 
N=O 

whence 
00 

In Zgr = (e'x - l)elXI I (? IN!)(XN)elxl 
N=I 

= I (?IN!)Q~, (7.24) 
N=I 

where we used the fact that QE = QE' if IE I = IE'I to write 
(XN)e = Q~ (e.g .• (X2)e = (X2) - (X)2 = Q2 - QI QI 

= QI2 - QIQ2 = Q~). Equation (7.24) is thewell=knownac
tivity expansion of the grand thermodynamic potential. 

APPENDIX A: DEMONSTRATION OF LEMMAS 3.1 AND 
3.2 

We say that the connected hypergraph 
H= IEI,E2 .... ,En l is in proper order if 

H IJl==. lEI' E 2, ... , Ej l (AI) 

is connected for eachj = 1,2, ... ,n. Proper order can always 
be achieved if H is connected (for choose EI arbitrarily; 
among the remaining edges. at least one is adjacent to E I , or 
else H would not be connected; call it E2; etc.) We shall al
ways assume proper order. Obviously: 
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Lemma A.I: H is a tree iff H (j) and Ej+ I have a single 
common vertex, i.e, I V (H (j))nEj+ 1 I = 1, for each 
j = 1,2, ... ,n - 1. 

Given a hypergraph H, let us denote 

a(H)= L (IE 1- 1). (A2) 
Eel-f 

Lemma A.2: Let H be connected; we have 

a(H»/V(H)I- 1, (A3) 

the equality holding iff H is a tree. 
Proof Let H = [EI,Ez, .. ·,En I be properly ordered, and 

denote 

bj = a(H(l)) - (I V(H (J))I - 1). 

We must show that bn >0, and bn = 0 iff H is a tree. Clearly 
b l = O. Let Ej + I have mj common vertices with Hill; then 
I V(Hu+ 1))1 = I V(H(J))I + IEj+ II - mj.1t follows that 

bj + 1 = bj + (iEj + II - 1) - [W(H(j+ 1))1 - W(H(/))I] 

= bj + mj - 1, 

whence bn = .I7,:-/(mj - 1). Since His connected, each mj 
> 1; thus bn >0, the equality holding iff each mj = 1, i.e., iff H 
is a tree (by Lemma A.1). Q.E.D. 

Proof of Lemma 3.1: Let H be any hypergraph, 
P1H = (Hj,jEJ I its partition into connected components: 
(j(H) = ~jEJa(Hj»~jEJ(1 V(Hj)l- 1) = I V(H)I - IJ I. 

Q.E.D. 

A partition P (H) = (Hj, iElI naturally defines a new 
hypergraph 

G [P(H)]=! V(Hj ), iElI. (A4) 

The diagram of G [P (H)] is obtained from that of H by coa
lescing together the dots representing the edges of H j , for 
each iEl (Fig. 7). 

Clearly, if H is connected, and 

'" PzH = lSI' Sz, ... , Sm L (A5) 

where S, i = 1, ... ,m, are the maximal stars of H, then 
G [PzH j = [ V (Sj)' i = 1 , ... ,m I is a tree. More generally, we 
have 

Lemma A.3: Let H be connected, P (H) = I H j, 
i = 1, ... ,pl apartitionofH; G [P(H)] = I V(Hj),i = l, ... ,p} 
is a tree iff (i) eachHj is connected and (ii)P(H) is a superpar-

'" tition of PzH. 
Proof (if) is obvious. (only if): first note that when two 

nonadjacent dots in a connected hypergraph are coalesced 
together, there automatically results a cycle (Fig. 8); it is then 

2 < 

:t' ,A3 b 2 ~ 

[/"04 it ' J e , 3 

c < r): • J. 
6 / S-

, 
, "-

H ' , &[P(H)] 
P(H) 

FIG. 7. The hypergraph G [P(H)] = {( 1,2,3,5,6), (3,5,6), (3,4) I, where 
H = I Ea,Eb,E"Ed,Ee I = 1(1,2,3), (3,4), (5,6), (5,6), (3,5)1 and the partition 
P(H) = {(Ea,E,), (Eb)' (Ed,Eell. 
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4-

H H' 

FIG. 8. If one coalesces together the two nonadjacent edges 1 and 4 in the 
hypergraph H, one obtains H'. which contains a cycle. 

easy to see that G [P (H)] is not a tree if the H j are not all 
connected. Suppose then that the H j are all connected, but 
P (H) is not a superpartition of P zH = [Sj ,jEJ }. This means 
that at least one oftheSj , say SI' intersects several of the Hi' 
DenoteJ) = U~EJ, HpSI =l0}. EachHjl ,jIEJI, has at least 
two common vertices with the union of the other Hjl 's (oth
erwise SI would contain an articulation vertex, or not be 
connected); this implies that when the V(Hj)'s are properly 
ordered, the right-most V (~I ) shares at least two vertices 
with the union of V (Hj )'s on its left, implying that G [P (H)] is 
not a tree in view of Lemma A.1. Q.E.D. 

Given the partitionP(H) = [Hj , i = 1, ... ,pl, denote 
p 

u[P(H)]=a(G [P(H)]) = L (I V(Hdl - 1). (A6) 
j=1 

Lemma A.4: Let H be connected, P (H) = [Hi> 
i = 1, ... ,p} a partition of H. We have 

u[P(H)]>/V(H)I- 1, (A7) 

the equality holding iff (i) each Hi> ~ = 1, ... , p, is connected 
and (ii) P (H) is a superpartition of PzH. 

Proof This follows from Lemmas A.3 and A.2. 
We extend the domain of application of partition opera

tors P from hypergraphs to partitions as follows: if 
P(H) = [Hi' iEl) andPHj = IHjj,jEJj }, then 

PP (H )= u I PHj J I Hjj,jjEJp iEl J. (A8) 
ie1 I 

Lemma A.5: Let the partition P '(H) = [H k' kEf( I be 
such that each H k is connected. Let P (H) = [Hi' iElI be 
another partition of H. Then 

P(H»P'(H)<;::;PJP(H}>P'(H). (A9) 

Proof (<=) is obvious sinceP (H »PIP (H land > istransi
tive. (~): LetP)Hj = [Hjj,jEJj I.P(H»P'(H)<;::;eachH k is 
contained in anHj; letH k CHI say. SinceH k is connected, 
it must be entirely contained in a single connected compo
nent of ljy i.e., H k CHlj for somejEJI. Thus 
P'(H)<PIP(H) = [Hij"jjEJj> iEl). Q.E.D. 

Lemma A. 6: Let H be any hypergraph, P (H) = [Hi' 
iEl J any partition of H: 

<T[PIP(H)] = L u[PIHj ]. (AlO) 
H,EP(H) 

'" "'-
Proof LetPIHj = IHij,jEJj ). ThenPIP(H) = (HUt' 

jjEJj> iElI and 

u[PIP(H)] = L L (i V(Hj)l- 1) = Lu[PIHj ]. 
ieI j,eJi ieJ 

Q.E.D. 
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Letusnowdenote,foranypartitionP(H) = {H;,iEl} of 
any hypergraph H, 

u'[P(H)]=u[l\P(H)] = ~ (W(H;)I-IP1H;il, (All) 
H,EP(H) 

where IP1H; I is the number of connected components of H;. 
The second equality in (A 11) follows from (A 10) and 

u[P1H] = 1; (I V(H;li - 1) = I V(H)I- IP1H I 
HFP,H 

(Al2) 

for any H. 
Lemma A. 7: Let P (H) = {H;, iEl J be any partition of 

any hypergraph H. We have 

u'[P(H)] = 1; u'[P(H)OHj ], (AI3) 
HJEPtH 

where we denote, for any subhypergraph H' CH, 

P(H)oH'={H;nH'IH;El'(H)} (AI4) 

the partition induced by P (H ) on H'. 

Proof Let I\H = {lij ,j9J. We have _ 
u'[P(HQ = l:;E.J1 V(H;)I - IP1H; I) = ~EI(~jeJ1V(HJ~j)1 
- ~jeJIPI(H;nHJj) = ~jeJ~;E/(1 V(H;nHj )I - IP1(H;rlH;)1) 
= l:jEJU'[P (H )oHj ], where we used 

IPJH'I = 1; IPI(HjnH')1 (AI5) 
H,EP1H 

for any subhypergraph H' CH (see Fig. 9). 
Lemma A. 8: Let H be connected, P (H ) any partition of 

H. We have 

u'[P(H)]>/V(H)I- 1, (AI6) 

the equality holding iff P (H) is a superpartition of P2H. 
Proof By Lemma A.4, u'[P (H)] = u[PJP (H)] 

~ I V (H) I - 1, the equality h9,!ding iff (.ll each element of 
PIP (H) is connected an~ (ii) PIP (H »P2H; ~ut (i) is always 
satisfied (by definition of PI)' and (ii)¢:>P (H »P2Hby Lemma 
A.5. 

Proof of Lemma 3.2: Let P (H) be any partition of any 
hypergraph H: we have 

(AI3) (AI6) 

u'[P(H)] = L u'[P(H)oHj ] > L (W(Hj)I-I) 
H}EP1H HjEP,1I 

= W(H)I - IJ\H I, 

1-/, o 
FIq. 9. The blobs represent the connected components of some hypergraph 
H. P,H = ! HI< H2• H, I. The hatched sections represent a sUbhypergraph 
H' C H. Clearly. the number of connected components of H' is 
jP,H'/ = ~~~ ,/P,(HpH'I/ [where IP,(HjrtH'll is the number of connected 
components of HJrtH 'J. 
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T 

FIG. 10. Tree Twherein each TiEPv T consists of a single edge. 

theequ~ity holding iffP (Hj »P2H j for each HjePIH, i.e., iff 
P (H »P2H. Q.E.D. 

APPENDIX B: DEMONSTRATION OF EQUATIONS (6.23), 
(6.24) 

Lemma B.l: Let { fE' E C S J be stochastic variables in
dexed by subsets of some set S; ( ) some averaging operation. 
Denote «( .. ·j'f==(L ( ... ) where the leveling operator L sup
presses products n;E/ fEi wherein the sets Eo iEl, are not all 

disjoint from one another. Let T be a tree. Denoting T I 
=nEET fE' we have 

(TI'el/l =a(T) II (IE)' (BI) 
EET 

where 

a(T) = (- )ITI-I II (Ivl - I)! (B2) 
VEV(T) 

Proof Let VE V (T) be a vertex of degree I v I = n > 2, and 
let 

(B3) 

where the partition operator Pv is defined in Sec. 3.1. In the 
special case that each T;ePv T consists of a single edge E; 
(Fig. 10), we have 

n 

(TI'elfl =(-r-1(n-I)!II (IE) (B4) 
i=1 

(all other terms in the cumulant vanish because of L inside 
( ) ). We will show that in general 

n 

(Tlrel/J =(_)n-I(n-I)!II (T/,fcifJ . (B5) 
;= 1 

(BI) will then follow immediately by application of(B5) to 
each vertex of Tin succession, and use of~VEv(T)(lvl- 1) 
= ITI- 1, by Lemma 3.1. 

Note that (B5) can be written as 

(B5') 

where 

(B6) 

where Lv suppresses products wherein the vertex v appears 
more than once, and 

(B7) 

We now prove (B5) by induction, i.e., we show that if 
(BS) is true for all proper subtrees of T (i.e., all T' C T such 
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that T' =1= T), then it is also true for T; this will pr~e our 
assertion since (B5) is true in the case that each TjEl'v T con
sists of a single edge [Eq. (B4)]. 

We have from (2.9) and (2.3a), 

0= (TIY = (Tlfe(f]a(f] = (Tlta[/) (B8) 

= L II(8 1t (B8') 
PE1Tc1T) 9EP 

L L'" L (II II' (TGr)(II Tr;'f , 
P,E1TcIT,)P,E1T,jT,) p.E1Tc1T.) jE" T;j=P; jE" / a[ T} 

(B9) 
where 1Te(T) denotes the set of all partitions of Tinto con
nected subtrees [all other partitions contribute nothing to 
(Tlta[/) since (8 I f= (8 I re[f] =Oif8isnotconnect
ed, by Lemma 2.1]; the first equality in (B8) follows from 
LT 1=0 (since n>2, v is repeated in T I). In (B9), Til is the 
part of Pj E1Te (Ti ) containing v, and the primed product 
II T;j=P; is over the other parts (excluding Til ). [The identity of 
(B9) with (B8') is easily shown by induction, by using the 
obvious identity 

L II (8 I t= L [n (8 I t(IE 'f 
PE1Tc1T + [E}) €JEP PE1Tc1T) €JEP 

+ ~pIC)J]}8'ft(8fIEt], 
(BIO) 

where the superscript (c) on the last sum indicates restriction 
to the 8EP such that 8 + [E } is connected. Let E be linked 
to TJ say, and not contain v. Assuming then that 
(B8') = (B9), and applying (B 10) while noticing that (T G IE t 
= 0 if i =1= 1, we obtain again (B8) = (B9) with T replaced by 
T + [E ) in (B8') and T J replaced by T J + IE} in (B9). And 
since (B8') = (B9) is obviously true if each T j consists of a 
single edge, it is true in general.] 

Consider now (lliE" T r; 'fa! T] in the case that at least 
one ofthe Til is not equal to T j ; then ~ jE" Til is a proper 
subtree of T, so that we can apply our induction hypothesis 
(B5'), (lliE" T,{ l' = (lljE" T r; 9,,[ T) , whence 

(II T r; 't = (IT T r; 0 = (IT T r; '0= 0, 
iE" la[T) jE" IC[T}a(T] jE" /. 

(BIl) 

where we used (2.9) and noted that Lv lljEn Til = 0 (since 
n>2). There thus remains in (B9) only the' terms wherein 
each Til = Tj , i.e., we have 

( r ( i ' ( j. 0= ITT{ = ITT{ + L n ITT{, 
jE" a[ T I iE" PE17j,,) SEP jeS 

(BI2) 

where the primed sum ~' excludes the trivial partition; we 
can accordingly apply the induction hypothesis (B5'J to the 
factors (ll T !tin that sum, and thereby get 

( r ' ( ~ 0= IT T{ + L IT II T{ . 
jEn PE17j,,) SEP iES c[ T I 

(B13) 

Comparing this with 
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0= (II T{P= (II T{P 
iE" I' jE" IC[T'a[T) 

(? ' ( p = II T{ + L II II T( , 
jE" c[ T I PE17j,,) SEP jeS cl T I 

(BI4) 

we deduce 

<Tlf=(II T{j= (IT T(P . 
IEIJ IE1J / c! T\ 

Q.E.D. (BI5) 
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12.1al (2.1c) 

(eH}ca = exp(eH 
- I>c) = (e H }. 

(l.lc) (2.1a) 

(eH - l)ac = In(eH)a = (e-'x - I). 

22This is readily seen after replacing each exp( I,) by (1 + 1;). as is permissi
ble under the protection of L '. 

231n the case of an edgeE, IE I is indeed the number of vertices contained in 
E, in our set theoretic notation. By duality, we also denote Ivl the number 
of edges containing the vertex v (note that one can represent a hypergraph 
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Hby its dual's H· = (V,, V" ... , Vn ), where n = 1 V(H)I and Vi is the set of 
edges containing the vertex Vi). 

"More generally, given a set of vertices we V(H), we write E .. IV E' ifthere 
exists a path between edges E and E' not containing any vertex of W; .. IV is 
clearly an equivalence relation between edges. 

'51n detail, 

(Hf)cIMCI = L (- )IP'-'(IPI-I)!II III Sf), 
£'Em.) I J,EP \AJ, 

whereSf= nEts,IE· 
'6See, e.g., Ref. I(a), Sec. 7.6 (Gibbs paradox). 
27See, e.g., Ref. 10, p. 3l. 
'BE.g., if E = k = { 1,2, ... ,k ), we have (k - I)! different cycles on k corre

sponding to the (k - I)! distinct permutations of k - I indices in the basic 
cycle (l,2, ... ,k), keeping one index fixed [since (i,.i" ... .ik ) and a cyclic per-
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mutation of it, e.g., (ik ,i" ... .ik _ ,) represent the same cycle). 
'9However, there are certain cases where different irreducible blocks are 

( )-independent. E.g., let H contain an articulation vertex V which, for 
some partition H = H, + H, with V(H,ln V (H,) = v, is incident on only C
edges of H, and only f-edges of H,. Now, C- andf- edges, although not 
commuting, are not entangled by A in (6.15), which puts all C 's to the right 
of aliI's; and since furthermore allf-edges of H, commute with allf-edges 
of H, as they have no common vertex, and likewise for C-edges, H, and H, 
are completely de-entangled. It follows that (H (eH [e) 
= (H (e) (H [C) and (H f,C) cl 'nl = o. 

"'To adapt (BI) to the evaluation of (TC)clcl' let «( ... ) = (tr e PK)-' 

tr! e - PK ( ••• )1, so that(6.21) = (L ( ... ) = «( ... )/. 
"Note that here «( ... ) = ( ... ), so that 

(T D1cIDI =a(T)II (DE) =a(T)IIDE =a(T)TD. 
EET BET 
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We point out a connection between the coexistence of phases in the Z2 lattice gauge model and the 
existence of infinite clusters for a suitable associated system of duplicate currents. 

PACS numbers: 05.50. + q. 11.15. - q 

1. INTRODUCTION 

Computer simulations by Monte Carlo methods I 
strongly suggest the existence of a first-order phase transi
tion in the gauge invariant Ising model (GIIM) in four di
mensions. In Ref. 2 it is pointed out that this transition could 
be interpreted as coexistence of phases at the singular point 
arising from different boundary conditions (closed and free 
b.c.). More precisely the first-order phase transition appears 
to be associated to a spontaneous breaking of the symmetry 
given by duality. as well as in the Ising model the coexistence 
of two phases for /3>/3c. in zero external field. is related to a 
spontaneous breaking of the reflection symmetry for the spin 
variables. 

A useful picture of Ising phase transition was obtained 
in terms ofpercolative phenomena. e.g .• the existence ofinfi
nite clusters of spins "up" and "down" in typical configura
tions of pure phases. 3-6 More recently Aizenman 7 related the 
long range order in Ising model to some percolation pheno
menon in an associated "current system." The Aizenman 
procedure allows one to write the correlation functions for 
the Ising model in terms of some conditional probabilities on 
a suitable current systems. This method is applicable to oth
er systems and in particular to GIIM. as stated in Ref. 7. 

In this paper we start from the Aizenman results to 
investigate the relation between the GIIM phase coexistence 
and the existence of infinite clusters in the current model. In 
particular in Sec. 2 we describe. for sake of completeness. the 
Aizenman procedure for G 11M. In Sec. 3 the absence of first
order phase transition in the GIIM when there are no infinite 
clusters of currents is shown. 

2. THE CURRENT EXPANSION FOR THE GAUGE 
INVARIANT ISING MODEL 

Let [/ be the set of links I = (n.n') between nearest 
neighbor sites in the unit lattice 'Z/ . We associate to each link 
I a spin UI = ± 1 variable and denote ~ a spin configura
tion on ILd. i.e .• ~ = ! UI l/ELd ' We call plaquette each set of 
four links which are edges of unit squares and for each pla
quette P we write up = TI/Cp U I • Finally Let H A (~ ) be the 
energy of the system in A C IL d for the configuration ~ . The 
GUM is defined by assigning the Hamiltonian 

HA (~) = - I /3pU p• (2.1) 
pC(AuBA) 

where RA is the set of the links in IL d \A which form pla
quettes with the links in A. 

We call Z ~ • Z ~ the partition functions with. respec
tively. the ( ± )-boundary conditions (closed)8 and the free 
boundary conditions (i.e .• /3p = a Vp etA ); we define 

Z~ = + I II exp/3pup• (2.2) 
21 1 " CA a £ P £ 

where € = C. 0; Ao = A. Ac = AuRA. 
Following Ref. 7. for each plaquette we use 

exp/3pup = I (/3p up t . 
nEN n! 

and take the product onp and the average on spin configura
tions. Then we get 

z~ = I W(n.i<). (2.3) 
n.lE:(and" = (2) 

where.J o is the set ofplaquettes contained inA and.J c is the 
set of plaquettes contained in AuRA. n.i is a current configu
rations. that is n.i = ! nIp) lpE.1 with nIp) an integer for each 
p. For a configuration n.i. (an)A' is the set 

(an)'~' = {1~A ': I nIp) = 1 (mod 2)}. (2.4) 
p:::J1 
pE.1 , 

Finally 
IR )n(p) 

W(n.i) = II _VoJ_p_. (2.5) 
pCA nIp)! 

By small modifications of the above argument we have. 
for the expectations of the gauge invariant observables. 
U v = TI /c VUI (V union of circuits in L d). 

I W(n.i<) 
n "<,(an)" = V 

(UV)~ = --~--------- (2.6) 

I W(n.i<) 
n"<,(an)" =0 

Now we need some definitions. 
Two plaquettes are called adjacent if they have a com

mon link. A chain is a finite sequence (Pl ..... Pn) of distinct 
plaquettes in IL d such that Pi and Pi + I are adjacent for each 
iE! 1 ... .• n l. A subset A of a plaquettes is connected if 
V( Pi' Pj)' Pi' pjEA. there is a chain of elements in A. having 
Pi' Pj as terminal plaquettes. 

Given VCLd we callsurJace for Va connected subset of 
plaquettes s.t . .JA = V. where 

.JA = {/CILd
: IXA(P)= 1 (mOd2)} 

p:::J1 
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with X A the characteristic function of A. 
Given a current configuration on L d , n, we denote by 

J (n #0) the set of plaquettes for which n( p) # 0; a cluster in n 
is a maximal connected component of J (n # 0); Vbelongs to a 
cluster in n if there is a cluster which contains a surface for V. 

Now we claim that the following relations hold: 

I' W(n)Llo)W(n/o) 
nl..io:(anl)A = 0 

(u r) ~ f = _n"-'''--''''(,-an...:.,),-''_~_0 ______ _ 

I W(n/O)W(n/o) 
nj.J":(anIY1. = 0 

n, "",(an,)" = 0 

(2.7) 

where~' means the sum on the configurations n)LI, n2L1 s.t. 
rbelongs to a cluster in mLl = n) LI + n2 LI (r contour in L d). 

On the other hand, for closed boundary conditions, 

I W(n)LI )W(n/) 
n j .1,,:(ondA = (2:1 

n2.d":(onz)A = 0 

The above sum ~. is taken over all the configurations 

(2.7') 

(n) LI ,n2 LI ) s. t. either r belongs to a cluster in mLl or there is 
r· eRA S.t. Fur· belongs to a cluster in mLl . 

Proof 
(crr)~ )2 

= (Z~ )-2 I W(n)Llo) I WIn/oj 
n].1":(an.)" = 0 n 2 d":(on11 A = 0 

where 

(m) = II (m( P)) . 
n pEL\" nIp) 

We observe that all configurations m = n) + n2 are s. t. r 
belongs to a cluster in m. In fact an easy inductive argument 
shows that there exists a path for r s. t. n) (p) # 0 for all the 
plaquettes of the path. Now we use the following lemma: 

Lemma: If 3 belongs to a cluster in m then 

(2.8) 

where 3 is a finite collection of contours in L d . In Ref. 9 is 
proven essentially the same lemma for the case of an Ising 
model by using graphical methods; we give an alternative 
proof of the lemma in Appendix A, which works also for the 
GUM. The lemma and the above remark conclude the proof 
for free boundary conditions; small modifications of the ar
gument give the result for closed boundary conditions. 

3. MAIN RESULT 

We associate to each plaquette p on lL d two natural 
numbers n)(p), n2(p). The configuration space is 
n = X dIN XN) wherest is the set ofplaquettes on Ld. 

pES 

Let ~ be the Borel u-algebra on n. We introduce in ~ the 
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probability measure v ("free measure") as the infinite volume 
limit of the measures 

I W(w) 
WEA 

V LI (A ) = --=-=~--

where 

w=(n),n2), W(w) = W(n))W(n2)' 

Given A e L d we consider the event M A 

MA = !wEil:(JndA = (Jn2)A = 01 
and the conditional probability 

vIA IMA ) PA (A), 

and we denote by pIA ) 

p(A) = vIA 1M) = lim vIA IMA ), 
A",Ld 

whereM=nA M A • 

(3.1) 

(3.2) 

We introduce also a different conditional probability: 

p~ (A )=vO(A IMA) = vIA IMA nH), 

where H is the "boundary condition" 

H = !wEil:n)(p) + nz(p) = 0 vpEst \Llol 

with Llo defined in the previous section. 
We define pO(A ) by 

pO(A ) = vOlA 1M) = lim vOlA 1M A)' 
A",Ld 

Now consider the event 

A r = ! wEil:r belongs to a cluster in n I + nzl; 

then relations (2.7) and (2.7') imply 

(3.3) 

(crr )C)2 =p(A r ), (3.4) 

(ur )0)2 = pO(Ar). (3.5) 

Our goal is to evaluate the difference 

(U
p

)c)2 _ (cr
p 

)0)2 

in terms of some "percolation probability." To this end we 
consider the family l' p of all finite connected subsets K e st 
such that a path for p belongs toK. For any Kest consider 
the event 

A: = (wEil:K is a cluster to which belongs pin 
n l + n21· 

We observe that A :nA:' = 0. 
Finally we denote by A ; the event 

A; = [wEil:p belongs to an infinite cluster in n) + n21· 

The above definitions imply 

p(Ap) = I p(A:) + pIA ;), (3.6) 
KETp 

pO(Ap) = I pO(A:) +pO(A;). (3.7) 
KETp 

Now we state the following 
Theorem: For the gauge invariant Ising model the fol-
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lowing inequality holds: 

(Up)c)2 _ (Up )0)2<,u(A ;). (3.8) 

Proof Call BK V KET p' the set of plaquettes pES" \K 
which are adjacent to plaquettes of K; we consider, for any 
fixed KET p' a d-dimensional cube A in such a way that 
Ao-::JKuBK. The theorem is proven iffor any KET p' 

~ ,u.1,(A:) <1 VA'-::JA. (3.9) 
,u~,(A :) 

We rewrite ~ as 

_ H ,u.1 (A :) 
~ -,u.1 ( ),u.1 (A:nH) 

(3.10) 

Now we consider 

I W(w) 
WE(fl",rH) 

,u.1 (H) = -----

If one uses the expression for Z ~o and Z ~o' it is easy to see 
that 

(Zo )2 
(H) - _.1_0

_ (311) ,u.1 - (ZC )2 . . 
.1" 

Consider now 

I W(w) 
WE(A :ruJ",) 

(3.12) 

I W(w) 
WE(A :ruJ ",rH ) 

Since all configurations wEA :r.f1.1' by maximality of the 
clusters, must assign n\(p) + n2(p) = 0 VpEBK we have 

I K' W(w) 
WE(fl.1 ,1f11I ) 

(3.13) 

I W(w) 
WE(fl.1 ,lf11IrHK') 

where K· = KuBK, 

H K
* = !wEfl.1,K:n\(p) + n2(p) =0, VpEBKJ. 

Now we denote by Z j~ (Z ~9) the partition functions in 
A' = Ao \K· with closed (free) boundary conditions on 
A \Ao and free b.c. on BK. Finally we have 

,u.1 (A :) = (Zj~f 

,u.1(A KnH) (Z~9f 
(3.14) 

(3.15) 

where G is the set of links which belongs to plaquettes of Ao 
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and plaquettes of A \Ao' Since A' CAo for G.K.S. (Ref. 10) 
inequalities, we have 

~<l. 

A by-product of the result of this section is the follow-
ing 

Proposition: There is no first-order phase transitions for 
the GUM if,u(A;) = O. 

4, CONCLUSION 

It is interesting to point out the relation between the 
results for GUM and analogous ones for the Ising model. 
This will show also the limitations of the inequality (3.8) as a 
possible criterion for phase transition in the GUM. 

For the Ising model we use the same notations as in the 
previous sections, but in this case one should read link for 
plaquette and site for link. Then we have the following rela
tions: 

(Ux )C)2 = ,utA ;0), 

(uXUy)C)2 - (uXuy)Of<,u(A ;;.), 

where A ;0 (A ;;.) is the event 

(4.1) 

(4.2) 

A ;O(A ;;.) = ! wEf1:x(xy) belongs to an infinite cluster in 
w J. 

Formula (4.1) is in accord with Ref. 7, in which the long 
range order is identified as a percolative phenomenon, and 
characterizes the phase transition. Formula (4.2) is the ana
log of(3.8) and it is interesting to analyze the content of this 
inequality for the two-dimensional case, where the phase 
space structure is well known (see Ref. 6). In this case the left 
side of(4.2) is zero for all temperatures T, while the right one 
is zero for 1> Tc , because 

,utA ;;.)<,u(A;o) 

and is greater than zero for T < Tc ' as shown by 

,u(A;o) =,u( u A;;'). 
y'lx-yl~1 

For the GUM it is possible to prove that,u(A;) = 0 for 
small f3 (see Appendix B), showing absence of phase transi
tion as an application of (3.8). On the other hand (3.8) holds 
only as inequality and it could happen, as in Ising model, 
that the left side is zero (as it is expected beyond the self-dual 
point) while the right hand stays greater than zero. Clearly 
the most favorable situation for the application of (3.8) 
would be the case where ,utA ;) would remain equal to zero 
up to the singular point, where the phase transition in this 
case would be characterized by the fact that the left and the 
right side become simultaneously different from zero. In or
der to clarify the situation it would be very useful to obtain 
bounds from below for the left side of (3.8). 
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APPENDIX A 

We now prove the lemma claimed in Sec. 2. 
For each fixed configuration n on S' and for any pla

quette Po let ii and no be two configurations such that 

ii + no = n, 

not Po) = n( Po), (A 1) 

ii(p) = n(p) VP=!=Po' 

It follows that for each A C lL d , 

(In)A = (In)A '-Pou(JnY'° = (Jii)A '-Pou(JnY'°. (A2) 

Hence, 

The obvious identity 

I ( m )- I (m) Vm=!=O (A4) 
K>O 2K + 1 K>O 2K 

allows us to modify (A3) suitably. If ii is such that the sum on 
no is a sum on odd (even) integers, we substitute for it the one 
on even (odd) integers; the above modification maps each 
configuration n in a configuration n' with the property 

I n'(p) = 1 (mode 2), V1CPo,/(t.E, 
p-::J/ 

I n'(p) = 1 (mode 2), V1CPo, ICE. 
p-::J/ 

Therefore, denoting E I = E11po (11 symmetric differ
ence of sets), we get 

I (;:')= I (~). 
no(an)A ~ E n'o(an')A ~ E' 

If there exists a cluster to which belongs a path for E in 
m we can iterate this argument for any plaquette of the path 
and obtain 
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APPENDIX B 

In order to provethat,u(A ;) = o for small,B, weconsid
er, for any circuit r which contains a fixed link, ' 0 , the event 
Ar (see Sec. 3). For each positive integer K let BK be the 
event 

BK = u A r , 
rA(T)~K 

where A (r) is the area of the minimal surface for r. 
The sequence [B K J is decreasing since a cluster for a 

given rsuch that A (r) = K is a cluster for somer' such that 
A (r') =K ' VK' <K. 

Since A ; C nK > 0 B K for a plaquette p such that 10Ep we 
have 

,utA ;)< lim I ,u(A r }· 
K~oo rA (T) ~ K 

Then, because (ur )C<a(,B)A (T) for,Bsmaller than a suit
able ,8 [see for example Ref. 11] with limp.....o a( ,B ) = 0, we 
obtain the result, for,B sufficiently small, from the inequality 

,utA ;}< lim (2(d - 1) - I)K a(,B}K, 
K~oo 

where (2(d - 1) - I)K is a bound on the number of circuits r 
such that A (r) = K, which contains a fixed link. 
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We establish a connection between recent propositions for minimization of Higgs potentials in an 
orbit space and related treatments in the Landau theory of phase transitions. Starting from 
isotropy groups we give a simple and systematic procedure for determining a stratification in an 
orbit space. As an illustration we treat the point groups Oh and Td which occur in the Higgs 
mechanism for S07 and SU4 adjoint representations. 

PACS numbers: 05.70.Fh, 02.20. + b, 11.30.Qc 

In the Landau theory of phase transitions one is faced 
with the problem of minimizing an R-invariant, at least 
quartic, potential V(tP). R is usually a finite matrix group 
R < O(n) which is a representation of a crystallographic 
(magnetic) space group. We will assume, without a loss of 
generality, that this is the case in what follows. Furthermore, 
even when V(tP) is a Higgs potential and the symmetry group 
is continuous, compact, it is often the case that the group 
relevant for spontaneous symmetry breaking is a finite 
group. I 

When the field tP E Rn has a large number of compon
ents n, an explicit minimization becomes a difficult problem. 
Faced with such difficulties Gufan suggested, some ten years 
ago,2 that V(tP) should be considered a function of an integri
ty basis e = e (tP), e E Rm

, for the ring of invariant polyno
mials on Rn

, 

V(tP) = V"(()) . (1 ) 

Since e (tP) depends only on the group and not on V he real
ized that, regardless of the details of V, some components of 
the equations for extrema, 

(2) 

will be identically satisfied at appropriate symmetry (hyper) 
planes.3 In the above equation a denotes differentiation in Rn 

with respect to tP, whereas {j denotes differentiation in Rm 

with respect to e. 
It was realized later that V"(()) could actually be mini

mized in orbit space, provided that the constraints determin
ing the domain of e, which we denote e (Rn)<Rm, are taken 
into account. This idea was explicitly used to prove that no 
minima will be found on the generic stratum whenever at 
least one component of {jv*(e) is identically constant (a star 
indicates that constraints are included via Lagrange multi
pliers).4 In fact, an observation that a vector {j Vis zero if and 
only if its norm is zero transfers Eq. (2) entirely to orbit 
space, 

(3) 

In Eq. (3) a tilde denotes transpo~tion and, u~il}$ R-invar
ianceofthenorm, we introducedP (e ) = ae ae. p(e) is a lin
ear, symmetric operator (a matrix) on R m [by an analytical 
continuation from e (Rn)] . 

.1 Current address: Physics Department, Montana State University, Boze
man, Montana 59717. 

F(e) is precisely the matrix introduced by Abud and 
Sartori.5 Their observations follow from Eq. (3) and the fact 
that a V is tangential to a stratum.6 We only recall that {j V 
must belong to the null space ofF (e) and connected parts of 
an i-dimensional stratum (i.e., a stratum with an i-dimen
sional invariant slice) are entirely contained in connected 
parts of the following analytical stratification of Rm: 

(4) 

We would like to add that Eq. (4) may be written in a more 
explicit form 

SPaF(e){:Oo: .. a<i, (5) 
a>i, 

where SPa (spur) ofamatrix is the sum of its principal minors 
of order a. In particular, SplP = tr P and SpmP = det P. 
When considering Eq. (4) on Rn the second condition is triv
ially satisfied whereas the first condition gives exactly the 
same stratification as does the action of R. However, if we 
are looking for a stratification by R in Rm then Eq. (4) gives 
proper stratification on e (Rn) but it also gives in general 
some extra pieces in Rm. We will show later in the text that 
such extra pieces can easily be distinguished from e (Rn). 

Although a minimization of Vis equivalent to a minimi
zation of V with the constraints Eq. (5) i~cluded, the idea is 
not always practical. Namely, when R admits a large integri
ty basis we will be replacing a system of nonlinear (cubic) 
equations in tP by a system of nonlinear equations of much 
higher degree in e.7 Even when a solution is found in Rm it 
remains unanswered in the above method what are the corre
sponding solutions in Rn and what are their isotropy groups. 

It was also emphasized in Ref. 2 that the broken sym
metry is determined by cosines of angles oftP, ¢ - tP/lltPll, 
independently of IltPll which is O(n) invariant. A similar idea 
was pursued by Kim8 who worked on the Higgs problem, 
but whose results are equally applicable to the Landau the
ory. The greatest merit of this approach is its geometrical 
appeal. Nevertheless, when R admits more than four inde
pendent cubic and quartic invariants a reliance on geometri
cal intuition becomes questionable. Furthermore, this meth
od does not offer a general procedure for non parametric 
determination of the domain of "orbit parameters" which it 
introduces. In this respect there is, however, a trivial connec
tion between Refs. 5 and 8. Orbit parameters are actually 
components of the integrity basis, evaluated at the unit 
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sphere 110-lltP112 = 1. Their domain is found from e (Rn) by 
taking a section 110 = 1. 

We have developed elsewhere9 a simple and systematic 
method for minimizing Landau-Higgs potentials on Rn. The 
method is algebraic and derives from the fact that an action 
of R is linear on Rn. In such a case the method utilizes all the 
symmetry contained in Eq. (2) and often provides explicit 
solutions in Rn. However, if one is interested in general re
sults or in the stability of the solutions found, the methods of 
Refs. 5 and 8 are a useful complement. Therefore, we give 
here a direct and simple procedure for determining e (Rn) 
and, consequently, the domain of orbit parameters. By using 
the same projection technique as in Ref. 9 we will also estab
lish a connection between the three methods. 

Let us assume that the isotropy (little) groups of Rare 
known. They may be determined using the chain criterion 10 

(for countable and, in particular, for space groupsll or 
branching rules and some ingenuity 12.13 (for continuous 
compact groups). In the latter case the chain criterion is a 
(selective) necessary condition for a group to be an isotropy 
group. For each isotropy group L we will define a subspace 
Fix L of R whose every vector is invariant under L (L is the 
centralizer of Fix L, and Fix L is identical to an invariant 
slice). Since the action of R is linear Fix L is a linear sub
space. We will emphasize this by calling Fix Lan ilL )-dimen
sional symmetry plane in Rn [ilL ), equal to the number of 
linearly independent invariant vectors/singlets of Lin R, is 
called the subduction frequency]. The linear equation of 
FixL, 

[1 - P(L)] . tP = 0, (6) 

is easily obtained by using a projector 

1 
P(L)=ILT ~r, (7) 

where (l/IL 1)~rEL is an average over the little groupL, IL I is 
the order of L, and r is an element (a matrix) from L<,R. The 
last equation is readily generalizable to a compact group L, 

P(L) = _1_ ( df-l (r)r, 
fl(L)1 

(7') 

where fl (L ) = S L df-l (r) is the group volume, S L df-l (r) is a 
group integral on L with appropriate measure df-l (r).14 

Following Eq. (6) we obtain an equation for the whole 
family of hyperplanes Fix L associated with a conjugacy 

TABLE I. F[L; OJ for Oh (S07 adjoint). 

[L] F[L;O] 

[Oh]' [S07] 00 

[e.oJ, [SO, x VI] ~(O~ - ( 2 ) 

class [L] of isotropy subgroups in R: 

F[L; tP]= II II[l-P(L)]. tPI12 = O. (8) 
£e[L] 

In deriving Eq. (8) we used the fact that a vector Eq. (6) is zero 
if and only if its norm is zero and the fact that a product is 
zero if and only if one of its factors is zero. We note that the 
order of a class [L ] is equal to the order of an orbit [R:N (L )] of 
N (L ) inR, N (L ) being thenormalizerofL inR. A geometrical 
reason for this is that a plane Fix L is left invariant by N (L ). 
This relationship may be used to rewrite a product over [L ] 
in Eq. (8) as a product over the orbit r E [R:N (L )] provided tP 
is replaced by r· tP [r may be considered a coset representa
tive in a coset decomposition of R with respect to N (L )]. 
Furthermore, by exponentiating, we change a product into a 
sum so that F [L; tP] reads 

F [L; tP] = exp { I In II [1 - P(L)]r. tPI12}. (9) 
1"E[R:N(LI] 

The sum in Eq. (9) may be replaced by a sum over the whole 
group with a factor IN (L ) 1- I. Such a form of F [L; tP] is, at 
least formally, generalizable to the case of a compact group 

F [L' .,.] - exp { fl (R ) 
,'f/ - fl(N(L)) 

X L df-l (r) In II [1 - P(L)] . r· tPII2}. (8') 

Results of Ref. 5 suggest that even in the case of a compact 
group, an equation F[L; tP] = 0 should be equivalent to a 
polynomial equation in tP. 

Using F[L; tP] we can specify in Rn a stratum ~[L; tP] 
associated with a class [L], 

I [L; tP] = ! tP E R", F [L; tP] = 0, 

V[L']>[L],F[L';tP]>Oj, (10) 

which is a semialgebraic manifold in Rn. In Eq. (10) the con
dition V[L '] > [L], (i.e., "for every [L '] greater than [L]") is 
satisfied generally whenever it is already satisfied for the 
"immediately" greater [L ,],s, i.e., for such [L '] that there is 
no [L "], [L '] > [L "] > [L ] (partial order among [L]'s is de
fined on the basis of a subgroup-supergroup order among 
L's). 

Our goal is to determine images of Eqs. (8) and (10) in 
Rm. From the construction it is clear that F[L; tP] is an R-

[e,oJ, [SO,xSV,x VI] 
[e 3v ]' [SV3 XVIJ 

Hf(190~ - 450~01 + 600~O, - 690~Oi + 4800 0,02 + 0i - 60~) 
(ij)2( _ 70~ + 260~01 - 160002 + Oi) 

[e,], [SV,x VI x VI] 

[ e; 1 ,[SO, X VI x VI] 

[el]' [VI x VI x VI] 

m7~( - o~ + 90~O, - 80~02 - 21O~Oi + 36000,02 + 30i - 180;) 

MO~ - 30001 + 2(2 ) 

o 
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TABLE II. Strata l (L; 0] for 0. (S07 adjoint)." 

(L] 

[Oh]' [S07] 
[C .,,), [S05 X V,] 
[C z"), [SO,XSVzX V,] 
[C ,,,), [SV, X V,] 

I(L;O] 

00 = 0, 0, = 0, O2 = 0 
80 >0,8, = 8~, 82 = 8~ 
80 >0,8, =!8~,82=i8~ 
80 >0,8, = !8~, 8z = ~8~ 

(C,], [SVzX V, X VJ 

[C;), [SO,X V, X V,] 

[C,l, [V, X V, X V,l 

80 >0, 8,>!8~, 82>!( - 8~ + 3808,), O2 = 8,± 
00 >0, O~ >8, >!8~, 82 =!( - O~ + 3808,) 
80 > 0, 0 ~ > 8, > !8 ~, 82 > !( - 8 ~ + 3808 d, 8 2- < 8z < 8 t 

invariant polynomial of degree 21R I/IN(L )1. Therefore, 
F[L; ¢] may be written asa polynomialin o which isautoma
tically continued from e (Rn) to Rm, 

F[L; 0] = F[L; ¢] . (11) 

F[L; 0] is most easily found by writing it as a polynomial in 0 
of degree 21R 1.( IN (L ) I in ¢. Arbitrary coefficients of the 
monomials in F [L; 0] are determined from linear equations 
obtained by choosing a sufficient number of different (gen
eric) values of ¢ in Eq. (11) (they should not lie on the same or 
conjugated axes). 

A substitution ofEq. (11) into Eq. (10) does not give only 
the image of}:[L; ¢] in Rm. Although it gives a correct image 
in e (Rn

), it may also give some extra pieces elsewhere in R"'. 
This is well illustrated by F[L; 0 ];;;.0 being trivially satisfied 
on e (Rn) but which may also be satisfied elsewhere in Rm 

[something similar was already encountered with positivity 
of the matrix P (0 )]. In order to eliminate as many such spur
ious pieces as possible we observe that F[L; 0] = 0 implies 
that on e (Rn) for every [L "] < [L], F[L "; 0] = O. If we ex
tend this to the whole Rm we obtain 

! [L; 0 1 = I OE Rm
, V[L "l.;;;[L], F [L "; 0 1 

=0, V[L'H[L ],F(L'; e] >0). (12) 

This stratification gives often the image of Eq. (10) without 
spurious parts. A difficulty with spurious pieces occurs in 
some cases when the ring of invariant polynomials is nonre
gular, i.e., there are algebraic relations among elements of 
the integrity basis. Such relations should be added to Eg. 
(12). Furthermore, iftherearespurious pieces ~[L, ()] will be 
often given as an intersection of Eg. (12) and e (Rn), e (Rn) 
being determined in the following fashion. We choose any 
generic point r/J* E Rn and calculate its image () * = e (r/J*). 
e (Rn) is then a connected part of the generic stratum, cf. Eq. 
(12), which contains e *, plus its boundary in the union (over 
[L]) of the varieties given by Eg. (12). Taking the above into 
account we write 

e (Rn) = u ! [L; e] . 
ILl 

(13) 

Further useful information for eliminating spurious pieces in 
the stratification Eg. (12) is that for every component e a of e 
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whose degree in ¢ is d", there are two numbers rna and Ma 
h h () d,/2 () M () d,/2 e (Rn) suc t at rna a .;;; a';;; a 0 on . 

Once the stratification, Eqs. (12) and ( 13), is determined 
the domain of orbit parameters is easily found by setting 
eo = 1 and making appropriate projections, as described ear
lier. 

As an explicit example we consider the cubic group Oh 
which is relevant to the study of ferroelectric phase transi
tions in perovskites. The same group occurs in the study of 
the Higgs problem for the S07 adjoint representation.9 Its 

3.0 

2.0 

1.0 

a) 

a 
o 

0.0 L--_'--__ ---'-___ --'-___ -L._-"" 

(0) -1.0 0.0 1.0 2,0 

8[ 

b) 

1.0 

0.0 

(b) 0.0 1.0 

FIG. I. Orbit Space for 0. (S07 adjoint), cf. Table II: (a) sections 00 = const; 
(b) projective orbit space. 

Marko V. Jaric 919 



                                                                                                                                    

TABLE III. F[L; 8] for Td (SV. adjoint). 

[L] 

[Td ], [SV.] 
[C'v], [SV,XSV,X V,] 
[C'v], [SV,X V,] 

F[L;8] 

80 

H 8 ~ - 80 B, - 2B iJ 
M B6 + 2BoB2 - 48BoB; + Bn 

[C,], [SV,XV,XV,] 
[C,], [V,xV,xV,] 

m8
[ - Bg + 4B6B, + 20B~B; - 5B~B~ - 36BoB;B, - 108B; + 2Bi 1 

° 

isotropy groups and the integrity basis are ls 

[Oh)' [C4V ]' [C3v ]' [C2u ), [Cs], [C;],and 
3 

f)a= I t/?;a+2, a=0,1,2. 
i= I 

(14) 

Let us construct F [C4V ; f) ]. Choosing a fourfold rota
tion axis along tP3 direction we find, cf. Eq. (7), 

P(C"i ~ [~ ~ ~] (15) 

Similar expressions for the three other axis lead, via Eq. (8), 
to 

F[C4v ;tP) =(t/1 +~)(~ +~)(~ +t/1). (16) 

Since F [ C4v ;",tP] is of 6th degree and Oh invariant it may be 
expressed as F [C4v ; f) ] = af) 6 + Mof)1 + ef)2' Coefficients 
a, b, and e are evaluated from a system of linear equations 
~btained by substituting three independent values of tP in 
F [ C4u ; f) ] = F [ C4v ; tP] . This leads to a = - e = j , b = 0, 
and 

(17) 

The results for other isotropy groups are collected in Table I. 
Using these results and Eq. (12) we find the strata which are 
listed in Table III6 (no spurious pieces occur). The corre
sponding orbit space is shown in Fig. 1. A projection on the 
f)1/f) ~ axis gives an "orbit space" for quartic potentials 
which clearly illustrates why a symmetry breaking may lead 
in this case only to isotropy groups C4v (SOs X UI ) or 
C3v (SU3 X UI ) but not, e.g., to C2u(S03XSUZX UI ). 

The above results lead also to the results for the tetrahe
dral group Td , Tables III, IV, and Fig. 2 (the integrity basis is 

TABLE IV. Strata ilL; B] for Td (SV. adjoint)." 

[L) 

[Td ), [SV.) 
[C'v)' [SV,XSV,x V,) 
[C'v)' [SV3X V,] 

i[L;B] 

Bo = 0, B, = 0, B, = ° 
Bo>O, B, = 0, B2 = B~ 
Bo> 0,8, = (!80 )312, B, = !B ~ 

f)o = "Lt/?;, f)1 = tPltPZtP3 and f)z = "LtPi). The same group oc
curs in the Higgs problem for the SU4 adjoint representation 
for which the orbit space was previously determined in a 
heuristic fashion. 8 

In conclusion, we make several remarks. 
The strata should be described by homogeneous poly

nomials in tP, which is the case in the present method. It is 
not apparent that this is the case in Ref. 5. However, for 
f)o> OthematrixP(f)) may be multiplied on the right and left 
by the diagonal matrix 
diag [f) o~ 112, f) g ~ d,)12, f) g ~ d,)/2,. .. ]. Since this matrix is 
positive definite the multiplication does not change the rank 
and positivity conditions (except rank P = 0) but replaces 

P(f)) by a "dimensionless'~matrix P(A), Aa _ f)a/f)~al2. 
Th~.refore, we suggestthat P (f) ) be !.,eplaced in Eqs. (4) and (5) 
by P (A ) and f)o > 0 except for rank P = 0 ~ f) = O. Note that 
A's are the "orbit parameters".8 

Comparison of the conditions Eqs. (5) and (10) is some
what simplified when R is a group generated by reflections. 
Then m = nand SPnP = (det Jf))2 which is proportional to 
the square of a product of linear forms of the reflection hy
perplanes in R.17 Therefore, SpnP is proportional to 
II F [ Cs ; tP] where the product is over all classes of isotropy 
groups [Cs ] c~nsisting of the identity and a reflection. Con
sequently, SpnP = 0 gives a boundary of the generic stratum 
Wlus some extras outside f) (Rn)] just as a union of 
F [ Cs ; f)] = 0 does. Otherwise, there is no obvious connec
tion between Eqs. (5) and (10). 
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FIG. 2. Orbit space for Td (SU. adjoint), cf. Table IV: (a) sections 
80 = const; (b) projective orbit space. 
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Two-point functions associated with the Federbush, massless Thirring, and continuum Ising 
models and their boson analogs are studied. In the Thirring case it is shown that the fields do not 
define operator-valued distributions, while temperedness of the two-point Wightman function is 
proved in the Ising case and in the Federbush case for a certain range of coupling constants. By 
relating the short-distance singularity of the Schwinger functions to the high-energy behavior of 
the spectral measures it is shown the fields cannot be made to satisfy the CCR/CAR by a 
rescaling. In the fermionic Federbush case this breakdown of the CAR occurs in spite of the fact 
that the fields correspond to a local Lagrangian. 

PACS numbers: lUO.Cd 

I. INTRODUCTION 

This paper is a continuation of previous work of the 
author on the Federbush, massless Thirring, and continuum 
Ising models and their boson analogs. In Ref. 1 we showed 
that the quantum fields of these models are normal ordered 
quadratic forms that are closely related or equal to the forms 
implementing improper Bogoliubov transformations gener
ated by local and covariant classical field operators. We also 
studied the equations of motion and various other aspects, 
and discussed relations with work of other authors. In Ref. 2 
we considered the scattering theory of these models at the 
classical and at the unphysical and physical quantum levels. 
The present work, some of whose results were announced in 
Ref. 1, deals with two-point Schwinger and Wightman func
tions arising in these models. The main issue we consider is 
whetherthefunctionalfdx F( x)¢J (x)Il[wherellisthevacu
urn, ¢J ( x) the quantum field, and F a test function in the 
Schwartz space S (JR2)] corresponds to a vector in Fock space. 
In the case of the Federbush and Ising models and their 
boson analogs (studied in Secs. II and IV resp.) this is obvious 
if the Fourier transform F has compact support, but in the 
case of the Thirring model and its boson analog (Sec. III) we 
prove that for any FE S (JR2) the functional is either zero or 
does not correspond to a vector in Fock space. In the former 
case the main problem is therefore to establish whether the 
corresponding two-point Wightman distribution in Yi'(JR4

) 

extends to a tempered distribution. Settling this question is a 
first step towards verification of the Wightman axioms3 for 
these models. 

As will be seen, the usual covariance and spectral prop
erties are obvious, so that temperedness of the two-point 
Wightman function is equivalent to a polynomial short-dis
tance singularity for the two-point Schwinger function. This 
follows from the theory of Laplace transforms,3 but in the 
case at hand this can also be seen in a direct and illuminating 
way (cf. below). Thus, a large part of the work in Secs. II and 
IV is concerned with finding the dominant short-distance 
singularity of the various Schwinger functions. (For the fer
mionic Ising model of Sec. IV A we refer to the work of 

a) Work supported in part by NSF Grant PHY 78 23952. 
b) Present address: Department of Mathematics, Tiibingen University, 7400 
Tiibingen 1, West Germany. 

McCoy et a1. 4
) A very useful tool in this study is a transfor

mation to center of mass variables [cf. (2.22) and its general
ization (2.54)], which is also tailor-made to study the mea
sures in the Kallen-Lehmann representations of the various 
two-point functions. [We found a similar transformation 
some time ago in a rather different context (cf. Ref. 5, pp. 
418-9), but the advantage of the present transformation is 
that its Jacobian equals one.] By relating the short-distance 
singularity of the Schwinger function to the high-energy be
havior of the spectral measure [through formulas like (2.37) 
below], we study existence of time-zero restrictions, and we 
find that for all interacting fields below the integral fdp(m) 
diverges, implying that none of these fields can be made to 
satisfy canonical (anti-) commutation relations by a rescal
ing. In the case of the fermionic Federbush model this holds 
true, although the fields are derived from a local Lagrangian. 
To our knowledge this is the first explicit example of a break
down of the CAR for a Lagrangian field theory describing 
massive particles. Also, it follows that the field strength re
normalization constant Z -(fdp(m)]-I vanishes, which in
dicates nonexistence of time-zero fields according to conven
tional wisdom. However, Challifour6 has shown that (an 
infinite resummation of) the time-zero field considered in 
Sec. IIA exists in the usual axiomatic sense if the coupling 
constant is small enough. Thus, this constitutes a counterex
ample to this lore (provided the resummation involved does 
not change the fields). 

Since we consider here the action of the fields on the 
vacuum, only the pure creation part of the fields is needed. 
Therefore, we refrain from giving complete definitions of the 
fields below, and refer instead to Ref. 1, where more refer
ences and background information can also be found. The 
fields of Secs. II and III act on a Fock space 
.'7,(cW"1 ffi cW" _I)' where E = a (s) stands for antisymmetric 
(symmetric) in the fermion (boson) case and where %", and 
jY'_1 are copies ofa spacecW"=L 2(JR,d8 )2. Thus we can write 
,jY' = ,,W' + ffi jY' _, where dY' + and jY' _ are copies of 
L 2(JR,d8 ). The spaces dY' + and ,:W? _ are physically interpret
ed as state spaces of one-dimensional relativistic particles of 
positive and negative charge resp., described by rapidity wa
vefunctions, while the spaces ,jY'l and ,,W' _I correspond to 
particles of both charges but of different species ("species" 
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meaning left- or right-moving in the Thirring case). In Sec. 
IV the relevant Fock spaces are Y E (K +), € = a,s, corre
sponding to neutral particles of only one species. Through
out the paper the notation Kc*c* is used as shorthand for the 
Wick monomial fdB 1dB2 K (B 1,B2 )c*(BI)c*(B2 ). 

II. THE FEDERBUSH CASE 
A. Fields on Y a (~ 

We define for any AER 

¢ ~ ( x)fl _exp(K rxcrc~ I )fl, 

where 

(2.1) 

K~,X(BI,B2)=exp(ix.[p(Btl +p(B2)]Kf(BI - ( 2). (2.2) 

Here 

x=(t,x I), 

p(B )=(coshfJ,sinhfJ), 

the dot denotes the Lorentz inner product, and 

K F(B )= . sin1TA _AtI hlB ..\ -I e· sec 2 . 
217' 

(2.3) 

(2.4) 

(2.5) 

Theorem 2A.I: For any AER and t> 0 the Schwinger 
function 

S f(t )=II¢ fWt,0)flI1 2 

is finite-valued and satisfies 

Sf(t)=det[l +A~(t)*AI(t)], 

(2.6) 

(2.7) 

where A F(t) is the integral operator on L 2(R) with kernel 

F sin1TA 
A A (t,B\>(J2) = --

217' 

X exp [ - ~t (cosh(J I + cosh(J2) + A ((J I - ( 2 )] 

X sech[~((J1 - (J2)]' 

For any AE( - !,~) there is an NA > 0 so that 

limt N'SI(t) = O. 
,--0 

Furthermore, for any AER, 

Sf(t) = 1 + O(e- 2'), t_oo, 

and, for any AE[ - l,l], 

lim In[SI(t)] = U 2. 
hO In(l/t) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Finally, for any AER, Sf (t ) admits a Kiillen-Lehmann 
representation 

(2.12) 

where Ko is the modified Bessel function 

Ko(t)=i
oo 

dBexp[ -tcosh(J], t>O. (2.13) 

Here, the measure satisfies for any AE[ - l,l] 

i"" dpf(m) {< 00, 'v'y> U 2; (2.14) 
2 mY = 00, 'v'y<U. 

Theorem 2A.2: For any AE( - ~,~) the Wightman 
function 
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(2.15) 

extends to a tempered distribution. For any AE[ - i,i] its 
time-zero restriction exists and defines a tempered 
distribution. 

Conjecture 2A.3: The relations (2.11) and (2.14) hold for 
anYAE[ - !,!]. For any noninteger A with 1..1, 1 > ! the 
Schwinger function increases faster than t - N for any N> 0 
as t-o; equivalently, the Wightman function (2.15) does not 
extend to a tempered distribution. 

Proof of Theorem 2A.1: A calculation shows that 

SIlt) = nto ~! J d(JI···d(J2" 1;n( -)" 
" 

X II A I (t,(JO(Ji +n)A ~ (t,(Jo(J a(l]+ n ), (2.16) 
i=1 

where S" is the symmetric group. Since A I (t ) is clearly Hil
bert-Schmidt for any t> 0 and AER, convergence of the se
ries and (2.7) follow from Sec. 3 of Ref. 7. The bound (2.10) 
follows from the estimates 

det(1 + T)<exp(IITII I ), ]'>0, (2.17) 

and 

(2.18) 

whose proof is obvious. The assertion (2.9) is a consequence 
of(2.17) and the fact that the Ihsof(2.18) is bounded above by 
CA In( l/t) for 1..1, 1 <~, as is readily verified. 

To prove (2.11), we recall the well-known fact that 

In det(l + T) = - ! (- t TrT", (2.19) 
n ~ I n 

provided the rhs converges. To apply this to the case at hand, 
we shall first derive an upper bound to the function 

a~,A(t)=Tr[A ~(t)*A I(t)]" 

= (sin1TA )2" J d 6 exp( - t j~1 COShBj ) 

X IT h..\((J2i_1 - B2i)hA(B2i+ I - B2i ), (2.20) 
;= 1 

where (J2n + I =(JI and 

hAlO )=(l/21T)e"tI sechW (2.21) 

To this end, we introduce a transformation to center of mass 
variables, 

Yj = (Jj+ I - OJ, j = 1, ... ,k - 1, 

where Mk is the invariant mass, 

[ 

k ] 112 Md6)=I cosh((Ji - (Jj) . 
IJ~ I 

(2.22) 

(2.23) 

It is readily verified the Jacobian of this transformation is 1. 
Hence, setting 

Mk ( y)-Mk (9(yo,y)) 

= [k + 2 i~~~ COShC~t /1) r2
, YER

k-I
,(2.24) 

I>J 

and using (2.13), it follows that 
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a~." (t ) = 2(siD1TA )2n f dy Ko(tM2n ( y)) 

n-I 

X II h,,(-Y2;_dh,,(Y2i)h,,(-Y2n-l) 
;=1 

( 

2n-1 ) 

Xh" - .L Yj . 
J= 1 

Since 

Md y»k, V YERk 
- I, 

we now get the upper bound 

a~." (t ) <2(sin1TA f nl n."Ko(2nt), 

where In." is the cycle integral 

In." == f dtPI· .. dtP2n - 1 h" ( - tPd 

n-I 

(2.25) 

(2.26) 

(2.27) 

X II h;. (tPu - tP2i - 1 )h" (tPu - tP2i + 1 )h" ( - tP2N - I)' 
;= 1 

obtained from (2.25) by the transformation 
k 

tPk = L Yo k = 1, ... ,2n - I, 
;= 1 

(2.28) 

(2.29) 

which renders its convolution structure more transparent. 
Setting 

h;.(x)= f dBexp(iBx)h;.(B), IA I <~, (2.30) 

one verifies by a contour integration that 

h;.(x)=sech[1T(x-iA)], 1..11<~, (2.31) 

so that 

In." = 2~ f dx[h;.(x)h,,( -xl]" 

= 1T- 22n 
- 1 LX> dx (coshx + cos21T..1 ) - n, IA I <~. 

(2.32) 

As a result, the terms of the series l:(lIn)( - sin21TA )nln." 
diverge for n-oo if 1..1 I>.!, so that the series diverges for 
1..1 I > .!. However, using the relation 

00 1 
In(l - x) = - L _xn, Ixl < 1, (2.33) 

n = 1 n 

one infers that the series converges absolutely for IA I <.! and 
that 

- f ~ ( - sin21T..1 )nln." 
n = 1 n 

1 foo 
= 2rJo dxln[(coshx+ 1)(coshx+cos21TA)-I] 

= A 2, 1..1 I <!. (2.34) 

(Here we used the integral 

loo dx In [(coshx + cosa)(coshx + cos/3 )-1] 

i
f3 

loo 1 = dtP sintP dx -----
a 0 coshx + costP 

=Wj2 - a2), lal,I.BI<1T, (2.35) 
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where the last step can be verified by contour integration.) 
As a consequence we may write 

00 1 
1n[Sf(t)] = - L _(_)na~.,,(t), 

n= 1 n 

(2.36) 

We finally note that the function Ko(mt )/In( lit ) is bounded 
for t > 0 and m;;.2 and has limit 1 for t-0 and any m;;'2. The 
relation (2.11) therefore follows from (2.25), (2.34), and (2.36) 
by virtue of dominated convergence. 

To prove the remaining claims, we first note that (2.12) 
can be obtained from (2.16) by making the change of varia
bles (2.22) in each term of the series; each term contributes a 
measure dF2n (m), where F2n (m) is the result of omitting the 
yo-dependent exponential factor and then integrating the in
ternal variables over the region M2n ( y)<m in H2n 

- 1 [note 
that F2n (m) = 0 for m<2n]. Using (2.12), we can now con
nect the short-distance singularity of the Schwinger function 
and the high-energy behavior of the spectral measure by ob
serving that we may write 

foo dt t .5[S f(t) _ 1] = foo dpf(m) foo dx xliKO( x). 
Jo J2 mli + 1 Jo 

(2.37) 

Assuming from now on that IA I <.!' it follows from (2.11) that 
the integral at the lhs converges/diverges for ~ greater/ 
smaller than 2A 2 - I. Since the second factor on the rhs is 
finite for ~ > - 1, (2.14) results.o 

Proof of Theorem 2A.2: The first statement follows 
from (2.9) and general results on Laplace transforms/ but it 
is more illuminating to observe that for IA I < ~ one has 

Wf(F, F) - IF(OW 

n~l(n!)-2f dB 1• .. dB2n IF(~t(Bj))1;n( -)" 

X itlKf(Bi - Bojil+nf 

<IIFII~ n~1 ~! f dOI ... d02n(~ICOShBj) -a1;n( - t 

X IT Kf (Oi - 0i+n)KfW - Oojil+n) 
i= I 

= IIF II~r(a)-lloo dt t a-I [Sf(t) - 1). (2.38) 

Here, 11·lla is a Schwartz norm, and the last step follows from 
(2.16). In view of (2.9) and (2.10) the integral on the rhs con
verges for 1..1 I <!, provided a > N;.. This clearly implies the 
assertion. 

Finally, we note that 

Wf((o,J),(O,f)) - Ij(OW 

(2.39) 

wherejis the Fourier transform offE S (R). By virtue of(2.19) 
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the first factor is finite for IA I<!, so that the remaining state
ment follows. 0 

B. Fields on .'Y.(£'1 ®£' -1) 

We define for any AER 

( 
m(l) )

1125 ° "'A. dx)n = 41T dO CI. -I (0) 

X e~~; on )eim(lI
x

.p(Il)¢ I(m( - l).x)n. (2.40) 

Here, ¢ ~ n is given by (2.1) with c ~ replaced by c 0_ 1.15. and 
the masses m(s) of the two different species s = ± I are 
strictly positive. 

Theorem 2B.1: For any AER and t> 0 the Schwinger 
function 

YL (t )= II "'A. I ( + it, o)n I( (2.41) 

is finite-valued and satisfies 

YI. I (t) = m(I)So(m(l)t ISI!m( - I)t). (2.42) 

Here, S ~ is given by (2.7) and So is the Schwinger function of 
the free Dirac field of mass I, 

1 5 (ell e-- Ill ). So(t )= - dO exp( - tcoshO) (2.43) 
41T - I 

For any AE( - ~, ~) there is an N A > 0 such that 

limt N '-YI I (t ) = O. 
t~ • 

(2.44) 

Furthermore, for any AER, 

YI. I (t) = m(llSo(m(l)t 1+ 0 (exp( - [m(l) + 2m( - I)]t )1, 

and, for any AE[ - !, !], 

limln[YI,tlt)] =(I+U
Z 

t~ In(1!t) U 2 

(2.45) 

(2.46) 

Finally, for any AER, YL (t) has a spectral representation 

yF _ m(I) (KI(m(I)t) -Ko(m(l)t)) 
A.I (t) - 21T _ Ko(m(l)t) KI(m(l)t) 

+ J<ro m dp; A I (m)(KI(mt) 0) 
m(l) + Zm(- I) • • 0 KI(mt) 

F (0 Ko(mt)) 
-dp2.A.I(m) Ko(mt) 0 ' (2.47) 

where 

KI(t)== -K~(t) = L<ro dOcoshOexp( - tcosh8), t>O. 

(2.48) 

Here, the measures are positive and satisfy the inequalities 

and 

Moreover, for AE[ - a, a] andj = 1,2, 

f<ro dprA.I (m) { < 00, 

m(I)+Zm(-I) m r =00, 

Vy>U 2
, 

Vy<U 2
• 
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(2.49) 

(2.50) 

(2.51) 

Theorem 2B.2: For any AE( - !,!) the Wightman 
function 

?rL (F,F)==II"'A.I (F)n liz, FEe 0'(R2)Z, (2.52) 

extends to a tempered distribution. For any AE[ - a,.il its off
diagonal elements have a tempered time-zero restriction. Its 
diagonal elements do not admit a time-zero restriction for 
any noninteger AER. 

Remark 2B.3: As we have shown in Ref. I, the fields 
"'A. I and "'A. -I fail to satisfy the Federbush equation ofmo
tion, but are presumably local in the usual axiomatic sense 
for IA I<!. By omitting the kernel ~() in ¢ I one obtains fields 
that solve it, but these fields are most likely nonlocal. The 
results of Sec. IIA and lIB can be easily extended to this case, 
and lead to similar qualitative properties. We leave the de
tails to the interested reader. 

Proof of Theorem 2B.1: The only assertions that do not 
immediately follow from Theorem 2A.I concern the spec
tral representation and the measures occurring in it. To 
prove that they hold true, we note first that we may write 
YL(t) as 

- 1) 
e±()' 

xexp( - t [m(l) cosh 0 1 + m( - 1) ~~21 cosh OJ]) 

(2.53) 

Next, we introduce a generalization of the transformation 
(2.22) to the case where the masses m i corresponding to the 
rapidities 0i are not necessarily equal to 1: 

Yj = OJ + I - OJ, j = I, ... ,k - 1, 

where 

[ 
k ]1/2 

Mdm,O)= i.f;, I m i mj cosh (Oi - OJ) . 

(2.54) 

(2.55) 

Since the Jacobian is still equal to I, the representation (2.47) 
now follows as in the proof of Theorem 2A.I, 
M zn + I ((m( I ),m( - 1), ... ,m( - 1 )),O( Yo,y)) playing the role 
ofMzn ( Yl. The inequalities (2.49) and (2.50) are easily seen to 
hold after one substitutes center of mass variables in (2.53)+ 
and (2.53)_, resp. Finally, (2.51) results from (2.46) by virtue 
of a formula analogous to (2.37).0 

Proof of Theorem 2B.2: The first claim follows from the 
relation 

m(I) <ro 1 5 -- L I' dOo " .d02n 
41T n~O n. 

x( m(I) cosh 00 + m( - 1) j~1 cosh OJ)-a 

X( ~ol ~n 1;. (- t i~X KI(O; - 0i+n) 

XKI(O; -0oji]+n) 

=r(a)-I i<ro dtt a - I YI,I(t) (2.56) 
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as in the proof of Theorem 2A.2. The second assertion also 
follows as in that prooffrom (2.51) withj = 2. For 1..1, I <! the 
last statement is a consequence of the fact that the integral 
fdpi,A.I (m) diverges. To prove it for any noninteger A, we 
note that if we smear, e.g., the upper component of 
if;A" (o,.xJ)n with some/eS(R), then the squaredL 2-nonn of 
the three-body component is proportional to 

f d()o d(), d()2 e(Jo I/(m(l) sinh ()o + m( - 1) 

X (sinh ()I + sinh()2))IVA
((J,- (J,I sech2[!(()1 - ()2)] 

>_2_ f d() e4A
(J sech2() f d¢J ioo 

dpl j(pW· 
m( 1) 2m( - II sinh¢> cosh(J 

(2.57) 

Thus,if/rsO, the¢J-integral diverges at - 00 for any fixed (), 
and therefore the L 2-nonn is infinite by Fubini's theorem.D 

c. Fields on Y s (Jf') 

We define for any AER, 

¢J ~(x)n ::=exp(K ~,x cf c~ I In, 

where 

(2.58) 

K~'X(()I'()2)=exp{ ix . [P(()J) + P(()2)] I K~(()J - ()2)' 

(2.59) 

Here we have used the same notation as in (2.2), and 

K ~(() )= sin1TA etA - 1121 (J sech! (). (2.60) 
21T 

Theorem 2C.1: For any AE[O, 1] and t > ° the Schwinger 
function 

S~(t )=II¢J ~(! il,O)n 112 (2.61) 

is finite-valued and satisfies 

S~(t) = {det[1 - A ~(t )*A ~(t)]l -I, (2.62) 

where A fIt ) is the integral operator on L 2 (R) with kernel 

A B( () ()) _ sin1TA 
A I, I' 2 ---z:;-

xexp[ -! t(cosh ()I + cosh ()2) + (A -!) ((), - ()2)] 

Xsech[M()J - ()2)]' 

For any AER, 

S~(t) = 1 + O(e- 21
), t-+oo, 

and, for any AE[O,I], 

In[SB(t )] 
lim A = 2(..1, _ A 2). 
1--+0 In( lit) 

(2.63) 

(2.64) 

(2.65) 

Moreover, for any noninteger A not in (0,1) there is a C A > ° 
such that 

(2.66) 

Finally, for any AER, S ~(/) admits a spectral representation 

S ~(t) = 1 + f" dp~(m) Ko(mt), (2.67) 

where the measure satisfies 
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i OOdPf(m) {<oo, 'rJy>2(A-A2), (2.68) 
2 mY =00, 'rJy<2(A-A 2). 

for any AE(O, 1). 
Theorem 2C.2: For any AE(O, 1) the Wightman function 

Wf(F.F)::=II¢J ~(F)n 11 2
, FEC 0'(R2

), (2.69) 

extends to a tempered distribution. Moreover, its time-zero 
restriction exists and defines a tempered distribution. Final
ly, if A is not in (0,1) and not in 1:, W f does not extend to a 
tempered distribution. 

Pro%/Theorem 2e1: But for the assertion (2.66), the 
proof proceeds along similar lines as the proof of Theorem 
2A.l. The analog of (2.16) is 

B 00 1 f SA (t) = n~o -;;! d(),· .. d()2n 

X I fI A f(t,();,();+n)A f(t'();'()"';1 +-n)' 
aES" i= 1 

(2.70) 

Again, the Hilbert-Schmidt property of A f(t) for any t> 0 
and AER is obvious, but in this case convergence of the series 
and (2.62) only follow from Sec. 3 of Ref. 7 provided 

IIAf(t)ll<l. (2.71) 

Assuming from now on that AE(O, 1), we may write 

A f(t) = e - IH,,12K ~e - IH,,12, (2.72) 

where Ho is multiplication by coshO and K f the convolution 
operator with kernel K f(O), whose norm is 1, since it turns 
into multiplication by - i sin1TA csch[1T( x - fA )] upon 
Fouriertransfonnation [cf. (2.21) and (2.31)]. Hence, (2.71) is 
satisfied for any t> 0, implying the first statement. The 
bound (2.64) follows in the same way as (2.10), using instead 
of (2.17) the estimate 

[det(1 - T)]-'<exp(c-'IITIII)' O<T<I- c< 1, 
(2.73) 

whose proof is easy. [Note that (2.71) holds for any AER if 
one chooses t sufficiently large, since 11.1 ~(t 1I12-+D for t-+oo 

and 11·11<11·112'] 
We proceed to prove (2.65), using the relation 

In[det(I-T)]-'= ! ~TrTn, O<T<l. (2.74) 
n ~ I n 

Introducing 

a~,A(t)=Tr[A ~(t)*A ~(t)y, (2.75) 

one obtains as the analog of (2.27) the bound 

(2.76) 

Also, using the method leading to (2.34) and the integral 
(2.35), one obtains 

! ~ (sin1TA )2n In,A _ 1/2 = A - A 2. (2.77) 
n = I n 

From this, (2.65) follows by the same arguments as those 
used in the proof of (2.11). 

To prove the assertion (2.66), it suffices to show that the 
bound (2.71) is violated when A is outside (0,1) and not an 
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integer, and when t is taken small enough. [Indeed, from Sec. 
3 in Ref. 7 it is readily seen that this condition is not only 
sufficient, but also necessary for the convergence of the series 
at the rhs of (2.70).] To prove this, let us assume thatA. is 
greater than 1 and not an integer (the prooffor the other case 
is similar). Denote the characteristic functions of the inter
vals (In( 1/t ),In(1/t) + 1) and ( - In(1/t) - 1, - In(1/t)) by 
X ,+ and X ,- , resp. Then one has 

I{ X,+ ,A ~(t )x,-)I = sm~ dOld()2 I · A I Ilnll/I) + I 

21T Inll/I) 

Xexp[ - !t(coshOI + cosh()2) 

+ (A - ~)(Ol + ()2)]sech[~(()1 + ( 2)] 

Isind I _ e (1 )21" - I) > ·e· - . 
21T t 

(2.78) 

Since Ilx,± II = 1 and the rhs diverges for t-o, it follows that 
(2.71) is false for t small enough. 

The remaining statements follow as in the proof of 
Theorem 2A.l, so that the theorem is proven. 0 

Proof of Theorem 2C.2: The first claim follows from 
(2.64) and (2.65) and the relation 

n 

X L II K~(Oi -Oi+n)K~(()i -()oj/l+n) 
OES" i == 1 

(2.79) 

[cf. (2.38)]. The assertion concerning the time-zero function 
follows as in Theorem 2A.2 from (2.65). The validity ofthe 
last statement can be seen as follows: By virtue of the uni
form boundedness principle, convergence ofthe series on the 
Ihs of (2.79) for sufficiently large a is not only sufficient, but 
also necessary for the temperedness of W~. However, in 
view of(2.66), the series diverges for any a. Stronger yet, it is 
readiy seen that the terms corresponding to the identity per
mutation already diverge ifn > (4A - 4)-la (assuming A > 1, 
e.g.). Indeed, one has 

I d()I···d02n C~I COShOj ) - a 

n 

X II exp[(U - 1)(()i - ()i+n)]sech2 [!(()i - 0i+n)] 
i= 1 

;;;. fO dOI· .. d02n (~I eOj
) - a exp [ (U - 2) i~1 Oi] 

'- (2n)! i= dO 12" -- 2)0, i= dO 12" - 2)°2. - a02. P-- Ie ... 2 e 
(2n)a ° 02. _ I n 

=00, n>(4A-4)-la ,A>I, (2.80) 

which proves the assertion.D 

D. Fields on Ys(Yr', ®Yr' _,) 

We define for any AER 

¢l".1 (x)ll_ - (41T)-1/2 

xI dOct_ d())eimll)x,P(O)¢lf(m( - 1)x)Il, 
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(2.81) 

where ¢l ~Il is given by (2.58) with ct replaced by C!.I,05· 

Theorem 2D.1: For any AE[O, 1] and t> ° the Schwinger 
function 

Y~.I (t )=II¢l",1 (~it,0)1l112 

is finite-valued and satisfies 

Y~,I (t) = SKG{m(l)t)Sf(m( - I)t). 

(2.82) 

(2.83) 

Here, S ~ is given by (2.62) and S KG is the Schwinger func
tion of the free Klein-Gordon field of mass 1, 

SKG(t) = _1_ I dO exp( - t cosh()). (2.84) 
41T 

For any AER, 

Y~,I (t) = SKG(m(l)t) + 0 (exp( - [m(I) 

+ 2m( - I)]t)), t-+oo, (2.85) 

and, for any AE[O,I], 

lim In [Y~,I (t)] = 2(A _ A 2) . (2.86) 
1--->0 In( 1/ t ) 

Moreover, for any noninteger A not in (0,1) there is a C A > ° 
such that 

(2.87) 

Finally, for any AER, Y~.I (t) admits a spectral representa
tion 

Y~ dt) = _1-Ko{m(l)t) 
, 21T 

+ f= d pf.1 (m) Ko(mt) , (2.88) 
Jmll) + 2ml - I) 

where the measure satisfies (the analog of) (2.68) for any 
AE(O,I). 

Proof: It is readily seen that the assertions follow from 
Theorem 2C.I and the behavior of Ko(t ) for t-o and t-+ 00.D 

Theorem 2D.2: For any AE(O, 1) the Wightman function 

Jrf,1 (F,F)=II¢l",1 (F)1l11 2 , FEC o(R2) , (2.89) 

extends to a tempered distribution, which has a tempered 
time-zero restriction. For noninteger A outside (0,1), Jr~,1 
does not extend to a tempered distribution. 

Proof: Using the analog of (2.56), the proof proceeds 
along the same lines as the proof of Theorem 2C.2. 

III. THE THIRRING CASE 

A. Fields on Y.(Yr's), E = a,s 

We define for any AER and s = ± 1, 

¢l1~s(x)1l =exp(K1~tc:'lc:, _1)1l, A = B,F, (3.1) 

where 

K 1:~X(()I'()2)=exp(ix. [Ps(()I) + Ps(02)])K A_ "s(OI - ()2) . 

(3.2) 

Here, the function K 1 (0) is defined by (2.5) and (2.60) for 
A = F and A = B, resp., and 

Ps(O )=(£,,0 ,seSO ) . (3,3) 

We also define the light rays 

Rs ((pO,pl)ER2Ispl =p°;;;.Oj . (3.4) 
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Theorem 3A.l: Let FE S(RZ). IfF vanishes on R .. one 
has 

1I¢1~s(F)!1 II = 0, A = F,B. (3.5) 

IfF(ps)#O for somepsE Rs' one has 

1I¢1~s(F)!1 II = 00, V AEa, A = F,B. (3.6) 

Proof The first statement is clear. To prove (3.6) for 
A = F, we first note that the squared L z-norm of the two
body component of 1,6 r~s (F)!1 is proportional to 

f dOldOzIF(Ps(Od + Ps(Oz)W 

Xexp[ - US(OI - Oz)]sech2[~(01 - 0z)] 

f dxdy f(2~ coshy)e4lA Iy sechZy 

= f dudy f(eU + eU - ZY)e4IA Iy sechZy , (3.7) 

wheref>O andf(p~) > O. Thus, if IA I>!, they-integral di
verges at 00 for any u in a neighborhood of u = In p ~, so that 
the integral diverges by Fubini's theorem. We may therefore 
assume that IA I <!. In this case the integral (3.7) may be 
convergent, but we claim that then the four-body component 
is not square integrable. To show this, we note its L z-norm 
squared is proportional to 

f dOl' . ·d04f(e lJ , + ... + e1J4
) (3.8) 

X IhA (01 - 0z)hA (03 - ( 4) - hA (01 - (4)hA (03 - OzW ' 

where hA is defined by (2.21). One obtains a lower bound to 
this integral ifone replacesfby g.J, whereg. is continuous, 
O,g., 1,g.(x) = 1 for x> 2E andg.(x) = 0 for x <E. Hence, 
to prove it diverges, we may as well assume thatf(x) vanishes 
for x < E and that p~ > 2E. We now write the integral as 

2 f dOl' . . d04f(e lJ , + ... + e1J4
) [h l (01 - 0z)h l (03 - ( 4) 

- hA (01 - 0z)hA (03 - 0z)hA (03 - (4)hA (01 - ( 4)] 

= c f dXldx2dYldYzf(2~' coshYI + 2ex
, coshyz) 

Xexp[ 41A l(.vl + Yz)]sechzYI sechlYl 

-f dyo" .dyd(M4(y)eYo)hA( - ydhA(yz) 

XhA( - Y3)hA( - YI - Yl - Y3) 

=11 -Iz' (3.9) 

where we have changed to the center of mass variables (2.22) 
in I z. If Xl,Yz in II are chosen such that 2ex

, coshY2 is in a 
neighborhood of~, the xI-integration diverges at - 00 for 
any YI' Hence, 11 = 00 by Fubini's theorem. Thus, it suffices 
to show 11 is convergent. But by assumption suppfe [E, 00), 

so that 

<00, 

(3.10) 
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since IA I <! by assumption. This proves the theorem for 
A = F. The proof for A = B can be simplified by noting that 
no minus sign occurs in the analog of(3.8), so that its diver
gence for any A is a direct consequence of the divergence of 
(the analog of) II' 0 

B. Fields on Y. (dY1 ®dY -1)' E = a,s 

We define for any AER 

tf!L (x)!1 

= is (21T) - III f dO eslJ 12C* (0 )eiX'PJIJ) A. F" ()!1 
s, - I 'f' A, ~ s X , 

(3.11) 

which holds on Y a , and 

1,6 L(x)!1 = - (21T)-IIZ f dO c~ _I (O)e,x'PJIJ) 1,6 f:'-s (x)!1, 

(3.12) 

which holds on Y s ' Here, 1,6 1:~ (x)!1, A = F,B, is given by 
(3.1 ) . We also define the light cone 

V+=1(p°,p')eR2IPo>lplll, (3.13) 

and denote the interior of V + by Vo+ . 
Theorem 3B.l: Let FE S (R2). If P vanishes on V +, one 

has 

IItf!L(F)!1 II = 111,6 L (F)!1 II = 0 . (3.14) 

If P (p ) # 0 for some PE Vo+ ' one has 

IItf!L(F)!1 II = 1I¢~,s(F)!1 II = 00, V AEa. (3.15) 
Remark 3B.2: For AE[O,!l and s = 1 the fields consi

dered here and in the preceding section coincide with the 
fields of Ref. 1. Analytic continuation inA and the analogous 
definition for s = - 1 lead to the above fields, which are, 
however, slightly different from the fields obtained from a 
consideration of the underlying Bogoliubov transforma
tions. We introduced these fields to ease the notation and 
because it is natural to consider the analytically continued 
fields (as we also did in Sec. II). The fields of Ref. 1 and the 
fields obtained by omitting the kernel ~IJ lead to the same 
results, as is easily verified. 

Proof We argue in a similar way as in the proof ofTheo
rem 3A.l. The L 2-norm squared of the three-body compo
nent of tf!L (x)!1 is proportional to 

f dOdudy G (eU + eU - 2y + elJ,eu 

(3.16) 

whereG>OandG(p, - sp'»O.Hence,forIA I>!theyinte
gral diverges at 00 if one chooses u and ° such that 
(e U + elJ,eu 

- elJ ) is in a neighborhood of (P, - Spl), imply
ing divergence of(3.16). For IA I <!, theL 2-norm squared of 
the five-body component is bounded below by 

c 1 dOe'lJoIF(Ps(Oo) + it/- s(0;))1
2
IhAs(01-02)h,ts 

X(03 - ( 4) - hAs (01 - (4)hAs (03 - 02W, (3.17) 
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where f B d 9 stands for the integral over the set of 9 for 
which the argument of Fbelongs to a closed ball Be VO+ 
around p. As this implies 00 ranges over a bounded interval, 
divergence of (3.17) follows in the same way as the diver
gence of(3.8), proving the theorem in the fermion case. 
Again, the proof is somewhat shorter in the boson case, since 
no minus sign occurs in the analog of (3.17), which immedi
ately results in its divergence for any AeRoO 

IV. THE ISING CASE 

A. Fields on .'JIa (JIt" +) 

We define 

t/J ~ (x)n =expH K F,xC*C*)JJ , (4.1) 

where 

K F,X(8I,02)=exp{ix.[ plOd + p(02)J}K F(01 - O2), (4.2) 

Here, the first factor on the rhs is the same as in (2.2), and 

K F(O )=(i121T) tanh!O . (4.3) 

We also define 

t/J F+ (x)/h=i(41T)-'/2 f dO c*(O )e
j
"'P(9 1t/J F_ (x)JJ . (4.4) 

Theorem 4A.l: For any t> 0 the Schwinger function 

S~ (t) = 1It/J~ (!it,O)fl 112 (4.5) 

is finite-valued and satisfies 

S"-- (t) = (det[1 +A. F(t)*A. F(t)})1/2, (4.6) 

where A. F(t) is the integral operator on L 2(R) with kernel 

A F(t,01,02) = (l/21T) exp[ - !t(coshO l + cosh02)] 

(4.7) 

Moreover, 

S"-- (t) = 1 + O(r 2C ), t-+oo, (4.8) 

. In[S"-- (t)] 1 
lIm =-. 
c->O In(l/t) 4 

(4.9) 

Finally, S"-- (t) admits a spectral representation 

SF_ (t) = 1 + loo dpF_ (m) Ko(mt) , (4.10) 

where the measure satisfies 

fOOdp"--(m) {<oo, 'rJr>!, 
J2 m r = 00, 'rJ r <! . 

(4.11) 

Theorem 4A.2: For any t> a the Schwinger function 

S~ (t)=IIt/JF+ (!it,O)JJ 112 (4.12) 

satisfies the bound 

S~ (t)«1I21T)Ko(t)SF_ (t). 

For t sufficiently large it admits a representation 

S~ (t) = !G(t)S"-- (t), 

where 
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(4.13) 

(4.14) 

[ (

2"+1 )] 2" 
Xexp - t j~1 coshOj III tanhWOj+ I - OJ)]' 

(4.15) 

Moreover, 

S~(t)=SKG(t)+O(e-31), t-+oo, (4.16) 

lim In[S~ (t )] = ~ 
1->0 In(lIt) 4 . 

(4.17) 

Finally, (4.10) and (4.11) hold true with - replaced by +. 
Theorem 4A.3: The Wightman functions 

W ± (F,F):=IIt/J ':: (F)JJ 11 2, Fee 0'(R2), (4.18) 

extend to tempered distributions that admit tempered time
zero restrictions. 

Pro%/Theorem 4A.I: Since IIA. F(t JlI2 < 00 for any 
t> 0 and, moreover, A F(t,02,Od = - A. F(t,01,02)' (4.6) fol
lows from Sec. 4 in Ref. 8. The work of McCoy et a/.4 implies 
(4.9), and the remaining statements then follow as in the 
proof of Theorem 2A.loO 

Pro%/Theorem 4A.2: To prove (4.13), we observe that 

S + (t) = IIc*(!,) t/J ~ ( !it,O)n 11 2, (4.19) 

where 

!,( 0 )=(41T)-1/2 exp( - !t cosh 0). (4.20) 

Since IIc*(g)1I = II gil for geL 2(R), (4.13) follows. Next, we 
note that if A is a Hilbert-Schmidt operator for which 
A (02,01) = - A (01,02), then we may write, using the CAR, 

Ilc*( g) exp(!Ac*c*)JJ 112 

= (g,g)lIexp ... JJ 112 - Ilexp( ... )c*(Ag)JJ 112 
N 

= ... = L (- )"IIA "g!j2llexp ... JJ 112 
n=O 

+ (- )N+ Illc*(A N+ Ig) exp ... JJ 112 

= ! ( _ )"IIA "gl121lexp ... JJ 11 2
, 

n=O 
(4.21) 

where the last step holds true if in addition IIA Ngll-+o for 
N-+oo. Consequently, (4.14) follows from the fact that 
IIA F(t JlI 2-+O for t-+oo. Finally, (4.17) follows from Ref. 4, 
and the remaining assertions then follow as beforeoO 

Pro%/Theorem 4A.3: The proof is similar to that of 
the analogous claims in Theorems 2A.2 and 2D.2 and will 
therefore be omittedoO 

We define 

t/J B(X)JJ ==exp(!K B'''C*C*)JJ, (4.22) 

where K B.x is given by the rhs of (4.2) with F-+B, and 

K B(O )=( 1I21T)sech! O. (4.23) 

We also define 

(4.24) 
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Theorem 4B.1: For any t> 0 the Schwinger function 

S B(t )=II<p BWt,O)n 1\2 (4.25) 

is finite-valued and satsifies 

(4.26) 

where A B(t) is the integral operator on L 2(JR) with kernel 

A B(t,0,,02) = (1/21T) exp[ -! t (cosh 0, + cosh ( 2)] 

Xsech[!(O, - ( 2)], (4.27) 

Moreover, 

and 

lim In[SB(t)] = J... 
,-0 In( 1/t) 4 

Finally, S B(t) admits a spectral representation 

SB(t) = 1 + L'" dpB(m) Ko(mt), 

where the measure satisfies 

i'" dpB(m) { < 00, 

2 mY = 00, 

v y>!, 

V y<!. 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

Theorem 4B.2: For any t> 0 the Schwinger function 

yB(t )==IIIJIBWt,o)n 112 (4.32) 

is finite-valued and satisfies 

y~.,(t) = ~G€E,(t)SB(t), E,E' = +, -, (4.33) 

where 

Moreover, yB satisfies 

yB(t)=SD(t)+O(e- 3,), t-+oo; 

its diagonal elements satisfy 

(4.35) 

. In[Y:.(t)] 5 
hm = -, (4.36) 
'--0 In( 1/t) 4 

and its off-diagonal elements satisfy 

_ (00 dttaY~_.(t){~ 00, Va>!, (4.37) 
Jo - 00, V a <! . 

Finally, yB admits a spectral representation 

YB(t) = _I ( K,(t) - Ko(t)) 
21T - Ko(t) K,(t) 

roo (K,(mt) 0) + J3 m dp,(m) 0 K,(mt) - dp2(m) 

X (O Ko(mt i). (4.38) 
\Ko(mt) 0 

Here, the measures are positive and satisfy the inequalities 
(2.49) and (2.50) with m(l) = 1; furthermore, 

loo .{ < 00, V Y> a 
dp(m)m- y + 2

-} j= 1,2. 
3 } = 00, VY<a 

(4.39) 
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and 

Theorem 4B.3: The Wightman functions 

W B(F,F)=II<p B(F)n 112, FEC a (JR2), (4.40) 

(4.41) 

extend to tempered distributions. W B admits a tempered 
time-zero restriction, while 'lrB does not admit a time-zero 
restriction. 

ProofofTheorem 4B.l: Since IIA B(t)112< 00, 

IIA B(t)1I < 1, and A B(t,02,Otl = A B(t,0,,02) for any t> 0, 
(4.26) follows from Sec. 4 in Ref. 8. 

But in view of (2.62) and (2.63) this implies 

(4.42) 

Hence, (4.29) is a consequence of (2.65), and the other asser
tions can then be proven as before. D 

ProofofTheorem 4B.2: Elsewhere (Ref. 8, Lemma 4.3) 
we have shown that vectors of the form exp(! Ac*c*)n, 
where IIA 112 < 00, IIA II < l,andA = A T, are in the domain of 
all powers of the number operator N =dr (I). Thus one has 

/lc*(()exp(0 c*c*)n /I < Ilf/l /I(N + l)exp(0 c*c*)n /I<Cllf/l, 

(4.43) 

where C < 00 only depends on A. It easily follows from this 
that yB(t ) is finite-valued and, using the boson analog of 
(4.21), that (4.33) holds true. The bound (4.35) follows as 
before, while the assertions concerning the spectral repre
sentation and the measures occurring in it can be proven as 
in Theorem 2B.I, using (4.36) and (4.37) to obtain (4.39). 
Therefore, it remains to prove (4.36) and (4.37). 

To prove (4.36), we observe that one may write 

G (t)- - ~ _1_ 1 aJdO ... dO 
+ - L 2 I (2 )2n + l' 1 2n + 1 

n~' n+ 1T 

xexp [ - /j~l'COShOj] 
2" 

X II sech B!0i + , - Oi)]sech[!(O, - O2"+,)] 
i= 1 

+ K,(t), 
1T 

= - ~ -- dYt- .. dYzn {M2n + , (y)t ) 2 00 1 1 J 
t n~l 2n + 1 (21T)2n + , 

(4.44) 

Now since the function aKl(a) is bounded on (0,00) and has 
limit 1 for a-+O, we have, by dominated convergence and a 
calculation analogous to that leading to (2.34), 

. 2 ~ 1 lood ( h )2n + , hmtG+{t) = - L -- x sec 1TX 
,--0 1T n ~ 0 2n + I 0 

21
00 I 

- - dx sech1Tx + -
1T 0 1T 

I roo 
= r Jo dx In [(coshx + l)(coshx - 1)-'] 
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(4.45) -I 
- 2' 

Combining this with (4.29), we obtain (4.36). 
To prove (4.37), we write 

- G_(t) = - {'-. _1_ 1 a fd()I ... d()2 1 
n£: 1 2n + 1 (21T)2n + 1 t n + 

xexp[ - /j~IICOSh()j LD1sechB!()i+ I - Bi )) 

X sech [~(81 + B2n + I)] + Ko(t) 
1T 

X sech [yo + fn(Y)] + Ko(t) , 
1T (4.46) 

where 

fn(Y)=ln{M2n+ I (YV[ 1 + it,exPCt/k )]} + !it/,· 

(4.47) 

Hence, for any E> 0 we have, using (2.26), 

,'" dtt E( _ G _ (t )) < r (1 + E) JdYo(SeChYo)E f _1_ 
Jo 21T n = 1 2n + 1 

<c; f(2n+l)-I-E+CE<00. (4.48) 
n=1 

On the other hand, by virtue of (4.46), 

i '" 1 '" 1 
dt( - G_(t)) = - I --

o 2n=o"n+l 
= 00. (4.49) 

Combining this with (4.48) and (4.29), (4.37) follows.o 

ProofofTheorem 4B.3: The statements follow from 
Theorems 4B.l and 4B.2 as in preceding proofs.o 

Remark 4B.4: It is of interest to point out that nonexis
tence of a time-zero restriction for the diagonal elements 
already follows from the fact that the three-particle compo
nent of ep~(O I) [wherefES(R)] is not square integrable, 
which can be seen as in the proof of Theorem 2B.2. Note, 
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however, that for the off-diagonal elements all (2n + I)-par
ticle contributions are finite, since they are bounded above 
by a multiple of the integral 

(4.50) 

[To see that In is finite, one can either change variables 
()r"'pj=sinh()j and use Young's and Holder's inequality, or 
change to the center of mass variables (2.22), from which one 
infers directly that 

In = f dyatiy 1 j(M2n + 1 ( y)sinhyo) 12 

<J dp Ij(pW J dyM2n + l (y)-1 

< 00, (4.51) 

where the last step follows by using (2.24) and, e.g., the arith
metic-geometric mean inequality.] Thus, in this case infor
mation on the sum of the terms is essential to conclude no 
time-zero restriction exists. 

Remark 4B.5: If one combines the results of Sa to et al.9 

(who introduced the bosonic Ising model considered in this 
section) with Ref. 4, one can get more detailed information 
on the short-distance behavior of S Band G ± ' but this only 
follows after the introduction of considerable machinery. It 
would be of interest to reobtain such results (and their ana
logs in the fermion case) in a simpler and more direct way by 
using only the underlying operators A B(t) and A P(t ). 
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This is an exposition of the electrodynamics of the tP 4 theory with a spontaneously broken U( I) 
symmetry. The Lagrangian in a manifestly covariant gauge is used to construct the Hamiltonian 
and canonical commutation rules. Part of the Hamiltonian is a "free-field" Hamiltonian which 
describes noninteracting massive spin-I Proca bosons, Higgs bosons, and ghosts. The remainder 
of the Hamiltonian is a perturbation for which an interaction picture is developed and Feynman 
rules are systematically derived by the Dyson-Wick procedure. The choice of the "free-field" 
Hamiltonian is based on earlier work, in which the particle spectrum was identified and verified 
explicitly by implementing Lorentz boosts on particle states. It is shown that application of the 
subsidiary condition and inclusion of interactions in evaluating positive frequency parts of gauge 
fixing fields is not only essential for consistency, but in this case also of practical importance in the 
proper identification of the Proca bosons. 

PACS numbers: IUO.Ef, IUS.Bt, IUS.Ex 

I. INTRODUCTION 

This paper reports extensions of earlier work 1
•
2 on the 

electrodynamics of the tP 4 theory with a spontaneously 
broken U(I) symmetry-the model originally proposed and 
discussed by Higgs, Kibble, Guralnik, Englert, and Brout. 3 

In this model the vacuum state is degenerate, and the tP field 
develops a nonvanishing vacuum expectation value, which, 
in tum, transforms the photon into a massive vector boson. 
In our earlier work we formulated this model as a canonical 
field theory and obtained its particle spectrum as eigenstates 
of a Hamiltonian in which field fluctuations were expanded 
about the tree approximation to the vacuum expectation val
ue of tP. We found that these eigenstates consist of a three
component spin-I massive vector boson that obeys the Proca 
equations of motion and a Higgs scalar particle and that the 
spectrum of states also includes the massless ghosts required 
by the fact that the theory is a form of electrodynamics in a 
manifestly covariant gauge. We verified our identification of 
the components of the massive vector boson by explicitly 
carrying out Lorentz boosts on the helicity components and 
showing that they transformed correctly into each other. In 
this present work we continue the development of our ca
nonical formulation of this model by choosing an "interac
tion free" part of the Hamiltonian which defines the interac
tion picture and by then deriving the Feynman rules from 
the Dyson-Wick expansion of the S matrix. We demonstrate 
the consistency of our S-matrix rules by verifying that S
matrix elements to states that include "pure gauge" ghosts 
vanish. We examine the mechanism which moderates and 
controls the highly divergent Proca boson propagator suffi
ciently to preserve renormalizability. In our formulation we 
are able to identify the particles that are eigenstates of the 

0) Partially based on a thesis to be submitted by G. B. to the University of 
Connecticut in partial fulfillment of the requirements for the Ph.D degree. 

Hamiltonian that governs the time dependence of the inter
action picture. We can also draw correspondence between 
these particles and associated fields, so that in the interaction 
picture some fields definitely have massive and others mass
less excitations. For this reason we can subtract on the mass 
shells of participating particles in the course ofrenormaliza
tion. We also include explicit calculations of S-matrix ele
ments that connect incident and final states that are physi
cally observable in this model; for example, we treat the elas
tic scattering of Higgs particle + massive vector 
boson-Higgs particle + massive vector boson. We will or
ganize our presentation in the following way: In Sec. II of 
this paper we will systematically derive the Feynman rules 
from the canonical formulation following the general pat
tern set by Dyson and Wick. We will also illustrate the appli
cation of these rules to cases in which the correct identifica
tion of the zero-helicity component of the massive vector 
boson is essential. In Sec. III we will illustrate the dynamic 
detachment of pure gauge ghosts and the relation of this 
effect to gauge invariance. In Sec. IV we will discuss some 
technical questions relating to the renormalizability of this 
theory. In Sec. V we will make some general comments 
about the abelian Higgs model. 

We will continue this introductory section by summa
rizing some of the most important results of Refs. I and 2: 
The Lagrangian that governs the behavior of this model is 

.!t' = - aFJ1VFJ1V - G (x}aJ1AJ1 + !G 2(X) 

- D~tP tDJ1tP - m2tP ttP - h (tP ttP )2. (1.1) 

tP is expressed in the form 

tP = (IN2)(A + tP + iX), (1.2) 

where A /\12 is the tree approximation to the vacuum expec
tation value of tP and implies a vacuum state that breaks the 
U(I) symmetry. The resulting form of the Lagrangian is 
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!f = -lFl-'vFl-'v - ~al-'I/Jal-'I/J - !al-'Xal-'X 
- ~(2hA 2)t/? - ~2AI-'AI-' + MAI-'al-'X 

- Gal-'AI-' + ~G 2 + eAI-' I/Jal-'x 
- ~e2AI-'AI-' (t/? + X2 + UI/J) 
- h (A1/J3 + lI/J4 + lx4 + ~t/?X2 + AI/JX2), (1.3) 

where M = eA and A 2 = - m2/h. As is always true in elec
trodynamics in a manifestly covariant linear gauge, the 
gauge-fixing field G (x) obeys the free-field equation 

DG = 0 (1.4) 

even in the presence of interactions. It can therefore be repre
sented as the sum of invariant positive and negative frequen
cy parts with 

G(+)(x) =_,_' _fdk ej(k,xl-klxoln(+)(k) (1.5) 
(217f/2 v'2 

and with G(-)(x) the adjoint ofG(+)(x). 
In this work it is necessary to take particular care to 

implement the subsidiary condition 

n (+)(k)lv) = 0 (1.6) 

to select admissible states that span a physical subspace of an 
appropriately constructed indefinite metric space. Requir
ing this subsidiary condition guarantees that both al-'AI-' = 0 
and V·E - P = 0 hold for matrix elements in the physical 
subspace; and it is the implementation of Gauss' law that 
provides the zero-helicity component of the vector boson 
with its proper mass. As in earlier work on quantum electro
dynamics, in which the U(l) symmetry is not spontaneously 
broken, the technique for implementing the subsidiary con
dition is based on constructing a pseudo-unitary similarity 
transformation (i.e., one that is unitary in the indefinite met
ric space so that U· U = UV' = 1). This similarity transfor
mation establishes one-to-one correspondence between 
n (+l(k) and a c-number multiple ofa ghost-annihilation op
erator. n (+ Ilk) has the form 

n (+)(k) = K(k l[ BQ(k) + X(k )BR *( - k)] + p(k)lv1lkl, 
(1.7a) 

where K(k) = (ko + Ikl)/2ko, X (k ) = (ko - IklJ/(ko + Ikll, 
andp(k) is the Fourier transform of the charge density. Its 
pseudo-unitary transform is 

ii (+)(k) = K(k )BQ(k), (1.7b) 

where - designates the pseudo-unitarily transformed quanti
ty ~ = UsU -I with U- I = V'. BQ(k) refers to one of the 
ghost annihilation operators in this theory. B R (k) refers to 
the annihilation operator for the other ghost. The corre
sponding creation operators are BQ *(k) and BR *(k). The 
kinematic relations that govern these operators are de
scribed in Ref. 2. The transformed operator ii (+ Ilk) allows us 
to restate the subsidiary condition in a simple and very useful 
form-namely, ii (+)(k)ln) = 0, which is equivalent to 
BQ(k)ln) = O. This condition simply requires that the states 
In) contain no BR *(k) ghosts, since, for the state 
In') = BR *(k)In), BQ(klln'h~O. Ifln) is devoid of ghosts or 
contains BQ *(k) ghosts alone or in combination with any 
particles other than BR *(k), then BQ(k)ln) = 0 and these 
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states too satisfy the subsidiary condition in the new trans
formed representation. In order to transpose the entire the
ory into this new representation, the transformation s~, 
where ~ = UsU -I is extended to all other operators in this 
theory; the transformed Hamiltonian iI, given by 
iI = UHU -I, will be expressed as H = iI A + iI B, where 
iI A has the form 

iIA = f dk {ko [ ± Aj *(klAj(k) + a*(k)a(k)] 
2ko l~ I 

+ Ikl [B R *(k)BQ(k) + BQ *(k)B R (k) 1 
+ (ko - 3lkl)(ko + Ikl) [B (k)B (- k) 

Sko Q Q 

+ BQ *(k)BQ *( - k)] - (ko ;k~kl)2 BQ *(k)BQ(k)} 

+ f dp [Po ,8*(pVJ (p)] (1.S) 
2po 

and iI B has a complicated nonlocal structure given in Ref. 2. 
iIA is the part of iI that survives in the limit e-+O, but 
eA = M is kept fixed, i.e., iIA is the so-called "antidipole" 
limit of iI. iI B is the part of iI that vanishes in the antidipole 
limit. iIB consists of interactions for transverse vector 00-
sons and Higgs scalars, and of parts of the nonlocal Coulomb 
interaction. There are no ghost-mediated interactions in iI B; 
the ghost-mediated interactions that are normally part of the 
manifestly covariant formulation of this model have been 
eliminated by the similarity transformation and replaced 
with the Coulomb interaction. There are parts of iI B that 
couple theBQ (k) [BQ *(k)] ghost annihilation [creation] oper
ators to other particles, but they play no dynamical role, 
becauseBQ(k) and BQ *(k) commute. The only role that these 
ghost interaction terms have is to preserve the equations of 
motion and the kinematic relations of the manifestly covar
iant Lorentz gauge. In all of these respects this model is very 
similar to "regular" quantum electrodynamics, i.e., to the 
case in which the vacuum state is nondegenerate and carries 
the U(l) symmetry of the Lagrangian. But the fact that the 
scalar field has the vacuum expectation value A /v1 has some 
important consequences that distinguish this model from 
quantum electrodynamics with an unbroken U( 1) symmetry. 

In quantum electrodynamics without a degenerate 
vacuum the Coulomb interaction, Sp(xlo(y) dxdy 
X (S1Tlx - yl)-I, is proportional toe2 and quadratic in parti
cle creation and/or annihilation operators. In this, the 
"Higgs" model, one contribution to the charge density oper
ator, originates from the cross term in which the A /v1 from 
the real part of t/> combines with fix' the momentum conju
gate to X. This leads to a term in the Coulomb interaction 
that is quadratic in particle creation and annihilation opera
tors and proportional to (eA )2; this term survives the antidi
pole limit. Since eA = M, the mass of the transverse compo
nent of the vector bosons in this model, we are led to suspect, 
correctly as it turns out, that the excitation modes of the 
transformed X and fix constitute the zero-helicity compo
nent of the spin-1 particle. The X- and fix-dependent parts of 
the transformed Hamiltonian that survive the antidipole 
limit, and become part of iIA, are 
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HAI.x) =! J dx [VX(x)-VX(x) + ll/(x)] 

+ M2 J dx dy llx(x)llx(Y) . 
81T Ix - yl 

(1.9) 

The last of these terms has originated from the Coulomb 
interaction. In order to arrive at a form of HA that is diag
onal in the number representation for each particle species, 
the X field may not be represented in terms of elementary 
scalar spin-O excitations. If we made such an expansion, for 
example, by setting 

X (x) = _1_J dk [c(k)e,k.X + c*(k)e~ik'x] (1.10) 
(21T)3/2 2ko 

and 

11 (x) =~J dk [c(k)etk-x -c*(k)e~'kox] (1.11) 
x (21T)3/2 2ko ' 

then, although !Sdx [VX(x)-VX(x) + llx 2(X)] would be diag
onal in the particle number c*(k)c(k), the nonlocal 
M 2Sdxdy llx (x)llx (y)(81Tlx - yl)-l would destroy tEat 
property. In order to arrive at a form in which all of HA Ix) is 
diagonal in the number representation, including the nonlo
ca1M 2Sdxdy llx(x)llx(y)(81Tlx - yl)-lterm, we must make 
the expansion 

X (x) = _1_ J dk [.!5L] [a(k)e'k'x + a*(k)e ~ tk-x] 
(21T)3/2 2ko Ikl 

and 

llx(x) 

(1.12) 

= ~ J dk [ill] [a(k)e,k.x - a*(k)e ~ 'kox] (1.13) 
(21T)3/2 2 ko ' 

and we then arrive at 

- J dk HAI.xI = - [koa*(k)a(k)]. 
2ko 

(1.14) 

In these features we see that the degenerate vacuum, 
which allows the 4> field to have the vacuum expectation 
value A 1\"1, forces a number of significant changes in the 
spectrum of particle states that characterize this model: The 
transverse excitations of Ap have now become massive; the 
excitations of the X field, which would constitute the Gold
stone mode in the model with degenerate vacuum if the elec
tromagnetic interactions were not included, are here in
volved in the Coulomb interaction. In this way these 
excitations develop a mass identical to the mass of the trans
verse boson modes. Moreover, because of the extra factor 
kollkl in Eq. (1.12) and Ikl/ko in Eq. (1.13), the a, a* excita
tions refer to the zero-helicity mode of a spin-1 system and 
no longer transform like scalar (spin-O) particle states. Since 
the ghost modes, represented by BQ and BQ * rema~ mass
less (as required by the free-field equation OG = 0), Ap has a 
very different significance when time translated by HA from 
what would be the case if 4> had a vanishing vacuum expecta
tion value. Under a Lorentz transformation the four com
ponents of Ap no longer constitute the four components of a 
vector field which transform among themselves. The two 
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transverse modes and the a and a* modes all refer to parti
cles of mass M = eA and transform like the three helicity 
components of a spin-1 Proca system. They completely fail 
to mix with the massless electrodynamic ghosts in this mod
el. 

In Sec. III of Ref. 2 we discussed the dynamics of this 
model in the antidipole limit. We gave the explicit time de
pendence of a number of fields, and the others, not explicitly 
given, can be obtained by a simple straightforward calcula
tion. This time dependence is always an explicit c-number, 
but not always the plane wave exp(ikpxp) usual in the "inter
action-free" limit of theories with nondegenerate vacuum 
states that carry the symmetries of the Lagrangian. The rea
son for this complication in the Higgs model stems from the 
fact that, although HA is diagonal in the number operator for 
"observable" particles, it inevitably fails to be diagonal in the 
number operator for electrodynamic ghosts. Nevertheless, 
in this "antidipole" limit it is not only possible but also very 
convenient to define a Proca~ field, Zp (x), and use it in the 
formulation of this model. 4 ZI' (x) will be seen to be an ordi
nary and unexceptional Proca field. It obeys the equations 

(0 - M2)Z," = 0 (1.15) 

and 

al'zp = 0, (1.16) 

as well as the commutation rules 

with 

..1 (x - y) = - i J dk [eik,.lx ~ yl,. - e - ik"lx ~ YI,,] .(1.18) 
2ko 

In the remaining sections of this paper we will discuss 
the iteration of the S matrix in this theory in an interaction 
picture in which the "noninteracting" time dependence is 
dictated by HA instead of the completely "free-field" Hamil
tonianHo, in which e--+O without any constraint that keeps e 
from vanishing; in Ho, therefore, eA = 0 as well. There are 
compelling reasons for choosing HAas the generator of time 
displacements in the interaction picture. The Hilbert space 
generated by Ho consists of Higgs scalars of mass (2hA 2), 
massless non interacting transverse and ghost photons, and X 
particles which in the completely interaction free limit lack 
the mass term which, in the exact theory, stems from interac
tions with the electromagnetic field. Whereas in convention
al quantum electrodynamics, with the nondegenerate vacu
um, the mass spectrum of the exact theory must be 
consistent with the massless photons, because of the possibil
ity that initial and final scattering states contain such mass
less photons in the absence of, or far from charges, this is not 
the case in the abelian Higgs model. In the abelian Higgs 
model we cannot expect to isolate collective excitations with 
any definite charge, in particular not with zero charge, and 
the concept of photons "far from" or "in the absence of' 
charges does not apply. Because of the non vanishing vacu
um expectation value of 4>, there are terms in the exact Ha
miltonian that are proportional to eA, which stem from the 
interactions between photons and charges, but which no 
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longer involve any field fluctuations other than photons. 
These terms, which contribute to iI A and are not represent
ed in iI 0' originate from the substitution oU /v'2 for part of ifJ, 
and are bilinear in creation and/or annihilation operators of 
elementary field excitations. They are manifestly involved in 
changing the masses of these excitations and, if these terms 
were eliminated from consideration when calculating these 
masses, and in calculating the time dependence of the inter
action picture, they would reappear in trivial ways to modify 
the spectrum of incident and scattered particles. They would 
need to be summed,' and, after summing, they would force 
the changes in the particle spectrum that are more easily 
incorporated into H A directly in the quantization procedure. 
It is not wholly arbitrary how the Hamiltonian is divided 
into two parts so that one (the "interaction-free" part) de
fines the spectrum of participating particles and the time 
evolution in the interaction picture, while the remaining part 
is responsible for the interactions whose effects the S matrix 
reflects. In order to make this separation consistently, the 
following are necessary: The particle spectrum due to the 
"noninteracting" part must have a continuum part that can 
be made identical with that of the exact Hamiltonian once 
mass renormalization has been carried out. As we point out 
in Sec. IV, H A can satisfy that requirement of an "interac
tion-free" part of a Hamiltonian, but Ho cannot. 

The fact that the non vanishing vacuum expectation val
ue of ifJ modifies the spectrum and transformation properties 
of the excitations in nontrivial ways forces us to make an 
important change in the way we treat the subsidiary condi
tion. In ordinary quantum electrodynamics in which the 
vacuum state is nondegenerate and shares the U( I) symme
try of the Lagrangian, one of us (K. H.) previously showed 
the connection between the consistent formulation of the 
theory and the formulation that leads to the Dyson-Wick 
expansion and the Feynman rules. In the consistent formula
tion the "minimal coupling" Hamiltonian is accompanied 
by the subsidiary condition, aQ(k) + p(k)(2IkI3f2)-llv) = 0, 
where p(k) designates the charge density and 
kl' al' (k)/(v'2lkl) = a Q(k) is the operator that annihilates one 
one of the massless ghosts. Alternatively, we can carry out a 
similarity transformation to a representation in which the 
subsidiary condition is aQ (k) In) = 0, and the Hamiltonian is 
transformed so that ghost-mediated interactions are re
placed by terms that include the nonlocal Coulomb interac
tion. The Dyson-Wick expansion, however, is based on the 
"hybrid" combination of the minimal coupling Hamiltonian 
and the subsidiary condition aQ(k)ln) = 0, in which the 
charge density has been amputated more or less by fiat. The 
validity of the hybrid combination is demonstrated by a 
theorem that the S-matrix elements for the hybrid combina
tion and the consistent formulation agree modulo renormal
ization constants, and that therefore the ad hoc amputation 
of the charge density terms from the subsidiary condition is 
legitimate in calculating S-matrix elements. In the Higgs 
model, however, it is no longer permissible to calculate S
matrix elements while totally ignoring the charge density in 
[l (+ )(k). It is safe to amputate the part of p that is a higher 
power than linear in creation and/or annhilation operators. 
The part of p that is proportional to e and !,Ilrvives the antidi-
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pole limit, however, must be kept. This point will be dis
cussed in more detail in later sections. 

II. DERIVATION OF FEYNMAN RULES 

A. Antidipole interaction picture 

In order to derive the S-matrix rules from a canonical 
formalism, using the Dyson-Wick expansion, we must es
tablish the time dependence of the fields in an appropriately 
constructed interaction picture; we must specify the incident 
and scattered particle states. In addition, it is necessary to 
implement Matthews' ruleS by transforming the S matrix 
from a functional of a T-ordered product of an interaction 
Hamiltonian into a functional of a T * -ordered product of an 
interaction Lagrangian. Lastly, it is important to establish a 
theorem that relates the S matrix in the formalism in which 
the subsidiary condition has been implemented with the S 
matrix in the interaction picture in which the subsidiary con
dition has been modified by fiat. 

There are a number of possible formulations of the 
model we are discussing in this paper. A formulation of a 
gauge theory consists of a Hamiltonian and a constraint 
equation; the latter, in a manifestly covariant gauge, is a sub
sidiary condition. This constraint has an important effect on 
the dynamical behavior of the system because it determines 
the subspace on which the time evolution operator may act. 
In one formulation the subsidiary condition given in Eq. 
(1. 7a) is combined with the Hamiltonian that stems from the 
Lagrangian in Eq. (1.3). That Hamiltonian is given by 

with 

and 

H=HA +HB (2.1) 

HA = f dx [ - ! FjkFjk + ~Il,JII' - i(A4 v·n 
+ Il4 V·A) + ~ 2 A·A + iMA4llX - M A.VX 

+ ~IV1W + ~Il/ + !(2hA 2)l/? 
+ ~IVxI2 + ~Il/] (2.2) 

HB = J dx[ieA4(¢llx - Xll",) + eA'(xV¢) 

+ ~e2A'A(~ + X2 + U¢) 

+ h (A¢3 + !¢4 + a4 + !¢2X2 + A¢X2
)]. (2.3) 

Since this formulation combines the Hamiltonian H with the 
subsidiary condition in which the positive frequency part of 
the guage fixing field has been evaluated exactly, we call this 
the "exact formulation." Except for trivial multiplicative c
numbers, [l (+) is the positive frequency part of G, where 
frequency is defined with respect to the Hamiltonian H, 
which includes all interactions. The exact formulation, 
therefore, represents a consistent formulation of the theory 
in a manifestly covariant gauge. We can express the exact 
formulation in a different representation by SUbjecting all 
operators and states to the - similarity transformation. In 
that case [l (+) transforms into 11 (+), which is given by 
11 (+) = K(k )BQ(k), andH transforms intoN given in Ref. 2. 
In the first of these representations of the exact formulation 
it is a simple task to construct H from the corresponding 
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local Lagrangian given in Eq. (1.3). The subsidiary condition 
that selects the physically admissible states is very compli
cated, however. The states that satisfy the subsidiary condi
tion are not Fock states, but complicated coherent superpo
sitions of single mode excitations. It is only with these states 
that the theory, in this representation, maintains the validity 
of Gauss' law for matrix elements in the physical subspace. 
In the second, transformed representation of the exact for
mulation, the subsidiary condition has a simple form and an 
obvious interpretation. The admissible particle states are 
Fock states. The complications that keep the particle states 
from being Fock states in the first representation reappear in 
this representation as nonlocalities in the Hamiltonian ii. H 
is given by H = HA + H B' and H B' given in Ref. 2, contains 
so many complicated nonlocal terms that it is very difficult 
to use in perturbation calculations, and it is impossible to 
find a local Lagrangian. in this second representation, that 
could be used to determine Feynman rules. 

It is necessary to circumvent the dilemma that in one 
representation of the exact formulation the spectrum of ad
missible states, which satisfy the subsidiary condition, is 
very complicated, and that in the other representation the 
Hamiltonian is very complicated. We will circumvent it by 
constructing a form of the theory in which we combine the 
Hamiltonian H given in Eq. (2.1) with a substitute subsidiary 
condition, in which the so-called "positive frequency part of 
G " is no longer the exact positive frequency part with respect 
to the Hamiltonian H. This involves changing {} (+) by fiat, 
and the only justification for this procedure lies in our ability 
to prove (as we will do later in this section) that this arbitrary 
alteration of the subsidiary condition leaves S-matrix ele
ments unaffected. This parallels the procedure used in ordi
nary quantum electrodynamics, in which the V( 1) symmetry 
of the Lagrangian is shared by the nondegenerate vacuum. It 
is easy to lose sight of the fact that the very familiar Feynman 
rules for that case are based upon ignoring, rather than im
plementing, the subsidiary condition; and that the simple 
injunction to avoid longitudinal or timelike photons in initial 
states stems from a form of the subsidiary condition in which 
all terms proportional to the electric charge have been ampu
tated by fiat. In this, the Higgs model, however, we will not 
make so extreme a change in the subsidiary condition. Were 
we to impose so draconian a measure in this case, we would 
alter the transformation properties and the spectrum of the 
particle states, and the theorem that the S-matrix elements 
are unaffected by the change in the subsidiary condition 
could no longer be proven. We will, instead, propose the 
subsitute subsidiary condition 

{}A (+)(k)lv) A = 0, (2.4) 

where 

{})+)(k) = K(k )[BQ(k) + X(k)BR *( - k)] 

M J dx II ( ) 'X'X (2 5) 
- v1lkl (21Tf/2 x x e . 

with M = eA. {}A (+)(k) is the antidipole limit of {} (+)(k), i.e., 
the limit as e-o but eA is kept constant. {} A (+) is obtained by 
amputating the term e/.xII.p - r/JIIx) fromp in{} (+) and leav
ing intact the part of p that combines the vacuum expecta-
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tion value of r/J, with the fluctuation in the momentum conju
gate to X. When we combine H with the subsidiary condition 
in Eq. (2.4), we are making a more drastic change than just 
carrying out a similarity transformation. It is apparent that 
Hand {} A (+) cannot both be unitarily equivalent to Hand 
{} (+), respectively. We will generalize earlier terminology 
and denote formulations that are related to the exact formu
lation by having some operators and states unitarily equiva
lent, but others not, as "hybrid formulations." Even though 
{}A (+) has a simpler structure than {} (+), because the charge 
density operator has been truncated, the states Iv) A that 
obey Eq. (2.4) still are coherent superpositions of single mode 
excitations and do not constitute a Fock representation. 
Since that makes it difficult to use the states Iv) A' the next 
step is to subject the entire hybrid formulation, which con
sists of the Hamiltonian H and the subsidiary condition 
{} A (+) In) = 0, to a similarity transformation. This similarity 
transformation is chosen to transform {}A (+) intoK(k )BQ(k). 
Since {} A (+) is the antidipole limit of {} (+) and since 
U{} (+)(k)U -I = K(k )BQ(k), it is clear that UA{}A (+)(kjUA -I 
= K(k )BQ(k) and that the unitary operator needed to trans

form {} (+)(k) into K(k )BQ(k) is the antidipole limit of U. In 
Ref. 2 we showed that U can be represented as 

(2.6) 

v and u do not depend on e, except when e appears in combi
nation with A as M = d. Therefore, v and u are both unaf
fected by the antidipole limit. The antidipole limit of D, re
presented asDA , is obtained by substituting - MIIx forp. It 
is given by 

-MJ dk 
DA = -2- v1k

o
lkl 

X {[BR( - k) - BR *(k) +BQ( - k) - BQ *(k)] 

X J ~ II (x)e - .x.x} . 
(21T)3/2 x 

(2.7) 

Vnder the pseudo-unitary transformation t = UA ;UA - I, 
HA [given in Eq. (2.2)] is transformed into HA [given in Eq. 
(1.8)].4 This can be shown by direct calculation, but follows 
more simply from 

UHU- I =HA +HB ; (2.8) 

if we take the antidipole limit ofEq. (2.8), we find 

UAHA UA -I = HA . (2.9) 

The similarly transformed H B, given by H B = UA H B UA - I, 

can be expressed in a number of ways. The most useful for us 
is to keep the functional dependence of H B on fields and 
their adjoint momenta intact, but to transform each indivi
dual operator-valued field and momentum as given by ;-;, 
wheret= UA;UA -I. ThetransformedHB is given by 

HB = J dx [jeA 4(r/Ji'IX - XII.p) + eA·(XVr/J) 

+ !e2A,.A,(,p2 + X2 + lAr/J) 
+ h (A 3 + !r/J4 + i¥4 + !i2,p2 + AX2r/JJ. (2.10) 

Since r/J and if; (as well as II.p and i'I.p) are trivially identical, ~ 
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never appears on either t/J or D",. Superficially, HB mayap
pear very similar to H B' In fact, H Band H B are profoundly 
different because of crucial differences between AI-' and AI-" 
between X and i, and similar differences between corre
sponding adjoint momenta. The gauge-fixing field G (x), for 
example, is given by 

G(x) = _1_' -f dk [n(+I(k)ei(k'x-'k,xoll 
(21T'f/2 v1 
_ n (-I(k)e - i(k'x - Iklxo)] , (2.11) 

where n (-I(k) = [n (+I(k)]*. n (+I(k) and n H(k) are the 
massless ghost excitations in this representation; but G (x) is 
given by 

G (x) = _1_' - f dk K(k) [B (k)ei(k'x - Iklxol 
(211')3/2 v1 Q 

_ BQ *(k)e - i(k·x - Iklxol] (2.12) 

and, in this representation, BQ(k) and BQ *(k) denote the 
massless ghost excitations. AI-" which is time-translated by 
exp( - iif .. t ), consists of two massive transverse modes and a 
mixture of modes in longitudinal and timelike components; 
parts of the longitudinal and timelike modes have the time 
dependence appropriate for massive excitations, and other 
parts have the time dependence of massless ghost excita
tions. The ghost modes in AIJ. never mix with massive modes 
under Lorentz boosts, and AI-' does not represent any phys
ical excitations unambiguously. The most meaningful iden
tification of AI-' that can be given is 

~ ~ 1 ~ 1 ~ 

AI-' =ZI-' + MJI-'X+ M2JI-'G, (2.13) 

where ZI-' is the massive Proca field. ZI-' has the momentum 
representation 

~ 1 f dk {[ 2 ( kok. Z ( ) - '" (i1(k)A (k) J 8 
I-' X - (211')3/2 2ko i~l €I-' i + M Ikl I-'J 

+ iZI 81-'.4) a(k)] eik"X" + [itl €I-' (il(k)Ai *(k) 

+(kokj 8 .+iJ!18 )a*(k)]e-ik"X"}. 
Mlkl I-'J M 1-'.4 

(2.14) 

Equation (2.13) is convenient primarily because it allows us 
to use AI-' as the abbreviation for the right-hand side of that 
equation. 

The most startling differences arise between X and i, 
whereas X, given by Eq. (1.12) is represented by a and a* 
operators, i is given by 

~() 1M fdk 
X x = (21Tf/2 2ko 

X [v1ko] [( 1 B (k) 2ko - Ikl B (k)) IkT - ko + Ikl R - 4ko(ko - Ikl) Q 

Xe'K'X + ( 1 B *(k) 
ko + Ikl R 

+ 2ko - Ik/ BQ *(k)) e -'K'X] ; (2.15) 
4ko(ko - Ik/l 

X is entirely represented by excitations of electrodynamic 
ghosts and is totally devoid of a and a* excitations! The a 
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and a* excitations have been completely absorbed into ZI-" 
where they represent the zero-helicity mode of the massive 
spin-l boson. This hybrid formulation permits correct iden
tification of incident and scattered particles, by representing 
them as fluctuations about the stable degenerate vacuum (to 
the extent to which the stable vacuum equilibrium point is 
given by the tree approximation). In the representation we 
have used for the hybrid formulation these fluctuations are 
Fock states. This representation leads to a conveniently 
managable expression for the interaction Hamiltonian, and 
allows us to derive simple Feynman rules. 

B. Particle states and r-vacuum 

We will discuss the vacuum and the particle states in the 
hybrid formulation in the representation in which the subsi
diary condition is ii .. (+I(k)ln) = 0 or, equivalently, 
BQ(k)ln) = O. In this interaction picture the vacuum is the 
ground state for the system of massive vector bosons and 
Higgs particles. In order to obey the subsidiary condition, 
the vacuum must be free of B R *(k) excitations since BQ (k) 
and B R *(k) fail to commute. We can choose a state 10) as the 
vacuum state, and define it by BQ(k)IO) = 0, a(k)IO) = 0, 
A;(k)IO) =O,P(p)IO) =O,andBR(k)IO) =0. 10) would be a 
serviceable vacuum state but is not a necessary choice. 
BR (k)IO) = 0 is neither physically necessary nor is it re
quired for mathematical consistency. On the other hand, 10) 
is not an eigenstate of if .. . Since if .. contains terms that are 
bilinear in BQ(k) and others that are bilinear in BQ *(k), 
if .. 10) protrudes into the ghost sector. Ghosts are not obser
vable, and BQ (k) ghosts are harmless to the consistency of 
the formulation [provided they are not accompanied by oth
er BR *(k) ghosts]. It is therefore not essential that 10) be an 
eigenstate of if .. in the BQ *(k) ghost sector. Nevertheless, it 
is possible to construct a different vacuum state, which we 
will designate by Ir) that does satisfy 

if .. Ir) = O. (2.16) 

The vacuum state Ir) has the advantage that since it is an 
eigenstate of if .. , time displacement invariance holds in the 
interaction picture, even in the ghost components of propa
gators. Ir) can be represented as 

Ir> = exp { -! f 16~lkl (ko - Ikl)(ko + Ikl)[ BQ *(k) 

- BQ( - k)] [BQ *( - k) - BQ(k)]} (2.17) 

and has the norm <rlr) = 1. Unlike 10), the vacuum state 
Ir> does not necessarily vanish when a ghost annhilation 
operator is applied to it. AlthoughAj(k)lr) = 0, 
a(k)lr) = 0, P (p)lr) = 0, and BQ(k)lr) = 0 hold, 
BR (k )Ir) = - [(ko - 3lkl)(ko + Ikl)/8kolkllBQ *(k)lr>. 
The n-particle eigenstates of if .. can be constructed by ap
plying creation and annhilation operators to Ir). The scat
tering matrix is obtained by taking the matrix element ofthe 
operator 

S= Texp [ -i f:oo HB(t)dt] (2.18) 

between eigenstates of if .. that describe the appropriate ini-
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tial and final particle configurations. The appropriate parti
cle states were previously identified and, in the one-particle 
sector, are given in Table I. 

The S matrix is then expanded and the Wick theorem 
leads to the reduction to propagators, in the form of vacuum 
expectation values in the Ir) vacuum, and vertices. We find, 
for example, that the Proca propagator is 

(rl T [ZI" (x)Zv( y)] Ir) . J d 4 k eik" Ix - Y),. 

= -[ (217)4 k 2 + M2 - iE 

X [OI"'V + k;2v ] + ~2 Ov.401".404(X - y), (2.19) 

where M = eA.; and the propagator for the Higgs scalar is . f d 4p eip" Ix - Y),. 

(rl T [tP(x)tP( y) 11 r) = - I (217)4 pZ + (2hA 2) _ iE ' (2.20) 

where the Higgs mass is given by 2hA 2. The properties of the 
Ir) vacuum produce a complication in the case of the X pro
pagator. In the case of products of X operators the Wick 
theorem is 

T[f(x)X(Y)] = (rIT[f(x)x(y)]lr) + :X(x)X(Y): 

- (rl:x(x)x(y):lr). (2.21) 

Here: : designates normal ordering and the term 
(rl:x (x)X( y)lr) is required because the vacuum expectation 
value of normally ordered products may not vanish. When 
the ghost annhilation operator B R (k) acts on 1 r) the vacuum 
state does not vanish and that is why this generalization of 
Wick's theorem is necessary. The fourth-order time-ordered 
product of X 's is 

T [fix dx(xZ)x(X3)X(X4)] 
= :x(xdx(x2 )x(X3 )X(X4 ): + 'T + 'Ty ' (2.22a) 

where 

'T = :X (xdx(x2):..:1x(X3 - x 4 ) + :x(xdx(x3 ):..:1 X(X2 - x4) 

+ :X(xtlX(x4 ):..:1X(X2 - x 3 ) + :X(X2 )X(X3 ):..:1 x(x) - x4) 

+ :X(X2 )X(X4 ):..:1x(x) - x 3 ) + :X(X3 )X(X4 ):..:1x (x) - x 2 ) 

+ ..:1 x (x) - X2 )..:1X(X3 - x4 ) + ..:1 x (x) - x 2 )..:1x (X2 - x4 ) 

+ ..:1 x (x) - X4)..:1X(X2 - x 3 ) (2.22b) 

TABLE I. Particle states in the one-particle sector of the abelian Higgs 
model. 

Particle 
state 

A, *(k)lr) 

a*(k)ir} 

tr(p)iy) 

DQ *(k)ir) 

DR *(kJir) 

938 

Description 

transverse components of massive boson 

zero-helicity component of massive vector 
boson 

Higgs scalar 

allowed ghost, permitted by the subsidiary 
condition 

forbidden ghost; this state violates the 
subsidiary condition 
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and 

'Ty = - :X(xtlx(x2):(rl:X(X3 )X(x4 ):lr) - :X(xtlX(x3 ): 

X (rl:i(x2)x(x4 ):lr) - :X(x))x(x4 ):(rl:x(X2)X(x3):lr) 

- :X(X2)X(x3 ):(rl:X(x.)x(x4 ):lr) - :X(X2 )X(X4 ): 

X <rl:x(xtlx(x3):lr) - :X(X3 )X(X4):(rl:x(x.)x(x2 ):lr) 

- ..:1 x (x. - x2)(rl :X(X3)X(x4 ):lr) - (rl:x(xtlx(x2):lr) 

X [..:1x(X3 - x4 ) - (rl:x(X3 )X(x4 ):lr)] - ..:1 x (x. - x 3 ) 

X (rl:x(xZ)x(x4 ):lr) - (Ir:i(xtlx(x3):lr) 
X [..:1 x(x z - x4) - (rl:x(xZ)x(x4):lr)] 

- ..:1 x (x. - x4 )(rl:x(X1)X(x3 ):lr) - (rl:i(x))x(x4 ):lr) 

X [..:11'(X2 - x3) - (rl:x(xZ)x(x3):lr)]. (2.22c) 

The 'T y terms are the ones that include vacuum expectation 
values of normally ordered products. We have observed that 
the non vanishing vacuum expectation values of normally or
dered products vanish identically in S-matrix expressions, 
and this cancellation appears to be a general feature of this 
model. The X propagator is 

Jd 4k. k 2 +M2 
(riT [X(x)x(y)1Ir) = - i _e,k"(x-y)" . 

(217)4 k 4 - IE 

(2.23) 

There is no G (x) propagator in this model. Since BQ (k) and 
BQ *(k) commute, (rIT[G (x)G (Y)]lr) = O. The unusualfea
ture of this S-matrix expansion is the appearance of the 
mixed propagator (rl T [f(x)G (y)] 1 r)· We find that 

T[X(x)G(y)] = :X(x)G(y): + (rlT[x(x)G(y)]lr) 

- (rl:x(x)G(y):lr), (2.24) 

where the normally ordered product:X (x)G (y): has a vanish
ing expectation value. The mixed propagator is - f d 4k eik"!x- y)" 

(rIT[x(xlG(y)]lr)=iM -4 2 .. (2.25) 
(217) k -IE 

c. Matthews' rule, surface terms, and Feynman graphs 

In the antidipole limit interaction picture, the time 
translation operator is exp( - iHA tj. Under this tin:!,e depen
dence we find thai n l/J = JotP and n x = J;X - iMA4. With 
this substitution H B can be written in the form 

H B = - f dx [2' B + ~e2A4A4(tPz + XZ
)], (2.26) 

where 

2' B = eAI" (tPJI"X - XJI" tP) - eMAI"AI" tP 
) 2- - .1;2 -2 

- '2e AI"A1,(1f' + X) 

- h (AtP3 + atP4 + ~2 + ..-lx2tP). (2.27) 

When Wick's theorem is applied to the S-matrix elements 
discussed in Sec. II B, then the second-order combinations 

and 

S1' = - ~ J d 4xd 4yA 4(x)A4(Y)tP(X)tP(y) 

X (rIT[Jox(x)J;X(y)]lr) 

S", = - e; f d 4xd 4yA4(x)A4(ylX(x)X(y) 

X (rIT[Jo¢(x)Jo¢(y)]lr) 
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arise. The time-ordered product in these expressions can be 
expanded as shown in 

e (xo - Yo}aof(x)aof( y) + e (Yo - xo}aof( y)aof(x) 

= .i-. [e (xo - Yo)x(x)aof( y) 
axe 
+ e (Yo - xo)aof( Y)X(x)] 
+ 8(xo - Yo)[x(x),aof( y)]. (2.29) 

The commutator [X (x),aof(y)]xo~Yo has the valuei8(x - y) 
so that 

T [aof(x)aof( y)] = T * [aof(x)aof( y)] 

+ i84 (x -y) (2.30) and 

and 

-~ f d 4xd 4yA4(x)A4(y)tP(X)tP(Y)(rI T [aof(x)aof(y)]lr> 

= - ~ f d 4X d 4y A4(x)A4( y)tP(x)tP( y) 

X (rIT*[aof(x)aof(y)]lr> 

- i~2 f d 4X A4(X)A4(X)~(X). (2.31) 

Similarly S'" turns into - (e2/2)Sd 4xd 4y A4(xh44( yJj(x) 
xx(y)(rl T*[aotP(x)aotP(y)] Ir> - i(e2/2)Sd 4x A4(X)A4(X) 
XX2(x) and the substitution of the T*-ordered product for 
the T-ordered product eliminates the normal dependent 
term (ie2 12)Sd 4x A4(x)A4(X)!X2(X) + ~(x)] in the first-order 
S-matrix element. In the nth-order S-matrix element 
n(n - 1) contributions in Sn in which T*-ordered products 
replace the T-ordered products cancel n - 1 contributions 
in Sin _ 1)' in which the normal dependent terms appear. 

The effect of these substitutions is to replace Sin Eq. 
(2.18) by the expression 

S= T*exp [i f d 4x 2" B(X)]. (2.32) 

We have found it very useful to express 2" B in terms of 
the Proca boson ZJ.'~ instead of the somewhat unphysical AJ.' . 
For that purpose !£ B is rewritten by making the substitu
tion 

- eAJ.'xaJ.' tP = - eaJ.' (AJ.'XtP) 

+ eAJ.'tPal-'X + eGxtP (2.33) 

and expressing !£ B as 

2" B = 2" BW) + 2" BIS)' (2.34) 

where 2" BIS) = - eal-'(A,.4'XtP). Then the substitution shown 
in Eq. (2.13) is made in!£ BW)' This leads to the expression 

~ ~ ~ 2e ~ ~ ~_ 

!£ BIV) = - eMZJ.'Zl-'tP - -ZJ.'aI-'GtP + eGtPX 
M 
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2"B(S) = -eal-' [(Zl-' + ~aJ.'X+ ~2aJ.'G)tPX]. 
(2.35b) 

2" BIS)' when integrated over the space-time continuum, 
leaves a surface term that in first order can be ignored. In 
higher order it gives rise to non vanishing contributions be
cause it appears in time-ordered products. For example, the 
expression - (!)e2T! al-' [AJ.' (x)X(x)tP(x)]av [Av (y)X( y)tP( y)] J, 
which occurs in the second-order S matrix, is given by 

The term (~)e2 (a laxv)(alaYv)T[AI-' (x)x(x)tP(x)Av( y) 
xxI y)tP( y)] is a surface term that $ives a va!!ishing contribu
tion, but !ie28(xo - Yo) [(alaxJ.' (x)X (x)tP(X)),A4( y)X( y)tP( y)] 
develops nonvanishing contributions that need to be includ
ed. ~imilarly the second-order term eT! al-' [AI-' (x)x(x)tP(x)] 
x!£ BW) (y) J needs to be included. We find that 

eT! aJ.' [AI-' (x)x(x)tP(x)] 2" BW)( y)J 
a ~ ~ 

= e2 - T [AI-' (x)X(x)tP(x)!£ BW)(y)] 
axl-' 

+ ie2[2A/(x)~(x) + ~(x)X2(x)]84(X - y). (2.37) 

The combined contribution, in second order, of these surface 
terms is to add an additional seagull term ! e2~x~ to 2" B (V) . 
In higher orders additional contributions from !£ B(S) arise. 
Analysis similar to the one completed here for the second
order case shows that quite generally the effect of 2" B (S) is to 
change the seagull term - !htP2X2 to (e2/2M 2) 
X (M2 - h)' 2)tP2X2. In addition, the surface term 2" BIS) ap
pears in contractions with normal-dependent terms. When 
these are systematically taken into account, their contribu
tions serve to c~cel t~e (i/M2)DJ.',4Dv.4D 4(X - y) term in Eq. 
(2.19) for (rl T[ZJ.' (x)Zv( y)]lr). With the changes that (l)the 
Z propagator exclude that normal-dependent term and (2) 
the seagull be modified as noted, the surface term can then be 
ignored. The S-matrix elements that we derived from 2" B 

can equivalently be reproduced with Feynman diagrams and 
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the rules for pro.ragators and verticesJisted in Table II. The 
replacement of A,.. by the Proca field Z,.. and the ghost fields 
and G may superficially appear to complicate rather than 
simplify the evaluation of S-matrix elements. In fact, the 
elimination of A,.. from .!f B by the use ofEq. (2.13) has two 
important advantages. In the first place the field contains a 
mixture of massive vector boson and massless ghost particle 
excitations. The appearance of A,.. in .!f B makes it very diffi
cult to choose a mass parameter as a natural subtraction 
eoint in the renormalizatio~procedure. As a result the use of 
A,.. as the field variable in 2" B would involve us in subtrac-

TABLE II. Feynman rules for the abelian Higgs model. 

Feynman rule 

3/2 1/2 
(2,,) 12Po) 

Graphical 
representation 

I -i Mko 

{27Tl~I2(2ko)1/2 Ik I (ito + ik' I ) 

'vvvvvvvV' 

----,-
p2+ (2h x,2) 

---~ 

-2ieM 8J..L,lI ~~ 
2ei<~ 8

fL
,1I 1M 

~ 
Ie -~-L 
_2ieko k' 1M 3 ~ 
21ekok'/M 

_>- + 1?_~ 
-21.

2
8/L,v + 

-21.
2

8/L.v ---t~--

Description 

external Proca boson 
linea 

external HIggS LIne 

external pure gauge 
ghost 

Proca propagator 

Higgs propagator 

X propagator 

X -G propagator 

X 
8' vertex 

~B2 vertex 

;e B3 vertex 

r 

~ 8 4 vertex 

~B5 vertex 

;;. 
B vertex 

~B7 vertex 

tions at unphysical mass values, and require mathematically 
complicated and uncertain analytic continuation of renor
malized quantities. 

Beyond that, the Lagrangian 2' B' when expressed in 
terms of Z,.. , generates many fewer graphs than it would 
when expressed in terms of A,... This is true in spite of the fact 
that .!f B may appear to contain fewer vertices when ex
pressed in terms of A,.. than it does after A,.. is replaced by Z,.. 
and ghost terms. This coupling of fields in propagators is 
such that for most processes the absence of those vertices 
eliminates unnecessary graphs. 

Graphical 
Feynman rule representation Description 

~ " 
2.2 k;8/L,v IH X B8 vertex 

k v v , 

if 
~ 

2.2 k'8 IH2 X 
B' vertex 

v P.lI k' v 

I 
~ 

:rB,o _21. 2 k'k'/H 2 ~ vertex 
k' !-, 

-2ie 2 ko k '1M 3 'i' 9
8

11 vertex k ~ 

~ 
_21. 2 k'k'/M

4 + ,(B'2 vertex 

3. 2 k' 8 1M -di"-- ?BI3 vertell 
11 fL'''' k'V'" 

I 

2.2 k' 8 1M2 k ~/L 
;(8'4 vertex 

/I fL,v -;l~--

t 
_2ie 4k.k'/M 2 k~ 

X" -;'T-- 8 
vertex 

_3i. 2k. k' 1M 3 k ~fL 
;( 8'· -.1-~- vertex 

_21e 2k.k'/M 4 -:~t-- 5? 
8'7 vertex 

- 3lihA. -.L /"8'8 vertex 

-3! ih + '? 8" vertex 

-311h ---t----
;Z B 20 vertex 

;;e 821+ £B23 vertex 
_ ie2(2h ;{2 _ 2M2)/M2 ----+----, , 

-21 ih _J ___ ;;t'B22 vertex 

'The polarization vector £"IAI(k) is that for a Proca field and is given by £" l'l(k) = £" I~(k (i = 1.2). ko kjlM Iklc5".J' ilkI/Mc5".4' 

bThe vertices .Y B' (where i = 1->23) are labeled in the order in which they appear in .Y B given in Eqs. (3.35a) and (3.35b). 
cThe arrows that appear in the graphical representations of the vertices indicate the direction of the momenta necessary to obtain the Feynman rules as given. 
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This effec~ is 'priml!,rilx due 10 the fa2t ~hat .Y BW) con
tains trilinear Z-Z:t/J, Z-G-t/J, G-X-t/J, G-g-!p, and X-;x-t/J 
vertices. But when AI-' is used, the t~linear A-A-t/J and A-i
t/J vertices occur. Since there is no Z-x mixed propagator, 
but there is an A-X mixed propagator (because of the ghost 
content of the A field) there are many more ways that propa
gators can_couple to external lines when the AI-' is used than 
when the ZI-' is used. For example, there are two second
order diagrams for t/J--Z-t/J--Z scattering, but five second
order diagrams for t/J--A-t/J--A scattering. In fourth-order 
calculations, the Lagrangian expressed in t~rms of AI-' con
tinues to eroduce many more graphs than !.t' B expressed in 
terms of ZI-" 

D. S-matrix equivalence theorem 

The purpose of this section is to demonstrate that the S 
matrix in the hybrid formulation, 

Sf,; = T*(nflexP[i f d 4x.Y B(X)] In;) , (2.38) 

may safely be substituted for the S matrix, S, given by 

Sf,; = 8f,; - 21Ti8(Ef - E; )(nfl Tin;), (2.39) 

where 

T=HB +HB[1/(E; -HA -HB +iE)]HB. (2.40) 

Equation (2.39) is the expression for the S matrix that follows 
from first principles, i.e., from the Hamiltonian HA + HB 
and the subsidiary condition B Q (k) In) = O. An entirely equi
valent form of S can be given by writing 

(nfITln) = (vfITlv;), 

where 

T=HB +HB[1/(E; -HA -HB +iE)]HB' 

(2.4la) 

(2.4lb) 

and where! v;) and I vf) obey the subsidiary condition 
fJ (+llv) = O. (nflT In;) and (vfl T Iv;) are identical because 
all operators and states in one of these expressions are unitar
ily equivalent to the corresponding expressions in the other. 
However, S differs fromS, a fact easily appreciated when Sis 
expressed in a different form. S is also given by 

Sf,; = 8f,; - 21Ti8(Ef - E;)(nirln;), 

where 

(2.42a) 

T=HB +HB[1/(E; -HA -HB +iE)]HB. (2.42b) 

In this formula for S, the states In) and the subsidiary condi
tionBQ(k)ln) = 0 are the same as inS, but the Hamiltonian 
HB differs from H B. Alternatively, we can unitarily trans
form S so that its Hamiltonian is H, exactly as in S, but then 
its initial and final states would not be the set Iv) that obeys 
fJ (+llv) = 0, but a different set of states Iv) A that obey 
fJ A (+ I(k) I v) A = O. In other words, S differs from S formally 
because the states and operators of these two quantities are 
not unitarily equivalent. In S changes in the subsidiary con
dition have been made by fiat. It is therefore necessary to 
carefully consider whether the S matrix S, evaluated with 
the rules derived from the hybrid formulation in Sec. II C, 
may be substituted for S. 

The argument that the substitution of S for S is harm
less is based upon the following assumptions. H, given by 
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H = H A + H B' and H, given by H = H A + H B, have the 
same antidipole limit HA.H and H are related by a unitary 
transformation, namely, 

H=VHV- I . (2.43) 

Where V* = V - I. V can be given explicitly as V = UUA - I. 
The spectrum of states for both Hamiltonians, Hand H, is 
determined by it .HA contains all effects that contribute 
mass to particle states except for mass renormalization ef
fects contributed by the perturbations that vanish in the anti
dipole limit. It is convenient to equate the particle masses 
that appear in H A to the physical masses and consider appro
priate counterterms to be included in the perturbing Hamil
tonian, but to be suppressed because they play no important 
role in this argument. These assumptions and the details of 
the argument itself are similar to the ones that are invoked in 
ordinary quantum electrodynamics, in which the vacuum is 
nondegenerate and carries the U(l) symmetry.6 

The argument proceeds from the observation that 

HB = HB V-I + (1 - V-I)H -HA(1 - V-I) (2.44) 

and similarly, that 

HB = V-IHB +H(I- V-I) - (1- V-I)HA. (2.45) 

From Eq. (2.44) and (2.45) we find that the "exact" scattering 
state I 'fin) given by 

I ~\) = In) + [1/(E; -H + iE)]HB In) (2.46) 

can be expressed as 

I iftn) = V I iPn) - iE V [1/(En + H + iE)] (1 - V -1)ln), 
(2.47a) 

with 

(2.47b) 

Tf,; can be expressed as 

Tf,; = (nfl [HB V-I + (1 - V-I)(H - Efl] I iftn(11)' 

(2.48) 

and, since 

(H - E;) I iftn (;) = [id(E; -H + iE)] H Bin;), (2.49) 

Tf,; is easily shown to be given by 

Tf,; = Tt.; - iE(nfl 
X [ (1 - V - I) [1/(E; -H + iEl] H B 

- H B [1/(E; - H + iE)] (1 - V - I)J 
xln) -(E; -Ef)(nfl(l- V-I)I'fIn(i)' (2.50) 

Equation (2.50) is the equivalence theorem that allows us to 
substitute S for S. On the energy shell, the only differences 
between Tand Tstem from the term iEL1, where 
L1 = (nfl(l- V-I)(E; -H+iE)-IHB -HB(E;-H 
+ iE)-I(l - V-I)ln;). The product iEL1 will vanish, in the 

limit E-0, unless L1 has 1/iE singularities. Except for dia
grams that are reducible to scattering diagrams with self
energy corrections in externallegs, L1 has no such 1/ iE singu
larities. The diagrams with self-energy corrections in 
external legs affect only the wavefunction renormalization 
constant. In ordinary, unbroken, quantum electrodynamics, 
similar arguments lead to the conclusion that it is not the 
unrenormalized, but the renormalized S matrix for which 
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the identity between the two representations holds. 7 Our sur
mise is that the same situation obtains in this case. It should 
be noted that when the masses in if A are the physical particle 
masses, L1 cannot produce more severe singularities than 11 
iE; singularities of the form (iE) -n with n > I can not occur in 
L1 when H has been mass renormalized. 

E. Z-¢-+Z-¢ scattering 

In this section we use the Feynman rules of Table II to 
calculate Z-"'-+Z-'" scattering which allows us to make 
some comparisons between the Higgs model when formulat
ed in the - representation and with other versions and repre
sentations of the theory. The 0 (e2

) Feynman diagrams that 
contribute to Z-"'-Z-'" scattering are given in Table III. 
When we use the Feynman rules in Table II to evaluate the 
Feynman diagrams in Table III, we find that 

(ZA' (k')f3 (p')IS !ZA (k)f3 (p) 

_ iEJL (A l(k)E,WI(k') 

- (21T)2( 16koko'po Po') 1/2 

X 84(k + P - k' - p') 

(2hA 2 + 2p.k ')(2hA 2 - 2p.k ) 

X {28JL ,,. [4M2( - 2M 2 + k.(p - p')) 

- (2hA 2 + 2p.k ')(2hA 2 - 2p.k )] 

+ PI' p,.'( - 2hA 2 - 2p·k') 

+ PI' p,.( - 2hA 2 + 2p·k )), (2,51) 

Again we note that when we use the form of the Lagrangian 
given in Eqs, (2.35a) and (2.35b) the calculation is consider
ably simplified since we need to consider only three diagrams 
whereas if we were to use the form of the Lagrangian given in 
Eq, (2.27), we would have to consider nine diagrams. 

When the form of the Lagrangian in Eqs. (2.35a) and 
(2.35b) is used, the massive vector particle states that appear 
in the incident and final scattering states correspond unam
biguously to excitations of the Proca field ZJL' However, 
when we use the form of the Lagrangian in Eq. (2,27), there is 
no longer a simple one-to-one correspondence between mas
sive particle states and field excitations, The nontransverse 
part of AI' consists of a linear superposition of massive a 
mode operators and R-type and Q-type ghost mode opera-

TABLE III. Feynman diagrams for Z-IjJ-+Z-I{; scattering. 

S-matrix element Feynman diagram 
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tors. When testing for "gauge invariance," it is necessary to 
project the initial and final "pure gauge" ghost, but at the 
same time, to avoid projecting any part of ZJL' The polariza
tion kJL = (k,lkl), which is the proper projection for the 
"pure gauge" ghost in ordinary, unbroken, electrodynamics, 
is quite wrong for this model. We will discuss this point in 
detail in the next section. 

We also note that since the longitudinal Proca particle 
is projected by EJL 131(k) = (1IM)(kokj llkI8JLJ + ilkl8JL, 4), in 
the limit in which M->D, Z-"'-+Z-'" scattering is dominated 
by the scattering oflongitudinal particle states in agreement 
with Lowenstein and Schroer. 8 

III. GAUGE INVARIANCE AND THE DYNAMIC 
DETACHMENT OF PURE GAUGE STATES 

Quantum electrodynamics is invariant under the group 
of U( 1) local gauge transformations. The "Higgs" model is a 
special case of quantum electrodynamics of charged scalar 
fields, The features that characterize this model are the self
interactions of the scalar field, which make the vacuum de
generate. These features do not interfere with the U( 1) invar
iance of the Lagrangian, but they inhibit the transmission of 
that in variance to a particular vacuum state. Gauge invar
iance, when it is understood to include arbitrary gauge func
tions, is a subtle question, which is probably not fully re
solved even now. Gauge invariance in QED is, however, 
usually understood in a restricted sense to apply to manifest
ly covariant formulations, in which the gauge-fixing field is 
free, And it is usually restricted to invariance to transforma
tions in which gauge functions obey D' Alembert's equation, 
When understood in this sense, gauge invariance is equiva
lent to the property we call "dynamic detachment of pure 
gauge ghosts." This property refers to the fact that when 
"pure gauge" photons are parts of state vectors, S-matrix 
elements vanish when they connect those state vectors to 
other state vectors that represent observable states. Pure 
gauge photon stateS are those that include the ghost particle 
that obeys the subsidiary condition. In representations in 
which the subsidiary condition takes the form BQ (k)ln) = 0, 
the "pure gauge" states have the form 

(3,1) 

where In') is devoid of all ghosts, In other words, In) pg can 
have any number of BQ ghosts and observable particles, but 
no particles generated by BR *(k) acting on other states, Be
cause the unit operator (in the one-particle ghost sector) is 
BR *(k)lr) (rIBQ(k) + BQ *(kllr) (rIBR(k), and in the many
particle sector the same configuration of ghost creation and 
annihilation operators obtains, the S matrix to a pure gauge 
state, (nlpgS Ii), is the probability amplitude for finding 
BR *(k)ln') states, Thus the dynamic detachment of pure 
gauge states implies that the final scattering will be devoid of 
B R * ghosts. Since the S matrix to (n' IB R (k) final states does 
not vanish, the final scattering state will include BQ * ghosts, 
but since BQ * ghosts have vanishing norm, no probability is 
absorbed by these states, and the dynamic detachment of 
pure gauge states suffices to guarantee unitarity in the phys-
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ical subspace. 
This account is equally valid for the "Higgs" model and 

for ordinary quantum electrodynamics, in which there are 
no self-interactions that make the vacuum state degenerate. 
There are, however, great differences in the relationships of 
the ghost particles to the excitations of the vector field that 
distinguish the Higgs model from ordinary electrodynamics. 
In ordinary quantum electrodynamics the fact that 
G = a A ,combined with the fact that all time dependence 
in the int:raction picture is "plane wave" [i.e., exp( ± ik,. xI" ) 
with ko = Ikll makes the pure gauge photon annihilation 
and creation operators proportional to kl" al" (k) and 
k a *(k), respectively. S-matrix elements to pure gauge 
gho;ts are evaluated by using the external particle polariza
tion k (with ko = Iki) to project the pure gauge ghost parti
cle. This accounts for the so-called "test for guage invar
iance" in ordinary quantum electrodynamics, in which the 
vacuum is nondegenerate. When a photon line in an S-ma
trix element is projected with a polarization kl" ' the S-matrix 
element vanishes. 

In the Higgs model, Eq. (2.12) indicates the relation 
between the pure gauge ghost and vector field excitations. 
a A is still equal to G, but the time dependence of the inter
a~ti;n picture fields is more complicated in this case. 
a Z = 0 is an identity, and the pure gauge ghost excita-

I" I" . 
tions remain in i. The pure gauge ghost has become qUlte 
detached from the massive Proca field, and the rule for pro
jecting it does not resemble the corresponding rule in ordi
nary quantum electrodynamics. 

The Higgs model in the exact formulation, in the trans
formed representation in which the subsidiary condition is 
n (+)(k)ln) = 0 (or equivalently BQ(k)ln) = 0) can trivially 
be shown to imply vanishing S-matrix elemen!s to pure 
gauge ghost states. The reason is simply that H B has no 
B R (k) or B R *(k) operators anywhere at all. This fact has as an 
immediate consequence that for a pure gauge state 
In)pg = BQ *(k)ln') and an initial state Ii), where Ii) is an 
ordinary observable particle, 

vanishes, since BQ(k) commutes with jj B' This fact implies 
that, in the hybrid formulation, 

(3.3) 

vanishes. The two formulations in this case are liot related by 
a gauge transformation. It is t~e equivalence theorem, prov
en in Sec. II D, that requires Sf,i to vanish when Sf,i does. 
Even though this is a conclusive argument to demonstrate 
that S . to pure gauge states vanishes, we will use the Feyn-'f,. 

man rules given in Table II to evaluate the lowest-order S-
matrix elements for two pure gauge processes, to demon
strate the proper projection for pure gauge ghosts, and to 
illustrate how these S-matrix elements vanish. First we con
sider the process Z-¢'_pure gauge ghost-¢, to 0 (e2

). The 
general form of a matrix element in the model is given by 
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~ (ml 
Sf,i = M I"' .2"· •...• 23"" 

(3.4) 

The index m labels the set of contractions that leads to a 
single Feynman graph, with graphs that are related by cross
ing symmetry included under a single index. The on~ or 
two-digit sub or superscripts i or ij (or n i or nij and !f B' or 
}j B" ) refer to the interaction te,!ID liste<! in Table II. n i or nij 
refers to the number of times .Y B' or.Y B'i, respectively, 
occurs in the corresponding graph. ~ p indicates a sum over 
all permutations of space-time variables. The matrix ele
ments that contribute to Z-¢'_pure gauge ghost-¢' scatter
ing are obtained by replacing Ii) by IZ.dk).8 (p) and (II by 
(BQ(k ').8 (p') I in Eq. (3.4). In Table IV we exhibit the Feyn
man diagrams that contribute to Z-¢'-pure gauge ghost-¢, 
scattering. When we use the Feynman rules of Table II to 
evaluate the amplitudes represented by the Feynman dia
grams of Table IV, we find 

M 2.5 (I) = 4L (k,k ',p,p')1" (sl"svk/ls2 + tl"tyky'lt 2), 

M 8(1) = - 2L (k,k ',p,p')l"kl"" 

M 2.22 (I) = - 2(2hA. 2)L (k,k ',p,p')1" (sl"ls2 + tl"lt 2), 

with 

ie2 

L (k,k ',p,p')1" = (21T)2(16koko
'PoPo')1I2 

(3.Sa) 

(3.Sb) 

(3.Sc) 

X koEI" IAl(k)8
4
(k + p - k' - p') , (3.Sd) 

Ik'l(ko' + Ik'll 
andsl" = (k + p)1" andtl" = (k '_ p)I"' ~hen we evaluate the 
on-shell amplitude in Eqs. (3.Sa), (3.Sb), and (3.Sc), we find 

M (I) + M (1) + M (I) = 0 (3.6) 2,5 2.22 8 . 

Equation (3.6) demonstrates the dynamic detachment of 
pure gauge states in the one ghost sector of the physical sub
space. We note that, in order to obtain the correct result 

TABLE IV. Feynman diagrams for Z-1/I-+pure gauge ghost-¢, scattering. 

S-matrix element 

r- t-< 
r---< 

Feynman diagram 

x 
G. Bishop and K. Haller 943 



                                                                                                                                    

given in Eq. (3.6), we must include the Higgs self-coupling 
vertex !i' Bn. This is not surprising when we consider that 
the coupling coefficient h is implicitly dependent on the elec
tric charge and can be expressed as the positive constant 
h)' = - e(2h)' 2)1(2M). We also note that, in contrast to the 
established practice in ordinary quantum electrodynamics, 
the diagrams in Table IV cannot be obtained by replacing an 
external Z line with a pure gauge ghost line in Z-t/J-Z-t/J 
scattering. 

We now proceed to demonstrate dynamic detachment 
of pure gauge states in the two-ghost sector of the physical 
state space and consider t,b-pure gauge ghost-t,b-pure gauge 
ghost scattering. In Table V we exhibit the Feynman dia
grams that contribute to t,b-pure gauge ghost-t/J-pure gauge 
ghost scattering. We note that in the last seagull diagram we 
have included the contribution of the surface term. When we 

TABLE V. Feynman diagrams for ¢-pure gauge ghost->pure gauge ghost-
1f scattering. 

S-matrix element 

M~~,5 

Feynman diagram 

, 
- ---\ < 

j---+\ + 

/ 
. . 
';=n--f--<.,z 
I \ 

/ \ 

, 

I---~ < 

/ \ 

,c 
::~y 

",--

\~--c/ 
--,~--::~ 

...... 
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use the Feynman rules in Table II to evaluate the amplitUdes 
represented by the Feynman diagrams in Table V, we find 
that 

M (I) _ N(k k' ')6 (2M 2) k·k' 
5,18 - "p,p M2 (p _ p')2 + 2M 2' (3.7a) 

M
I8

,22 (I) = N(k,k ',p,p')3 (2hA 2f 1 (3.7b) 
M2 (p_p')2+2h).2' 

M (1) 
5,22 

= _ N(k k' ')2 (2h)' 2) [s.(k + k ')(S2 + M2) 
"p,p M2 S4 

t.(k + k ')(t 2 + M2)] 
+ 4 ' t 

M (I)=N(kk' ,)~[k'Sk,.s(s2+M2) 
5,5 , ,p,p M2 S4 

k.tk '.t (t 2 + M2) ] 
+ 4 ' t 

(3,7c) 

(3,7d) 

M (I)=N(kk' ') (2h).2)2 (s2+M2 t2+M2) 
22,22 "p,p M 2 4 + 4 ' 

s t 
(3,7e) 

M (I) = N(k k' ')2 [s.(k + k ') t.(k + k ')] 
3,5 "p,p 2 + 2 ' 

s t 
(3,7f) 

M3 22 (I) = N(k,k ',p,p')2(2h)' 2) (~+~), 
, s t 

(3.7g) 

M lO(I) = N(k,k ',p,p') ~ k·k', 
M 

(3,7h) 

and 

M
2
t) + M

23
(1) = _ N(k,k ',p,p') (2h)' ~/M2) , (3,7i) 

where 

N(k k' ') _ ie
2 

koko' 
, ,p,p - (21T)2(16koko'PoPo')1/21kfik1 

X tJ4(k + p - k' - p') , (3,8) 
(ko + Ikl)(ko' + Ik'l) 

When we use the mass shell constraint for the external mo
menta and the fact that p·k ' = k.p', we find 

M 5. 18 (I) + M 18,22 (I) + MS,22 (I) + Ms,s II) + M 22,22 (I) 

+ MS,3 (I) + M 22 ,3 (I) + M lO(1) + M22
(1

) + M 23(1) = O. 
(3.9) 

Equation (3.9) exhibits detachment of pure gauge states in 
the two-ghost sector of the physical state space. We note that 
the contribution of the surface term is essential in effecting 
important subtractions necessary for the result in Eq. (3.9). 
The calculations above serve to demonstrate that, in the ~ 
representation, detachment of pure gauge states obtains as 
required by the S-matrix equivalence theorem. 

IV. RENORMALIZATION AND RELATED MATTERS 

It is apparent from earlier parts of this paper that the S 
matrix for the abelian Higgs model can be given a number of 
alternative formulations and that these formulations are re
lated by a much broader class of relationships than only 
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gauge transformations. Different formulations are useful for 
different purposes. For example, in Sec. III we saw that the 
Lagrangian given in Eqs. (2.35a) and (2.35b), and represented 
by the Feynman rules in Table II, is very suitable for the 
demonstration that "gauge invariance holds," i.e., that for
bidden ghost states detach dynamically from observable 
states. Equations (2.35a) and (2.35b) also give the form of the 
Lagrangian that is most directly applicable to evaluating S
matrix elements when zero-helicity vector particles are 
among the initial and final states. In this section we will 
observe that the form of the Lagrangian given in Eq. (2.27) is 
very useful for a discussion of ultraviolet infinities, and we 
will make some further comments on the renormalizability 
of this model. 

A number of proofs can be found in the literature that 
the Feynman rules for the abelian Higgs model lead to renor
malizable S-matrix elements.9-12 One important observation 
in the published demonstrations is that the abelian Higgs 
model can be described by Lagrangians in which the interac
tion terms are products of operator fields with canonical di
mensions that make it possible to extract all infinities from a 
diagram with a number of subtractions that depends only on 
the diagram's number of external lines. The form of the La
grangian in our Eq. 13.27) has that property; as a manifesta
tion of that fact, the AI' propagator is dominated by tJl'.Jk 2 
at high frequency. When such a Lagrangian is used, a finite 
number of counterterms suffices to remove infinities, and the 
model is renormalizable. We have very little to add to the 
technical aspects of the argument in Refs. 8-12. Instead we 
will deal with the dynamical processes in this model that 
control the highly divergent Proca propagator generated by 
the ZI' field, and discuss some other aspects of the renormal
ization program. 

It has sometimes been suggested that the Higgs model is 
renormalizable because the massive vector particle is "not 
quite" the conventional one and that the vector propagator 
differs from the Proca propagator because the vector particle 
itself differs in some essential way from a Proca spin one 
particle. 13 Our findings, however, are that the vector parti
cles in this theory (the excitations of the ZI' field) are quite 
ordinary Proca particles and give rise to Proca propagators, 
which by themselves would result in uncontrollable infini
ties. The theory becomes renormalizable in the case of the 
abelian Higgs model because of the relation between the 
Proca field and the ghosts. We remark that in a theory with 
vector fields and "normal" nondegenerate vacuum, the fol
lowing options usually exist. Either the fields are massless 
(like the photon); then they have only two observable helicity 
modes that transform like scalars,14 and in the Feynman 
rules the ghost modes are responsible for mediating the Cou
lomb interaction. Alternatively, the fields may be massive; 
then they have three helicity components which transform 
among themselves under the Lorentz group. 15 The theory 
then requires no ghost states in its formulation. The novel 
element in the case of the abelian Higgs model is the simulta
neous presence of the Proca field ZI" with all helicity com
ponents included in the positive metric space, and massless 
ghosts, all coupled to the same sources. It is this that allows 
the theory to be renormalizable. The electromagnetic origin 
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of the Lagrangian in effect imposes a coupling rule that de
mands that ZI' be coupled to other fields only in the combi
nationAl' = ZI' + (1/M)aI'X + (lIM 2)al' G, and this in
sures renormalizable propagators. Thus, for example, if 
empirical considerations were to indicate the need for Z-Z
t/J coupling, this rule would require us to postulate the A-A-t/J 
vertex; we would consequently obtain, in addition to Z-Z-t/J, 
the vertices (1/M)Zl'al' Gt/J, (lIM2)Zl'aI'Xt/J, (1/ 
M2)al' Gal' Gt/J, (lIM 3 )a1' GaI'Xt/J, and (lIM4)aI'XaI'Xt/J. 
However, an arbitrary selection of vertices, involving the 
combination of vector bosons and ghosts designated by AI' ' 
would not necessarily preserve unitarity in the physical sub
space. The combination of vertices in 5t' B preserves unitar
ity because 5t' B leads to equations of motion that guarantee 
the free field equation DG = 0 for the gauge-fixing field G. In 
the transformation ofEq. (2.27) to Eqs. (2.35a) and 2.35b) the 
coupling rule described above is obscured because the com
bination of vertices in 5t' B' by guaranteeing the free-field 
equation for G, produces cancellation among a number of 
vertices that result when Eq. (2.27) is expanded to show the 
Proca and ghost components separately. The Lagrangian 
given in Eqs. (2.35a) and (2.35b) preserves renormalizability 
through a set of relationships among different classes of dia
grams. We will not discuss that feature any further in this 
paper, but interested readers can find a discussion else
where. 16 

One very important element in the theory is the "antidi
pole limit" Hamiltonian HA (and its similarity transform 
HA)' HA, which includes only the tree approximation to the 
vacuum expectation value of l/J, gives rise to a particle spec
trum with massive particles that Lorentz-transform self
consistently under the time translation imposed by H A • This 
fact plays a significant role in our ability to develop and re
normalize this theory. The fact that the self-mass corrections 
due to the perturbations imposed by 5t' B are identical for all 
helicity components of ZI' and that these perturbations leave 
the ghost modes of G massless allows us to use H A to de
scribe the spectrum of incident and scattered particle states 
in calculating S-matrix elements. It is apparent from the 
Feynman rules in Table II that 5t' B contributes self-mass 
corrections that are identical for all three helicity compon
ents of ZI" We observe that the helicity modes of the Proca 
particle are projected by the factor EI' ('1(k), where EI' (± I(k) 
refers to transverse (massive) helicity modes and Ell (31(k) 
= (1/M)(kokj/lkI8IlJ + ilkl tJl',4)(with ko

2 = M2 + Ik1 2) re
fers to the zero-helicity mode. For all three Ell ('1(k), it is 
straightforward to show that Ell ('ikl' = 0 and Ell (f)(k)EI' ('1(k) 
= 1. The vertices in Table II are 8 functions for 4-momenta, 

multiplied either by constants or by the momentum of a 
ghost line. The momentum factor can contract into Ell ('1(k) 
through the tJ functions at vertices. Ell ('i(k) is therefore either 
contracted on kl' (in which case it vanishes) or on an internal 
momentum. In the latter case the only surviving term in a 
self-energy calculation is l:1l EI' ('i(k)EI' ('1(k) = 1 (i not 
summed), multiplied by a helicity-independent integral. The 
fact that the self-mass corrections due to 5t' B affect the three 
helicity components of the Proca particles in identical ways 
and the fact that the continued validity of DG = 0 keeps the 
ghosts massless allow us to conclude that the spectrum gen-
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erated by II A is stable to the perturbation imposed by !L' B • If 
the Hamiltonian had been divided into a "noninteracting" 
and a "perturbing" part in a different way, so that the spec
trum ofthe former were not stable to the perturbing effects of 
the latter, we could not have used the form of the S matrix 
given in Eq. (2.38). We also could not have applied the equiv
alence theorem given in Sec. II D, which requires that the 
spectrum of the mass-renormalized "noninteracting" Ha
miltonian is not changed by the perturbations. Consider, for 
example, the use of Ho (the limit of Has e-o and eA-o, but 
hA 2 -AO) as the "noninteracting" part of H and the remaining 
HI' as the perturbation. The spectrum generated by Ho in
cludes massless photons (transverse as well as ghost modes), 
Higgs scalars, and Goldstone bosons. This spectrum, how
ever, is not stable to the perturbation imposed by HI (or its 
equivalent T ·-ordered Lagrangian form). Among the inter
actions that perturb H 0' two are dependent only on e in com
bination with the vacuum expectation value of ¢, as the pro
duct eA = M. These two are - (M 2/2)A A and MA J X /.l /.l /.l /.l • 

They are responsible for vertices - M 204(k - k ') and 
iMk/.104(k - k '), respectively. The self-energy function of the 
photon is modified by these two in all possible alternations of 
photon and Goldstone lines (0/.l.v/k 2 and 11k 2, respectively), 
as shown in Fig. 1. The sum of all - M 204(k - k ') insertions 
into the photon propagators can be calculated exactly and is 
o/.l,v/(M 2 + k 2). The result of all possible Goldstone line in
sertions into this sum leads to o/.l,j(M 2 + k 2) + [M2k/.lkv/ 
k 2(M2 + k 2f]{ 1 +M2/(M2 + k 2) + ... + [M2/ 
(M 2 + k 2W + ... J, which sums to the "exact propagator [11 
(M 2 + k 2)](0/.l.v + M 2k/.l kjk 4). Fortransversephotonsthis 
propagator has a pole at k 2 + M 2 = O. But for the ghosts 
projected with the polarization k/.l the projected propagator 
becomes(k 2 + M2)/(k 2 + M 2)andthepoleatk 2 + M2 = 0 
disappears. It is apparent that the perturbation due to the 
two terms - (M2/2)A/.lA/.l + MA/.lJ/.lX does not affect the 
self-mass of the four components of A/.l in identical ways and 
therefore destabilizes the spectrum, It is also easy to estab
lish that the Goldstone propagator is affected. The Gold
stone propagator is given by the graphs in Fig. 2, which sum 
to (k 2 + M2)/k 4. These features make it clear thatHo is not 
suitable as an "interaction-free" Hamiltonian to generate a 
spectrum of incident and scattered particles and to time
translate the interaction picture. What this analysis cannot 
show are the results we previ~usly demonstrated: that Z/.l 

becomes a vector field when HA time-translates the interac
tion picture and that the ghost components no longer mix 
with Z/.l under Lorentz transformations. 

+ fVVVVV\J - - - - VVVVVV'v 

+ IVVVVV\J - - - - V\IV\f\./VXIVVV +. . . 

FIG. I. Feynman diagrams in which e appears only in the combination 
eA = M and that modify the photon self-energy function. 
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-----=-----+-----~----

+----~----

+-----~----~-----+ ... 

FIG. 2. Feynman diagrams in which e appears only in the combination 
eA = M and that modify the X self-energy function. 

The infrared divergences in the abelian Higgs model 
can arise only from ghosts. and their resolution cannot de
pend on cancellations involving incoherently added elastic 
radiative processes, such as happens in the Bloch-Nordsiek 
analysis of ordinary quantum electrodynamics. This is be
cause all observable particles in this model have non vanish
ing mass. It is useful to recall that of the components of the 
Hamiltonian H only HI,Tt H C(R P and H h contribute to tran
sition amplitudes. HQ plays no role in evaluating the ampli
tude of any physical process. HI,T' H C(R I' and Hh describe 
interactions among massive particles only. The only possible 
source of infrared divergences are the nonlocal form factors 
1IIki or 1IIkl2 that arise inHC(R I and Hh and the transmis
sion of infrared behavior from H C(R I from one factor to an
other through delta functions in momenta. This opens an 
avenue for resolving infrared infinities in this model that 
probably should be explored. We will not, however, address 
that problem any further in this paper. 

V. DISCUSSION 

In this section we will summarize some important dif
ferences between theories in which vector bosons have dyna
mical mass and those in which the mass stems from a spon
taneously broken symmetry. 

Quantum electrodynamics, in a manifestly covariant 
formulation, can only be formulated in an indefinite metric 
space with a subsidiary condition, whether the vacuum state 
is degenerate or not. When the Lagrangian for a vector boson 
includes a dynamical mass, then its manifestly covariant 
form can be, and usually is, formulated in a positive-definite 
metric Hilbert space without any subsidiary constraints that 
are independent of Lagrange's equations. Nevertheless, this 
difference in the formulation and in the underlying space 
does not mark a crucial difference between vector boson the
ories with dynamical and Higgs masses. It is possible, 
though not necessary, to formulate a vector boson theory 
with dynamical mass in an indefinite metric space. When 
such a theory represents a neutral field interacting with a 
charged particle, the interactions can be treated consistently 
by using a subsidiary condition. I? In such a theory the La
grangian would be given by 

y = - !Fp.vFp.v - GJ/.lA/.l + !(1- y)G 2 

- M2A/.lA/.l - Dp. t¢ tD/.l¢ - m 2¢ t¢ (5.1) 

for a charged boson or 

y = -IF/.lvF/.lv - GJ/.lA/.l + !(1 - y)G 2 

-M2A/.lA/.l - ¢[m + Y/.l(J/.l - ieA/.l)]t/! (5.2) 
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for a charged fermion. m designates the positive mass of the 
charged particle and M the dynamical mass of the neutral 
vector field. The equations of motion demonstrate that there 
is a conserved currentjll and that the gauge-fixing field 
obeys the equation 

(5.3) 

This equation allows the imposition of a subsidiary condi
tion 

(5.4) 

and the further development of this equation, to eliminate 
the ghost degrees offreedom, that has been reported in detail 
in previous publications. Equations (5.1) and (5.2) are invar
iant to gauge transformations by gauge functions that obey 
(0 - M 2)A = 0. 18 The equations of motion that follow from 
Eqs. (5.1) and (5.2) include 

avFl'v - M2AI' + al' G = - jl' (5.5) 

for the appropriate conserved currentjll' and 

al'AI' = (1 - y)G. (5.6) 

When the propagators are evaluated by inverting the equa
tions for the fields, we find that the transverse components of 
All propagate like a particle with mass M. This M is the same 
mass as appears in Eq. (5.3) for the ghost components; hence 
all components of the All propagate at the same rate. The 
zero-helicity mode of the vector boson is part of the field All 
and extends into the part of the space in which the metric is 
indefinite. It is in this respect that this theory differs most 
markedly and significantly from the abelian Higgs model. In 
the case of the latter, the transverse components of All be
come massive, but the ghosts never do, because the equation 
OG = 0 never loses its validity. The zero-helicity component 
of the vector boson has a very different origin. It includes in 
its composition the particle that would have been the Gold
stone boson in the absence of the electromagnetic interac
tion, but that, in the process of helping the transverse photon 
to become massive, must accept that same mass itself. To 
understand in some heuristic sense what mechanisms contri
bute to making the transverse photons massive, it is neces
sary to focus one's attention on the vacuum expectation val
ue of ¢. This quantity carries all the quantum numbers of ¢, 
but has no dynamical degrees of freedom. In the evaluation 
of interaction terms, for example, e2¢ t ¢AIlAIl' the part of ¢ 
that corresponds to the vacuum expectation value can con
tribute no particle excitations for the various momentum 
modes. The spatial integral of e2¢ t ¢AIlAI' is e2,.l, 2SAil (x) 
XAI' (x) dx. When we invert the equations of motion, 
e2,.l, 2AI'AI' contributes an inertia-carrying term to the propa
gator, whereas e2¢ t ¢AI'AI' would have contributed to the 
source (vertex) terms only, had ¢ and (¢ t) consisted of quan
tized excitation modes instead of developing a vacuum ex
pectation value. 

Finally, a comment about Goldstone's theorem. The 
mechanism by which the abelian Higgs model manages to 
either evade the Goldstone theorem (in gauges that are not 
manifestly covariant) or obey it (in manifestly covariant 
gauges) have often been discussed. In our formulation we 
have an opportunity to explicitly identify the Goldstone bo-
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son and to trace the steps taken to prove the Goldstone 
theorem, using the antidipole limit Hamiltonian as a realiza
tions of a model in which mass is generated for a vector 
boson from the vacuum expectation value of a charge bear
ingfield. We find thatthe charge Q (t) = S}o(x,t) dxisgivenby 

Q(t) = - i~2 fdkM8(k){a(k,t) - a*( - k,t) 
2(21T) ko 

+iM 1 [BQ(k,t)+BQ*(-k,t)]} , (5.7) 
V2 ko + Ikl 

where the time dependence is imposed by exp( - iHA t). The 
form of time-dependent excitation operators has been re
ported by us previously and are 

and 

a(k,t) = a(k)e - ikot, 

a*(k,t) = a(k)eikot
, 

BQ(k,t) = BQ(k)e- ilklt, 

BQ *(k,t) = BQ *(k)eilklt. 

(S.8a) 

(S.8b) 

(S.8c) 

(S.8d) 

This explicit time dependence ofEq. (5.1) still does not per
mit us to unambiguously determine whether Q is time inde
pendent, because of the indeterminancies inherent in the 
product of the operator-valued a(k,t), a*( - k,t), BQ(k,t), 
BQ *( - k,t), and the factor IkI8(k). Because of these difficul
ties in representing the total charge operator it is not clear 
how to carry out the step in the proof of Goldstone's theorem 
that requires evaluation of [Q,X(x ' ,t ')]. However, if we evalu
ate the commutator [}o(x,t ),X(x',t ')] first and only then per
form the S dx, we find that 

f dx[}o(x,t ),X(x',t ')l = iM. (5.9) 

Ifwe evaluate the vacuum expectation value of Eq. (5.9) in 
the y vacuum, we find that the massless "Goldstone" excita
tions, whose existence is a necessary consequence of Eq. 
(5.6), are the electrodynamic ghosts. 
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We define a GL(n,e) matrix-valued function G on a six-dimensional space of null paths in 
Minkowski space. Such paths are defined to begin at an arbitrary spacetime point x a and end at 
future null infinity. The space of these paths can thus be parametrized by giving the point x a and 
null direction. We show how knowledge ofG can be used to obtain the GL(n,e) Yang-Mills 
connection at xa. We also derive a single equation for G, involving characteristic data given on null 
infinity, which is equivalent to the currentless or vacuum Yang-Mills field equations. The self
dual (anti-self-dual) nonabelian fields and the general abelian cases are described as special 
examples. 

PACS numbers: 11.l'5.-ql, 02.30. + g 

I. INTRODUCTION 

It is the purpose of this paper to present a reformulation 
of classical GL(n,e) Yang-Mills theory. 1,2 The reformula
tion is in terms of a single matrix-valued function G on a six
dimensional subspace of the space of paths in Minkowski 
space M. This subspace is defined as the null paths beginning 
at each point (xa) of M and ending at future null infinity 
/+3. A convenient parametrization of these paths is to give 
the Minkowski coordinates x a of the starting point and the 
(complex) stereographic coordinates (;,; ) on S 2 which label 
the light cone generators of xa. A path is thus labeled by 
(xa,;,;). The function G (xa,;,;) is defined by the parallel 
propagation (with a given connection) of n linearly indepen
dent fiber vectors, from x a to null infinity along the (;,; ) 
generator. 

We will show how, from knowledge of G (xa,;,;), the 
connection one-form Ya at the point xa can be obtained. Fur
thermore we will show how the vacuum Yang-Mills equa
tions can be imposed on the G. This results in a rather com
plicated integro-differential equation for G which involves 
the characteristic initial data (essentially the radiation field) 
acting as the driving term. Two simple special cases are im
mediately obtainable; in the case of self-dual (or anti-self
dual) fields we obtain a simple derivation of the Sparling 
equation,4.5 namely oG = - GA, while for abelian (Max
well) theories we obtain the equation 

oatn G- M - oA, 
where A and its conjugate A are the characteristic free data 
given on null infinity. The latter equation is equivalent to the 
vacuum Maxwell equations. 

In Sec. II we will review some material from vector 
bundle theory6 and introduce our notation. In Sec. III we 
will describe a light cone calculus (involving two types of 
covariant differentiation) which forms the foundation of 
much of our later calculations. In Sec. IV we will discuss 
G (xa,;,;) and its definition in terms of the parallel propaga
tion of the n linearly independent vectors from x a to infinity 

"This work has been supported by a grant from the NSF. 

assuming some connection Ya' while in Sec. V we solve the 
inverse problem, namely how the Ya (xa) can be obtained 
from G (xa,;,;). We also give the necessary conditions on G 
such that the Ya exists. Sections IV and V thus establishes a 
correspondence between connections and the functions G. 
Finally, in Sec. VI we impose the vacuum Yang-Mills equa
tions on the connection and find the resulting equation for G. 
The two special cases of self-dual and abelian fields are dis
cussed there. 

In the conclusion we discuss possible generalizations 
and specialization of this work and in addition show the 
relationship of the work to the holonomy group. 

We include four appendices. The first three give de
tailed proofs of some assertions made in the text while the 
last gives an alternate proof of our equation for G in the self
dual and abelian cases. 

II. NOTATION AND CONVENTIONS 

On Minkowski space M we will consider the trivial vec
tor bundle B (each fiber being an n-complex-dimensional 
vector space), i.e., B = M X en. The global vector fields eA 

(A = l, ... ,n) form a basis set as does 

e~ = GAB(xa)eB, (2.1) 

with GAB (xa) being GL(n,e) matrix-valued functions on M. 
The connection or parallel transfer of vectors is introduced 
by defining Va by 

(2.2) 

with 

(2.3) 

being the connection (matrix-valued) one-form. One then de
fines the covariant derivative of an arbitrary vector 
V= VAeA by 

Va V= (VA.a + V Br1a)eA, (2.4) 

with a comma denoting the ordinary derivatives with respect 
to the Minkowski coordinates xa. 

From (2.1) it follows that under a change in basis 
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Y,B _ G C G - IB + G c.-D G - IB 
A - A,a CAr Ca D , (2.5a) 

or in matrix notation, 

y~=G'aG-I+GraG-l. (2.5b) 

The curvature tensor or gauge field of this connection is de
fined by 

Fab = Yb.a - Ya.b - [Ya 'Yb ], (2.6) 

with [Ya'Yb] =YaYb -YbYa· From (2.5)oneobtains 

F~b = GFabG -I. (2.7) 

The curvature tensor satisfies the Bianchi identities 

(2.8a) 

or 

"rJab r = O. (2.8b) 

The dual field is defined by 

F:b = !1JabcdFcd,1Jahcd = ( - g) l/2Eabcd , (2.9) 

with Eabcd the alternating symbol, with E0123 = - 1. 
We now write the Yang-Mills field equations as 

(2.10) 

where gbC is the Minkowski metric and Ja is the current. We 
note that if F:b = ± iFab (i.e., Fab is self-dual or anti-self
dual), then (2.10) is automatically satisfied with Ja = O. 

We next recall that if ;, ; are stereographic coordinates 
labeling the points on a sphere (; = ei¢cot !B ), and/is a func
tion of these coordinates, then we can define the differential 
operators 7 a and a by 

0/ = 2P I -- s ; (pr), (2.11) 

and 

a/= 2pl +s ~ (P-Y), 

where P = ! (I + ;; ) and s is the spin weight off For future 
reference we note that 

(da - ad)/ = - 2sf (2.12) 

As an important application, we consider the (complex) 
light cone at a point x a in M. We can parametrize directions 
on this cone by ; and; and in a Minkowski coordinate sys
tem [xa = (t,x,y,z) J we then define 

I a(;';) = + (1 + ;;,; + ;,i(; - ; ), - 1 + ;; ), 
2v2P 

(2.13a) 

rna = Of a, (2.13b) 

m a = ala, 

na = la + oala, 

(2.13c) 

(2.13d) 

where we assign to the vector I a in (2.13a) the spin weight O. 
It is then easily verified that 

(2.14) 

all other scalar products being zero. It is also not difficult to 
show that 
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om a = oma = 0, 

ama = oma = (na _Ia), 

(2.15) 

We note that as; moves over the complex plane, I U and nU 

range over all real null directions. This will be of importance 
in the next section. 

For future use we introduce the matricesS 

IIXoABl1 =Xo=Fab lamh, 

IlxlA B II = XI = Wab(lanb + mUm!», 

IIx2A B II = X2 = Fahmam b, 

as the anti-self-dual components of Fub ' and 

IIXnA B I i = Xn = Fub/amb, 

IlxlA B i I = Xl = Wab(/Unb - mam b
), 

IIx2A B II = X2 = Fabmun b, 

as the self-dual components of Fab . 

(2.16) 

(2.17) 

Finally we recall how to define a null polar coordinate 
system in Minkowski space based on the null cones emanat
ing from a timelike geodesic L. 

Beginning with Minkowski coordinates xa, we intro
duce null polar coordinates (u,r,1J,rj) by 

XU = uta + rh1J,rj), (2.18) 

with 7 a having the same functional form as in (2.13a), and t U 

being a constant vector tangent to L with t ata = 2. u is (pro
portional to) the proper time along the world line L, (x a 

= ut a), r is a normalized affine length measured along the 
null rays leaving L, and 1J and rj are complex stereographic 
coordinates labeling the direction of these null rays. 

In this coordinate system, f+ has "equation" r = 00 

(i.e., f+ is the future completion of null geodesics leaving 
L ). We may then take (u, 1J, rj) as coordinates on .y+ where 
u = Un (constant) will be the intersection with ./+ of the 
light cone associated with the point x a = uot a on L, while 
1J = 1Jo, rj = rjo (constants) will label a particular generator of 
f+. We will denote the point on f+ corresponding to 
u = 00 by 1+. 

It is important to note here that in the interior of M, 1J 
and rj are to be distinguished from; and ;, which were pre
viously defined to label the (arbitrary) directions of null rays 
leaving any point x a in M (not just those on the fixed L ). We 
have however, chosen; and; so that a null geodesic leaving 
XU in the direction given by;,; will intersect f+ in the 
generator given by 1J = ;, rj = ;. 

From the above we have two different types of null te
trads: (7 a, fla, rna, ~a I which is, at any point, a fixed tetrad 
that is associated with the null coordinates in (2.18), and {I a, 

n°, rna, ma I [from (2.13)] which, at any point, can sweep out 
all null directions. Both tetrads will playa central role in our 
later work. 

We also note for later reference (and prove in Appendix 
B) the fact that if x a is any point of M, then the intersection 
with fl- of the light cone of x a is given by 
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u = u(;,;) = xUIU (;,;), 

17 =;, 1j =;. 

III. A LIGHT CONE CALCULUS 

(2.19) 

Let XU be a fixed but arbitrary point of M, and consider 
the future null cone, C (XU) at XU (with equal ease we could 
restrict our attention to the past light cone at XU). Then it is 
not difficult to see from the last section that any point ya on 
C (xa) can be written as 

(3.1a) 

with 

R a = sl at;,; ), (3.1b) 

where;, ; label the (unique) generator of C (xa) passing 
through ya, and s is the normalized affine distance from xa to 
yU along that generator. 

Suppose now that V~(xa) is a section of B. We wish to 
define a two-point function VA (xa,R a) on M as follows. Fix 
x a and define VA (xa,R a) to be the vector obtained when 
vg(xa

) is parallelly propagated (using the connection given 
in Sec. II), from xa to ya = xa + R a along the null geodesic 
connecting them. 

We may then define two types of covariant derivatives 
of VA (xa,R a). Both differentiations will be with respect to 
changes in ya, but in one case we will change ya by fixing xa 

and varying R a via s, ;, or ;, whereas in the second case we 
will changeya by fixing R U (the differenceya - xa) and vary
ing XU. Thus in the first case we will obtain the "covariant 
change" in V A between two neighboring points on the same 
light cone, whereas in the second case we will obtain the 
covariant change in VA between two "comparable" points 
(same R a) on different light cones. Using the connection 
which was introduced in Sec. II we write these two covariant 
derivatives as 

Da V = av I + VYa(ya) = av + VYa(ya), (3.2) 
aya x' = cons! aR a 

Vu V= av I + VYa(ya) = av + VYa(yU), (3.3) 
ayu R" = cons! axa 

We will now list some of the properties of these differen
tial operators which will be used in later sections. Using (3.2), 
(3.1 b), (2.13), and the chain rule, one obtains 

IUDa V= a;: + VYa(yU)1a, (3.4a) 

smaDa V = (IV + sVYa(ya)mU
, 

and 
smaDu V = dV + sVYu(ya)ma. 

Furthermore (see Appendix A), 

Dlb=_J...hb 
a a' 

S 

D b 1 b an =-h a, 
S 
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(3.4b) 

(3.4c) 

(3.Sa) 

(3.Sb) 

(3.Sc) 

and 

D -b _ 1 (b I b)-am - -- n - ma' 
s 

df 
DJ(s) = - (na -Ia)' 

ds 

(3.Sd) 

(3.Se) 

Dch~ = _J... [(na-Ia)hcb +(nb -lb)h~J, (3.Sf) 
s 

wherefis a scalar function ofs and hab = mamb + mamb is 
the two-dimensional metric on S 2, the sphere of null direc
tions. We also point out that since I b is a function of; and; 
only, we must have 

VJb = O. (3.6) 

Finally, for purposes oflater calculations we write 
down the commutation relations between D a and Va' Di
rectly from (3.2) and (3.3) we obtain 

I Vb' Va] V = VFbu ' 

[ Db,v a ] V = VFba , 

[Db,Da] V = VFba , 

(3.7a) 

(3.7b) 

(3.7c) 

where we have also used (2.6). Then using (3.6) and (3.7c) we 
obtain 

[Vb,laDa J V = VFba la. (3.8) 
Lastly, using (3.Sa) and (3.7b) we obtain 

[DbrDa]V= -J...h~DaV+ VFbalu. (3.9) 
s 

IV. A NEW VARIABLE FOR GAUGE THEORIES 

Let x a be a fixed but arbitrary point of M, and let ~ I (xa
) 

(/t = 1, ... ,n) be a basis for the fiber at xa. We will define the 
(nonsingular) matrix-valued function g at any point ya on 
C (XU) to be the value obtained when ~ I (xa) is parallelly pro
pagated from XU to ya along the unique generator of C (xa

) 

joining them. Thus g can be viewed as a function of XU and R a 

(see Sec. III). 
From (3.4a) and the geometrical definition of g given 

above, we see that g must satisfy 

or 

dg +gYal"=O. 
ds 

We now define 

(4.1a) 

(4.1b) 

(4.2) 

as our new variable for gauge theories. It follows from (4.1) 
that 

(4.3) 

where the 0 signifies an affine ordered exponential integral. 
In the abelian (Maxwell) theory, if we letf = In g, we obtain 

(4.4) 
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Note that we have tacitly assumed Ya to be in a gauge 
(with at least Ya -lIr) such that the integrals (4.3) or (4.4) are 
defined. If the fields are asymptotically fiat (Fab -lIr) such a 
gauge will exist. If we choose not to use such a gauge, the 
definition of G (or F) would be altered by including another 
term in (4.3) [or (4.4)] involving an integral along null infinity 
t01+. 

v. OBTAINING THE CONNECTION FROM G 

In the last section we saw how a connection gives rise to 
the matrix-valued function G (xa

,;,;;) via (4.3). In this section 
we will show how to invert this equation in the sense that if 
we are given G (xa

,;,;;) (satisfying a condition to be dis
cussed), then Ya(xa) can be obtained such that (4.3) is satis
fied. To do so we will apply Vb to both sides of the parallel 
propagation law (4.1a), and after using the commutation re
lations of Sec. III and simplifying, we will obtain a conserved 
quantity (i.e., one whose ordinary derivative with respect tos 
vanishes). It is from this "conservation law" that we will be 
able to derive the four components of Ya in terms of deriva
tives ofG. 

This technique will be used again in the Sec. VI [apply
ing, however, Db or DbDc instead of V b to both sides of 
(4.1a)] in order to obtain the equation imposed on G by the 
currentless Yang-Mills equations on M. 

To proceed, we see that from (4.1a), (3.6), and (3.8) it 
follows immediately that 

laDaVbg=gFabla. (5.1) 

Contracting both sides 0[(5.1) with I b and using the antisym
metry of Fab yields 

IblaDa Vbg = 0. (5.2) 

Then using (3.5a) and the scalar product relations (2.14), we 
can rewrite (5.2) as 

I aDa (l bVbg) = 0. (5.3) 

Next we multiply both sides of (5.3) on the right by g-I and 
noting that (4.1) implies laDag- 1 = 0, we obtain 

laDa(lbVbg·g- l) = 0, (5.4a) 

or 

(5.4b) 

where (5.4b) follows from the fact that I bV bg·g- I has now 
only scalar components, i.e., V bg·g- I = V b~ )gA- I(u) and 
hence has no vector bundle indices. 

We will now show how the conservation law (5.4) can be 
used to determine Ya at the spacetime pointxa in terms of our 
fundamental variables. 

To this end we see using (3.3) that, (5.4b) is equivalent to 

(I bg.bg- I + gYb(Xb + sl b)1 bg-I)ls ~ a 

= lim (lbg,bg- I +gYb(xb+slb)/bg-I), (5.5) 
s~oo 

where we have explicitly written the argument of Ya to em
phasize that it is the connection evaluated atya (see Sec. III). 
Next under our assumption on the fall-off of Ya (see Sec. IV, 
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and Appendix B) and (4.2), we find that the right-hand side of 
(5.5) simply becomes G,b G - II b. We further assume, without 
loss of generality, that gls ~ 0 = I, the identity matrix. This 
can always be accomplished by a gauge transformation. 
Therefore, the left-hand side of(5.5) becomes Yb(xb)/ b and 
we have8 

(5.6) 

i.e., one of the four components of Ya at the spacetime point 
xa. To obtain the other three we simply apply (l, d, and (ld in 
turn to (5.6) [see (2.13)], obtaining 

Yb(xb)mb = Ib(l(G,b G -I) + G.bG -1mb, (5.7a) 

Yb(xb)mb = Ibd(G.bG -I) + G,b G -1mb, (5.7b) 

Yb(xb)nb = Ib(ld(G.bG -I) + mb(l(G,bG -I) 

+mbd(G.bG- I)+ G,b G - lnb, (5.7c) 

where we have used the fact that Ya (xa) does not depend on; 
or;;. Then using (2.14) it is clear that9 

Ya (xa) = G.a G -I - hma - hma + kia' (5.8) 

where 

and 

h = Ib(l(G.bG -I), 

h = Ibd(G G -I) ,b , 

(5.9a) 

(5.9b) 

k = mbd(G,b G -I) + mb(l(G,b G -I) + Ib(ld(G.bG -I). 
(5.ge) 

It is worthwhile noting that substitution of an arbitrary 
G (xa

,;,;;) into the right-hand sideof(5.8) will in general lead 
to a Ya which depends on; and;; and thus does not define a 
connection atxa

• We would like to determine necessary con
di tions on G (xa 

,; ,;; ) so that (5.8) does in fact define a connec
tion on M. To do so we require, from (5.8), that 

oYa = 0, (5. lOa) 

and 

dYa = 0, (5. lOb) 

as the necessary conditions on G. It turns out, however, that 
regularity (in; and;; ) together with one of the above equa
tions implies the other, so we will concentrate on solving 
(5. lOa), which can be written in terms of Gas 

o(G aG -I) + (k - oh )ma - Ohma 
+ (ok - h )/a - hna = 0. (5.11) 

Contracting (5.11) in turn with la, ma, ma, and na leads to 

lao(G,a G -I) - h = 0, 

mao(G.aG -I) - k + oh = 0, 

mao(G.aG -I) + oh = 0, 

nao(G.aG -I) + ok - h = 0, 

(5.12a) 

(5.12b) 

(5.12c) 

(5.12d) 

respectively. But (5.12a) and (5.12b) are identities by virtue of 
(5.9), and it can be checked that applying d to both sides of 
(5.12c) leads to (5.12d). Thus (5.12c) is the only restriction on 
G such that it satisfy (5. lOa). After a short calculation one 
finds this restriction can be rewritten as 

(5.13) 
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or 

(5.14) 

Thus (5.6) is both a necessary and sufficient condition on Gin 
order for it to define a connection Ya (xa) on M. 

VI. THE FIELD EQUATIONS 

In the previous section we saw that knowledge of the 
correctly chosen function G (xa,s,t) can be used to deter
mine a connection. In this section we will derive an equation 
on G such that the associated connection (5.8) and field (2.6) 
will satisfy the vacuum Yang-Mills equations. 

To study the self-dual case we will apply smbDb to both 
sides of (4.1a), while to study the general case we must apply 
s2gbcDbDc to both sides of (4.1a). In the latter case, the cur
rent fa (see Sec. II) will appear, and then be set to zero (corre
sponding to the vacuum Yang-Mills equations). In the self
dual and abelian cases we will obtain a conservation law (in 
the same sense as in Sec. V) while in the general (non-self
dual) case we will obtain a complicated integro-differential 
equation for G. 

We first consider the case of self-dual fields. From (3.9) 
and (4.1), it follows that 

laDaDbg = ~h %Dag + gFabla. (6.1) 
s 

Now we multiply both sides of(6.1) by smb
, and use (2.14) to 

obtain 

smblaDaDbg = - maDag + sgFab lamb. 

Next using (3.5c) and (3.5e) we have 

laDa(smbDbg) = SFab lamb. 

(6.2) 

(6.3) 

If we now impose the field equations in the form that Fab is 
self-dual (see Sec. II), then the right-hand side of(6.3) vanish
es, and multiplying both sides on the right by g-I we obtain 
the conservation law 

!!... (smbDbg·g- l) = o. 
ds 

Using (3.4b), we can write (6.4) as 

(ag.g- I + sgYa(xa + sla)g-lma)ls =0 

= lim (ag.g- I + sgYa(xa + sla)g-Ima). 
s~oo 

(6.4) 

(6.5) 

Clearly the left-hand side of (6.5) is zero from gls = 0 = I. 
Hence using (4.2), we obtain 

aG.G -I = _ G lim (sYama)G -I, 

or (see Appendix B, for a more detailed proof) 

aG= - GA, 

(6.6) 

(6.7a) 

(6.7b) 

where A (the data) is a spin weight + 1 matrix-valued func
tion on f+ of S, t, and u = xala [see (2.19)]. It is easily 
verified that a solution to (6.7) also satisfies (5.13). Thus (6.7) 
is equivalent to the Yang-Mills field equations on M in the 
self-dual case. Eq. (6.7) is referred to as the Sparling4 equa-
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tion, and was first derived in the context oftwistor theory. 
We now consider the general Yang-Mills case. The abe

lian (or Maxwell) theory will appear as a special case. To this 
end we apply Dc to both sides of(6.1), and using (3.9) (with 
V = Dbg), we obtain after some simiplification 

laDaDcDbg = - 2(DlbgFc)ala - + h (cDb)Dag 

+ s12 (n(C -lc)h %)Dag) 

- ~ nahcbDag + (gDJab)la, (6.8) 
s 

where we have also used (3.5) and (4.1). If we now multiply 
both sides of (6.8) by S2gcb and use (3.5) again, we obtain 

1 aDa (S2gCbDcDbg) - 2s(nClb + /cnb)DcDbg 

= 2s2gcbDbg.Fa)a + 2naDag + s2gfala. (6.9) 

We have used the fact thatg<b = 2l(cnb) - h cb, h ~ = - 2, 
and the Yang-Mills equationsg<bDcFab = fa. 

Then (3.5) and (4.1) imply 

! (S2gCbDcDbg·g-1 - 2snbDbg·g- l) 

= _ 2s2h CbDcg.g-IF~)a + s2f~la, 

H = smbDbg·g- l, 

and 

B = smbDbg·g- l, 

then it easily follows from (6.3) that 

dH F' la b -=s ab m, 
ds 

and 

dB F' la-b -=s ab m. 
ds 

(6.10) 

(6.11a) 

(6.11b) 

(6. 12a) 

(6.12b) 

Substituting (6.11) and (6.12) into (6.10) and imposing the 
source-free Yang-Mills equations (viz., fa = 0), we obtain 

! (S2gbCDcDbg·g-1 - 2snbDbg·g- l) 

(
dB - dH) = -2 H-+H-. 
ds ds 

(6.13) 

We can rewrite (6.13) as 

(6.14) 

and then as 

! (s2F~clbnc - 2sm(bDb(smC)Dcg.g- I)) 

= [dH B] + [dB H] 
ds' ds" 

(6.15) 

where we have used (3.5) and the contraction of(4.1) with nb • 

Finally, using (3.4b) and (3.4c), we have 
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d - - 2, a b [ dH] [- dH] ds (dH + dH - s F ab In) = H, ds + H, ds . 
(6.16) 

It is from (6.16) that we will obtain our equation on G equiva
lent to the currentlessYang-Mills field equations. 

In the non-self-dual abelian case (since the right-hand 
side of(6.16) vanishes), Eq. (6.16) becomes a conservation 
law, the consequences of which we will investigate shortly. 
We wish to first note (with some disappointment), that if the 
operation between the two commutators on the right hand 
side of (6.16) had been subtraction instead of addition, then 
we would have obtained a conservation law even in the gen
eral Yang-Mills case since 

!{ [H,H 1 = [H, dH] _ [H dH]. 
ds ds ds 

This not being the case, we did investigate the possibility that 
the right-hand side of(6.16) might still be a total derivative of 
some other quantity with respect to s. Unfortunately we had 
no success. 

On the other hand, since the quantity inside the total 
derivative on the left-hand side of (6.16) vanishes at the 
space-time point x a (i.e., at s = 0), we will still be able to 
obtain a single integro-differential equation for G which will 
involve characteristic data given on J+ and will be equiva
lent to the Yang-Mills equations on M. To do so we first note 
that (6.16) can be rewritten as 

lim (dH + 3H - s2F~blanb) 
s ·--"00 

(6.17) 

We will now evaluate the limit on the left-hand side of(6.17). 
We have [see (6.11), (3.4) and Appendix B] that 

lim oH = 0(3G.G -I + GAG -I), (6.18) 

lim 3H = 3(oG.G -I + GAG -I), (6.19) 
s--+oc 

whereA, and the conjugate A, have previously been defined. 
We can therefore rewrite (6.17) as 

0(3G.G -I + GAG -I) + 3(oG.G- I + GAG -I) 

= 100 

([H, ~~] + [H, d::D ds. 

A sraightforward calculation then yields 

d(G -13G) + 3(G -ldG) 

= - dA - 3A + lim s2Fablunb 
S -;0.00 

+ [A,G -13G 1 + [A,G -ldG 1 

(6.20) 

+G- I (1°O([H, ~~] + [H, ~~DdS)G. (6.21) 

To further simplify (6.21), we have (see Appendix B) that 

lim s2Fublanb = - <'lA - 3A 
s----+oo -r ([A,A] + [A,A ]) du'. (6.22) 
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Thus we have for our final equation for G 

d(G -13G) + 3(G -ldG) 

- 2(oA + 3A ) + [A,G -13G ] + [A,G -ldG 1 

+G- I (1°O([H, ~~] + [H, ~~])dS)G 
-f~ 00 ([A,A 1 + [A,A ]) du'. (6.23) 

We emphasize here that Eq.(6.23) recasts the full cur
rentless Yang-Mills field equations on M in terms of a single 
equation for a new scalar variable G (XU,;,; ) (and hence on a 
six-dimensional space of null paths in M; see Sec. I) involving 
characteristic data given on J+. This completely reformu
lates Yang-Mills theory in terms of the G; given A (u,;,;) and 
its conjugate A (u,;,;) as arbitrary spin 1 and - 1 functions 
on J+, a solution to (6.23) could be substituted into (5.8) to 
produce a connection Ya which in turn would lead to a field 
via (2.6). Although the question of whether (6.23) implies 
(5.13) remains a formidable one, we nevertheless conjecture 
it to be the case and in fact present a proof in Appendix D 
that in the self-dual and abelian cases [which can be derived 
directly from (6.23)], we do in fact automatically satisfy 
(5.13) with a solution to (6.23). 

In the Maxwell case (since all commutators vanish), Eq. 
(6.23) becomes [using (4.4)] 

{J3F= - (oA + 3A), (6.24) 

where 03 is the two-dimensional Laplacian 10 and one can 
consider Eq. (6.24) as equivalent to the vacuum Maxwell 
equations with A and A as characteristic initial data. Equa
tion (6.24) can be considered as a reformulation of the Kir
choff integral formulation of Maxwell fields. II We note that 
Eq. (6.24) could also be derived directly from the conserva
tion law which one obtains by setting the commutators to 
zero on the right-hand side of(6.16). Again we point out that 
unfortunately no such conservation law could be found for 
the general case. This appears to be a manifestation of the 
non-Huygens nature of the propagation of the full Yang
Mills gauge fields. 

VII. CONCLUSIONS 

We have shown here how the source free Yang-Mills 
theory (with certain weak asymptotic conditions) may be ex
pressed in terms of a single GL(n,C) matrix-valued function 
G (XU,;';) on a six-dimensional space of null paths in Min
kowski space. The G had been defined by parallel propaga
tion of a basis set in the fiber over the point xu, along the null 
path labelled by;,; to future null infinity. It is easy to see 
that this construction of G is intimately connected with ele
ments of the holonomy group of the point] + (future time
like infinity), namely 

H(] + ,path) = G -1(Xa';I';I)G (xa,;o,;o), (7.1) 

with Han element of the holonomy group and the path given 
as follows: move down 5+ from I + along the generator (;0' 
;0) until a null generator from XU is met, this generator is then 
followed to xu; the path is then closed by going from XU along 
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the (;1' ;1) generator to f+, then to 1 +. Since rana = 0 on 
f+ the parallel propagation along the f+ generators yields 
the identity transformation, thus establishing (7.1). It is easi
lyseen that knowledge ofH (1 + ,path), with the space of paths 
(R 4 XS2 XS2) described above, yields knowledge of the 

G(xa,;,;). By taking; =;0 = tl + dt,; =;0 = ;1' Eq. 
(S.I) becomes 

G-I(G+OG~) =H=I- hdt _, (7.2) 
1 + tt 1 + tt 

or 

oG= - Gh. 

Thus, the G can be determined from the infinitesmal h. Note 
that for the self-dual fields, h (xa,t,;) = A (u = xa/a,t';). We 
have not yet investigated what equations the vacuum Yang
Mills equations would impose on H (1 + ,xa. t.;,to,;o). 

Another problem we are considering is how the materi
al of this paper could be generalized to the case where the 
solutions are not global, as was assumed here. There are sev
eral approaches one can use, depending on the problem. (1) If 
the fields and connections are given on an Alexandrov neigh
borhood (the intersection of the future of the point x~ with 
the past of x~) we can duplicate all our previous results ex
cept that we integrate only to the past cone of x~ and then 
along the cone to x~, instead of going all the way to f+. 

Data must be given on the cone ofx~. (2) A virtually identical 
treatment is to perform an inversion about the point x~, thus 
putting the future cone of x~ on f+. We could now use the 
methods of the paper to produce a solution in the neighbor
hood of 1 + and then by conformal invariance transform it 
back to the original Alexandrov neighborhood. (3) For the 
self-dual magnetic monopole (where for the global solution 
one has a nontrivial topology) we are trying to obtain the G 
or F in the abelian case by direct integration. 

Another subject being studied is the integro-differential 
equation for G. We wish to see if any exact results can be 
obtained, e.g., direct information about a classical S-matrix 
taking data from f- directly to f+ without integrating 
through the interior. This can easily be done for the self-dual 
fields. Further, we would like to understand the properties of 
a perturbation approach in terms of mUltiple scatterings of 
the field. 

As a final comment we mention that work has begun 
(with some success) on the generalization of the ideas of this 
paper to general relativity and in particular to the asymptoti
cally flat solutions of the Einstein vacuum equations. 

APPENDIX A 

In this Appendix we will use the spin-coefficient for
malism 12 to prove 

Dalb=~h~. (3.Sa) 
s 

The proofs of(3.Sb), (3.Sc). and (3.Sd) are similar, with (3.Sf) 
following easily from (3.Sc) and (3.Sd). We will also use (2.18) 
to prove 

955 

DJ(s) = df (na -Ia)' 
ds 
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(3.Se) 

First we recall the definitions of the spin coefficients for 
any null tetrad [/ a, n°, ma, rna J: 

_ 1(/ a-b _ -a-b) a - 2 a;b n m ma;bm m • 

(3 = Wa;bnamb - ma;bmamb). 

r = !(/a;bnunb - ma;bmanb), 

E = Wa;bnalb - ma;brna/b), 

1T = - na;bma/b, 

I a-b P = a;b m m , 

a = la;bmamb. 

7 = /a;bmanb. 

v = - na;bmanb, fl = - na;bmamb, 

A = - na;brnainb, K = la;bmalb, 

where; denotes covariant differentiation. 

(AI) 

We recall that! a, n°, ma, ma [as defined in (2.13)] witht. 
; fixed are constant with respect to Va defined in (3.3). Thus 
the spin coefficients associated with Va and la, n°, ma, ma all 
vanish. 

On the other hand. fixing xa and changing t and; 
would correspond to choosing a variable tetrad, namely the 
one associated with the light cone of xa. The covariant deri
vative Da is here denoted by a semicolon. The spin coeffi
cients associated with the light cone tetrad system become l3 

1 
P=fl= -

r 

a + {3 = 7 = a = E = 1T = A = K = r = v = O. 

Thus we obtain (using r = s) 

(A2) 

Dalb = - J..- (mamb + mamb)= - J..- hab' (A3) 
s s 

The other equations (3.Sb), (3.Sc), and (3.Sd), follow in a simi
lar fashion. 

To prove (3.Se), we note that if L is a timelike geodesic 
(with tangent vector va such that vava = 2) through the arbi
trary point xa, then any point ya can be written as 

(A4) 

where W is proportional to the proper time along L. The 
geometrical intepretation of(A4) is that we have set up a null 
polar coordinate system (w, s,;,;) [see (2.18)] with origin at 
the arbitrary point xa. 

If we apply J IJyb to both sides of (A4) we obtain 

(AS) 

or 

"a a I a S at S -af-Ub =Wb V +Sb +-m b +-m ~b' , , 2P . 2P , (A6) 

Contracting (A6) in turn with na and /a and then subtracting 
yields 

(A7) 

where we have used vala = van a = 1. Equation (3.Se) then 
follows from (A 7) and the chain rule. 

APPENDIXB 

In Sec. VI we needed the evaluation of 
limHOO S2 Fab (ya)1 anb, where ya = x a + sl a(;';). In other 
words, holding xu, t,; fixed, we needed to know the limiting 
behavior ofs2Fab (ya)lanb as the pointya moved out to f+ in 
the t,; direction on the future light cone of xa. 
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In this Appendix we will show how to evaluate this 
limit, by using already established knowledge of how the 
components of Fab behave asymptotically in the null polar 
coordinate system defined in (2.18). To do so we will first fix 
x a and ob~in asymptotic relationships between the param
eters s, {;, (; and the null polar coordinates u, r, 1/, iJ of the 
point ya. It will then be possible to find the asymptotic rela
tiohships between the tetrad [la, na, ma, rna) defined in (2.13) 
and the tetrad Ila, na, rna, ~a) defined by (2.18). In particu
lar, we will be interested in how the bivector I lanb J can be 
expressed in terms of the hatted vectors. Thus we will have 
expressed S2 Fab I anb asymptotically in terms of the null polar 
coordinate system and associated tetrad, from which the 
evaluation of our limit will easily follow. 

For ease of notation, we begin by introducing [compare 
with (2.10) and (2.17)] 

A A 

XO = Fablamb, 

X I = !Fab (I anb + ~amb), 
A A 

Xz = Fabmanb, 

A A 

rIO' = rama, 

rll' = rana. 
(Bl) 

Then it is known for asymptotically vanishing fields that9 

AD 

A XO+ O (-4) XO=7 r, 

AD 

A XI + O( -3) XI=7 r, 
AD 

A _ X2 + O( -2) Xz-- r, 
r 

(B2) 

(with simila~: .. re!!ttionshiI>s holding for the conjugate quanti
ties), where xg ,X~, and X~ are functions of u, 1/, and iJ, satis
fying 

AD a -
X2 = - Tu yD, (B3a) 

a AD AD AD 
TuXI =dX2 + [Xz,yD], (B3b) 

where 

(B4a) 
r~oo 

Yo = lim rYlO' ==A (xala ,1/,iJ)· (B4b) 
r~oo 

Using this information we will show that 

lim ~Fablanb = - (dA + dA) 
s~oo 

-f~ 00 ([A,A] + [A,A ]) du'. (BS) 

In order to do so we will first find relationships between the 
coordinates (u, r, 1/, iJ) and the parameters (s, (;, ; ) associated 
with xa. Since any point in M can be written using coordi
nates (2.16) or (3.1a) we must have 
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(B6) 

In Eq. (B6) we regard the s, {;, ; as known (with x a fixed), and 
we wish to solve asymptotically for the u, r, 1/, iJ in terms of 
them. Geometrially, we are finding the asymptotic intersec
tion of the light cone of x a with the system of light cones 
leaving the fixed timelike gt;odesic 11... [see Eq. (2.18)]. 

Contracting (B6) with la' rna' rna' and na, yields 

xat + slala = U, 

xama + sl ama = 0, 

xa~ +sla~ =0 a a' 

xana + slana = u + r, 
while contracting with la' m a, rna' and na, yields 

l==xal = U + rIal a a' 

(B7a) 

(B7b) 

(B7c) 

(B7d) 

(BSa) 

(BSb) 

m==xama = r/ ama , (BSc) 

n + s==xana + s = u + rlana. (BSd) 

It is not difficult to show simply from the definitions 
[Eq. (2.13)] of the various vectors involved that 

nana = lat = (~) ({; -1/)(; - iJ), 
4PP 

lama = C/;) (iJ -;)(1 + (;iJ), 

la~a = C/;) (1/ - (;)(1 + ;1/), 

nama = (~) (; - iJ)(1 + (;iJ), 
4PP 

(B9a) 

(B9b) 

(Bge) 

where P = ~(1 + 1/iJ). Note that interchanging the role of 
hatted and unhatted vectors on the left hand sides of (B9) 
simply interchanges the roles of {; and 1/,; and iJ on the right
hand sides. 

We will now regards, {;,; as known and solve for u, r,1/, 
iJ from (B7). Since xama and xa~a both remain finite as 
s~oo, we must have from (B7b) and (B7c) that lama and 
lama both tend to zero as S-oo. Thus from (B9b) we must 
have 1/ = {; and iJ = ; as s- 00 • (We eliminate the possibility 
that 1/ = - 1/;, iJ = - 1/{; since this would ultimately 
contradict r>O). It then follows from (B9a) that I ala has a 
double zeroass-oo and hence/a-Ia andslala-Dass_oo. 
Thus (B7a) leads to 

(BlO) 

in the limits_oo. If we now lets-oo in (B7d) and use (B1O) 
with the first of (Bge) we obtain 
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n + lim s = I + lim r. (BII) 
S-oo 5-00 

Since n and I both remain finite (and fixed) as s_ 00, we must 
have r- 00 as s_ 00. This together with (B 10) proves (2.19) 
and justifies its use in (6.7). 

To proceed, we now work out the 1/r term in the 
asymptotic relationship between 7j, 7j and t, ; using (BSb) 
and (BSc). To this end we write 

7j = t + air + 0(r-2), 

7j +; + air + 0 (r-2), (BI2) 

where a and a are to be determined. 
Substituting (B 12) into (BSb) and using the analog of 

(B9b) [see the comment following (B9)], we find 

a= - 2Pm, 

a= -2Pm. (BI3) 

To obtain the asymptotic relationship between sand r, 
we subtract (BSa) from (BSd), obtaining 

(n -I) + s = r7a(na -la)' (BI4) 

But substituting (B 12) into the analog of (B9), it can easily be 
shown that 

lana = I + 0(r- 2), 

lata = 0(r-2). 

Therefore, (BI4) yields 

s = r + (/ - n) + 0 (r- I
). 

In summary, we have for large r 

u = xa/a(tl) + O(r-I) 

and 

t = 7j + 2Pm/r + 0(r- 2), 

; = 7j + 2Pm/r + 0 (r- 2
), 

s = r + (/ - n) + 0 (r- I
). 

(BISa) 

(BISb) 

(BI6) 

(BI7) 

(BlSa) 

(BlSb) 

(BISc) 

Next, we express / a and na in terms of the hatted vec
tors, writing 

A " _"" 

/a = w/ a + Oma + emU + sna, 

nb = 01 b + tfmb + ¢;fiib + ¢jzb, 

where w = / cjzo etc. 
It then follows directly from (B9), (BlS) that 

e = m/r + 0 (r- 2
), 71 = m/r + 0 (r- 2

), 

¢=¢;=O(r- I). 

(BI9a) 

(BI9b) 

(B20) 

(B2l) 

We now express Fab/unb in terms of the hatted vectors, 
i.e., 

Fab / anb = Fab [(tfw - (0)1 amb + (¢;w - (8)! afiib 

+ (O¢; - etf)mafiib + (O¢ - stf)majzb 

+ (7J¢ - s¢;)fiiajzb + (¢w - s8)1 ajzb ]. (B22) 

Then using (B2) together with (B IS), (B ISc), (B20), and (B21), 
we obtain 

(B23) 
5--00 

It follows from (B3) and (B4) that 
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""0 
mX2 = -rnA, 
~ . 

mX~ = - rnA. (B24) 

Substituting (B3a) into (B3b) and integrating with respect to 
u yields 

X~ = - (rA - J~ 00 C4,A ] du' + u~~", (dA + X~), 
(B2S) 

and similarly 

f~ = d'A - f '" [A,A] du' + u~~ '" (dA +~), (B26) 

wheresincenowA (u = xala (t,; ),t,; ),A = A (u = xa/a (t,;), 
tl ), we use 0' or d' to denote differentiation with respect to 
the explicit t or; behavior, respectively. 

By a gauge transformation we may set 
limu __ '" (oA + aA) = O. We will also by assumption set 

A ... 

limu __ = Ix~ + X~) = O. Then substituting (B24), (B2S), and 
(B26) into (B2,3) yields (B4), where we have also used the facts 
that dA = mA + o'A and aA = rnA + a'A. 

In the abelian case (BS) becomes 

ddF= - (oA + dA). (B27) 

APPENDIXC 

In this appendix we will present proofs that Eq. (6.7a) 
(the Sparling equation) and Eq. (6.24) (its non-self-dual abe
lian generalization) both imply Eq. (S.13) and are therefore 
equivalent to the self-dual nonabelian and full Maxwell 
equations, respectively. 

To prove that (6.7a) implies (S.13) we differentiate (6. 7a) 
with respect to x a obtaining 

oG.a = - (G,aA + GAma), 

from which it follows that 

(dG.a)laG -I = - G.a/aAG -I, 

(aG.a)maG -I = - G.amaAG -I. 

(CI) 

(C2a) 

(C2b) 

Ifwe apply a to (C2a) and use (6.7a) we obtain (after some 
simplification) 

a2(G.aG -I/a) + a( - G.amaG -I) = O. (C3) 

On the other hand, we have from (C2b) and (6.7a) that 

a(G.amaG -I) = 0, (C4) 

thus proving (S.13). 

To prove that (6.24) implies (S.13), we first rewrite (6.24) 
as 

odF= - (mA + a'A + rnA + d'A), (CS) 

where by 0' and a' we mean differentiation with respect to 
the explicit tor; dependence, respectively, and m = xama, 
m = xama, (. a/au). Differentiating (CS) with respect to 
x a yields 

adF.a = - (ma A + lamA + vrA 
+ maA + lamA + /)YA). (C6) 

Ifwe contract (C6) with / a, rna, rna, and na in tum, we obtain 
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{aooF.a = 0, 

maadF.a =A, 

maadF =A .0 , 

(C7a) 

(C7b) 

(C7c) 

(C7d) 

By applying a to (C7a) and using (2.12), we obtain (after some 
simplification) 

(da 2 )(/aF.a)2 - 2nG aF.a - maa2F,a - maadF,a = 0. 
(CS) 

We will now show that dWUUF,a)) = 0, from which (5.13) 
easily follows. Applying d to (C7b) and a to (C7c) yields 

madadF,a + naadF,a = Am + d'A, (C9a) 

maa2dF,a + naadF,a = Am + a'A. (C9b) 

Adding (C9a) to (C9b), and substituting into (C7d) we obtain 
[using (C7a) and (2.12)] 

(ClO) 

Since the expression inside the parentheses is a regular spin 
weight + I function, it must vanish. Substitution into (CS) 
yields 

dWWF.a)) = 0, (Cll) 

and (5.13) follows from (4.4) and the fact that a2(/aF,a) is a 
regular spin weight + 2 function. 

APPENDIX D 

In this Appendix we will give alternate proofs of the 
Sparling equation (6.7a) and its non-self-dual abelian gener
alization (6.24). To prove (6.7) we will parallelly propagate a 
vector in the fiber at x a around a triangular region contained 
entirely in the anti-self-dual two-plane spanned by I a and ma, 
and then use the fact that the self-dual Yang-Mills equations 
are equivalent to the fact that Fablamb vanishes on this two
plane. The proof of (6.24) will be somewhat more involved. 

Consider then the "infinitesimal triangle" Tin M (see 
Fig. I) with vertices at Po+-+xG

, PI+-+(xa + sla (~i)), and 
P2+-+(XO + sl U (; + d;,;)), wheres is fixed but arbitrary. (Ul
timately we want S--oo so that PI and P2 will be on f+.) 

Obviously I a(;,;) is tangent to PoPl' and 
- I at; + d;,;) is tangent to P2PO' Note that ma(;,;) is tan

gent to PIP2 since (xa + sl a (; + d;,;)) - (xa + sl a 
(;,; )) = s(l at; + d;,;) - I a(;,;)) = sl ~~ (;,; )d; = (s/2P )ma 
(;,; )d;, where we have made useof(2.11). We may therefore 
take 

dJ.. =_s_d;, 
2P 

(Dl) 

FIG. I. Contour for derivation of the Sparling equation; PI is on generator 
(t.; ). P2 on (t + d?;.; ). 
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as a parameter for the infinitesimal segment P IP2 • 

Parallel propagation of a vector v along PoPI or P2PO 

will then be given by 

dv IU ° -+vYa =, 
ds 

and parallel propagation along PI P2 is given by 

dv a ° -+VYam = . 
dJ.. 

Since the curvature Fab is self-dual, we have 

Fablam b = 0, 

(D2) 

(D3) 

(D4) 

from which it follows that any vector VA in the fiber at Po 
remains unchanged when parallelly propagated around T. 
Therefore we must have that 

1 = g(xa,;,;,s) (1 _ sy;;a d; )g-I(Xa,; + d;';,s), 

(D5) 

where g(xa,;,;,s) parallelly propagates VA from Po to PI' 
1 - (sYama/2p)d; ( = 1 + t5g) parallelly propagates from PI 
to P2, and g-I (xa,; + d;,;,s) parallelly propagates from P2 

back to Po. 
Taking the limit in (D5) as S--oo and using 

lims-oog(xa,;,;,s) = G (xa,;,;), lims-=sYama = A (u,;';), we 
obtain 

1= G(Xa,;';)(1 - ~;) G I(xa,; + db,;). 

Finally, from the definition of 0, we obtain 

aG= -GA. 

(D6) 

(D7) 

We now tum to the proof of (6.24). We begin by consid
ering the figure in M (see Fig. 2) with vertices at Po, PI' P2 (as 
already defined), P3+-+(xa + sl a (; + db, ; + d; )), and 
P4+-+(XU + sl a (;,; + d;)). If we denote the surface of the fig
ure by j, then by the field equations gbcV cFab = 0, and 
gbCVcF:b = ° we have 

I (Fub ± iF:b)dS ab 
= 0, (DS) 

where F a~ -!(Fab - iF:b) is the self-dual part and 
F ab =!(Fab + iF:b) is the anti-self-dual part of Fab . Since 
Iia mb I is self-dual and Iia mb I is anti-self-dual, we can re
write (DS) as (see Fig. 2) 

s 

FI G. 2. Surface for derivation of generalized abelian Sparling eq uation; PI is 
ongenerator(t.;).P2 on(?; + d?;,;).P30n(t + d?;.; + d?;).P4 on(t.; + d;). 
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and 

r Fab/lamb] s' ds'd;' 
Js,,+s.. (l+tt') 

+ r ~F ([[anh] _ m[amb]) s2dt'd§' = O. (OlOb) 
Js 2 ab (1 + t't')2 

We now simplify (OlOa). The calculation for (OlOb) 
follows in a similar manner. Applying Stokes' theorem to the 
first integral on the left-hand side of (0 lOa), we can write 

r F /[amb] S' ds'dt' 
Js,,+s,.ab (l+t't) 

= ('Yadx'a + r
P

' Yadx'a + (oYadx'a + rp'Yadx'a 
Jpo )P

1 
Jpz Jpo 

(011) 

Taking the limit as S-oo (so that Sis now on f+) and 
substituting (011) into (0 lOa), we can rewrite the latter us
ing (4.4) as 

_ F (xa,t.?) + A (U'fi )dt 

+ F(xa,t + dt,;) + F(xa,t,; + d;) 

_ A (U,t'?2; d; )dt _ F(xa,t + dt,; + d;) 

(012) 

where because of the infinitesimal nature of S, we have 
dropped the integral sign and have used Eq. (2.16). 

This simplifies to 
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S2 _ 

- lim -2 X Idtdt = O. 
s~oo 4P 

By a similar calculation, (0 lOb) becomes 

F,~;(xa,t,; )dtd; + A.~(;;,;) dtd; 

Adding (013) to (014) and simplifying, yields 

(013) 

(014) 

8p 2F.;; = - 2PA.; - 2PA.; + lim S2U'1 + xI!. (015) 
s~oo 

Finally, using (2.10) and the abelian version of (B5), we can 
rewrite (015) as 

ddF = - (dA + dA ), (016) 

which completes our alternate proof of (6.24). 

It seems virtually certain that our nonabelian version of 
(016), namely (6.23), can be derived in a similar fashion us
ing the nonabelian version of Stokes' Theorem. 14 
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On the generalization of the 't Hooft field strength in the Yang-Mills-Higgs 
model 
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The generalization to the gauge groups SU(n) and SO(n) of the 't Hooft electromagnetic field is 
considered for finite energy configurations of the Yang-Mills-Higgs model, and it is shown how 
this results in the association of sets of integer charges with any closed surface. Differential 
inequalities satisfied by the Higgs invariants are presented, and their implications are discussed. 

PACS numbers: 11.15.- q, 11.30. - j 

I. INTRODUCTION 

There has been much progress recently with the 
Bogomolny system I of equations arising in the limit of van
ishing potential for the classical static finite energy Yang
Mills-Higgs model in three dimensions. Initially an exis
tence theorem was proven for a solution to the system for 
arbitrary topological charges and gauge groups. 2 Subse
quently, for the gauge group SU(2) explicit solutions were 
constructed first to the axially symmetric version of the Bo
gomolny equations3 and then generally.4 These axially sym
metric solutions are seen to have their charges (i.e., the zero 
set of the Higgs field) concentrated at a single point. This fact 
was not unexpected as it had been previously shown that any 
axially symmetric solution must have this property.5 In the 
demonstration of this result [which was for the SU(2) gauge 
group only] a crucial part was played by the 't Hooft electro
magnetic field,6 which could be used to associate an integer 
with an arbitrary closed surface for any finite energy con
figuration of the fields. 

It is our first purpose in this paper to establish what 
corresponds to the generalization of the 't Hooft field 
strength for the case oflarger gauge groups of physical inter
est [SU(n), n>2; SO(n), n>5]. This is achieved by recognizing 
the connection between these field strengths and curvature 
forms induced on certain vector bundles over submanifolds 
of three-dimensional Euclidean space. Considering the first 
Chern classes of these bundles, which define a set of con
served currents, leads to the association of sets of integer 
charges with an arbitrary closed surface for any finite energy 
configuration. This we do in Sec. III. 

Making the additional requirement that the field equa
tions be satisfied, for arbitrary Higgs potential, it is of inter
est, with regard to these generalized field strengths, to obtain 
information on the invariants formed from the Higgs field 
(e.g., their zeros). Thus in Sec. IV we derive differential in
equalities satisfied by, and involving only, these Higgs invar
iants. Applying these inequalities to the case of vanishing 
Higgs potential results in more bounds on the Higgs field 
than previously known. 

We give a summary of our conclusions in Sec. V and 
Appendix A is complementary to Sec. III. 

alPresent address: Theoretical Physics Division, CERN, CH-1211 Geneva 
23, Switzerland. 

II. NOTATION AND VARIATIONAL EQUATIONS 

The main purpose of this section is to establish the nota
tion we are going to use throughout the paper. 

Let M be m-dimensional Euclidean space, lEm, with in
ner produce denoted by <', . > and let P = M X G be the 
trivial principal fiber bundle over M with structure group G 
being a compact, connected, simple Lie group and with bun
dle projection given by the map: P'3 (X,g)-XE M. We shall, 
in fact, only be concerned with the case of G being SU(n), 
n>2, or SO(n), n>5. G acts on Pby multiplication on the 
right [i.e., (x,g)·a = (x,ga), \::f (x,g) E P, aEG]. 

We consider connections on P whose connection forms 
are at least continuous with respect to the section of P given 
by the map: M'3x-(x, l)E P, 1 being the identity element 
ofG. 

We let g' = M X [§ be the trivial vector bundle associ
ated with Pwith fibers isomorphic to [§ , the Lie algebra of G. 
G acts on g' by the adjoint bundle action [i.e., (x, A ).g 
= (x,ad(g-l) A ) = (x,g-IAg), \::fix, A )Eg',gEG]. Thebundle 

projection is g' '3 (x, A )-XE M. 

With any section of g' or, equivalently, with any map 
CP: M-[§, and which we require to be at least continuous on 
M, we can associate a tensorial a-form on P of type (ad, [§) 
denoted by <p and given by the map <p: P'3 (x,g)-
ad(g-I)CP (X)E[§. Such forms we will call Higgs forms. 

In general, for any tensorial p-forms 1/ I' 1/2 of type 
(p, V), where Vis a vector space, p: G-2'( V, V) is a linear 
representation of G onto the space oflinear automorphism of 
V, and Vis endowed with a G-invariant scalar product (-, .), 
we can define their inner product as the tensorial a-form of 
type (O,R), i.e., a real-valued G-invariant function, or a-form 
onM, by 

where1/; = 1/;, .. jp dx j
, /\ ... /\dx jp

, i = 1,2. Moreover, if A. and 
1/ denote a tensorial a-form and a tensorialp-form of type 
(p, V), respectively, we can define a tensorial p-form of type 
(O,R), i.e., a real-valued p-form on M, by (..1.,1/) = (A.,1/j,..jP) 

dx j
, /\ ... /\ dx jp

• 

We denote the exterior covariant derivative which 
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maps pseudotensorial p-forms of type (p, V) onto tensorial 
(p + I)-forms of type (P,V) by D. The curvature n is then 
given by the tensorial2-form of type (ad, ~): n = Dw, where 
w is the pseudotensorial connection I-form. 

For simplicity, we will represent the group SU(n), 
(SO(n)) by all complex (real) n Xn matrices, cnxn (Rnxn) 
which are unitary (orthogonal) and unimodular, and we will 
represent their respective Lie algebras by all Hermitian, 
traceless (skew-symmetric) complex (real) n X n matrices. 
We will take the inner product on VC cn Xn (RnXn), invariant 
under the adjoint action ofSU(n) (SO(n)), to be: (A,B) 
= triA tB) [!tr(A TB)] 'V A ,BE V. 

Let U: ~ -+R + be a polynomial map of ~ onto the 
nonnegative real numbers (usually of degree not exceeding 4) 
invariant by the adjoint action of G on ~ , and let the zero set 
ofU:Z(U) = [AE~IU(A) = OJ benontrivial,i.e., # [OJ,in 
which case U, which is called the Higgs potential, is said to 
have a spontaneously broken symmetry. Specific details of 
the map U will not, however, be needed in the paper. 

A pair (!,h,w) of a Higgs form and a connection form, as 
given above, are said to form a finite energy configuration if 
d(!,h,w) < 00, where d maps (!,h,w) into R+ by 

d(!,h,w) = ~L * [(n,n ) + (D!,h,D!,h) + Uo!,h J, (2.1) 

and * denotes the Hodge duality operation taking p-forms to 
(m - p)-forms. Among such finite energy configurations are 
ones for which (n,n ), (D!,h,D!,h ), and Uo!,h are smooth func
tions on M, for which limR _

oo 
(n,n) (Rx), limR _

oo 
(D!,h,D!,h) 

(Rx), and limR _
oo 

Uo!,h (Rx) exist and are zero, for any 
XE S;n - Ie M and for which limR _

oo 
!,h (Rx,g) = ~ (x,g) exists, 

for any (x,g)EfP, where ~ is a continuous tensorial O-form on 
fP of type (ad,~) valued in Z(U). Here S~-I 
= [xEM I < x,x) = R J, and j'P denotes the bundle given by 

the pullback ofP under the inclusion mapj: S;n-I 4M. We 
let W denote the space of all such finite energy configura
tions (!,h,w). Associated with ~ above, since the bundle j'P is 
trivial, we have a continuous map f~: S;n - I 
3x~ (x,l)E Z(U). Thus we can obtain a partitioning ofW 
via the homotopy classification of such maps f~, i.e., 

W= U Wa, WanWa' = null, a#a', (2.2) 
aETrm ,(Z(U)I 

where Wa contains all pairs (!,h,W)EW such that f~ is in the 
homotopy class aE 1T m _ I (Z(U)), 

By looking for stationary points of d on each Wa , we 
obtain the following equations: 

*(D(*n )) = [D!,h,!,h], ,jA = U'o!,h, (2.3) 

where [A,B] =AB - BA, for any square matricesA,B,U': 
~ -+~ is the map given by 

(U'(A ),B) = [~U(A + tB ))] ,'V A,BE~, (2.4) 
dt t~O 

and,j", denotes the Laplacian. If'lJ denotes a pseudotensor
ial or tensorial p-form of type ( p, V), then,j '" 'lJ is the tensorial 
p-form given by,j", 'lJ = *(D (*D'lJ)), Onp-forms of type (O,R), 
,1", becomes the usual Laplacian *d (*d), on lEm, where d is 
the exterior derivative and we will denote the Laplacian here 
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by,jo' 
Henceforth, we will take m = 3, G will denote one of 

the groups SU(n), n;.2, or SO(n), n;.5, and ~ will denote its 
respective Lie algebra, unless stated otherwise. To avoid no
tational difficulties, ( - 1) 1/2 will denote the imaginary 
number, 

III. CONSTRUCTION OF TOPOLOGICAL CURRENTS 
FOR CONFIGURATIONS AND THEIR PROPERTIES 

For the Lie algebra ~ ofSU(n), n;'2, or SO(n), n;.5, we 
can construct dense subsets :1 fl of ~ for e~ch,u (the label,u 
will be defined presently) and within each ~ fl we can obtain 
an orbit of the adjoint action of G, ~ fl C :1 fl' together with a 
deformation retra~tion rfl::1 fl-+~I' so that:1 fl is a tubular 
neighborhood of ~ fl' The construction is obtained as 
follows: 

(A) For SU(n), n;'2, any element of ~ is conjugate to, 
i,e., on the same orbit under, the adjoint action ofSU(n) as 
diag (A (1), .. ,,..1. (n)) for some A (1);...1. (2);. ... ;...1. (n), with ~?~ I 
A (i) = O. Let,u = (a I, ... ,a l ), where ajEN, ~~ ~ I a j = nand 
1;.2. We let :1 fl denote the set of all elements of ~ conjugate 
to diag(A (1)" .. ,..1. (n)), with ~7~ I A (i) = 0, where 

..1.(1) ;. ... ;...1. (ad>A (a l + 1) 

;,,,.;;,A(al+ .. ·+al _ l ) 

>A(al+ .. ·+al _ 1 +1) 
;;. ... ;;...1. (n), (3.1) 

LettingA ~ = diag(A °(1)" .. ,..1. O(n))withA O(i) fixed and satisfy
ing ~7~ I A 0(i) = 0 and 

..1. 0 (1) = ... = A O(a l ) >..1. O(al + 1) 

= ... = A D(a l + ... + aI_I) 

>AO(al+ .. ·+al_ 1 +1)= ... =AO(n), (3.2) 

we put:1 fl = G (A ~), i.e., the orbit through A ~,The map rfl 
is then defined by 

[

A (1) ... 

rfl::1 fl3g :~_ o }-I-+gA~g-IE~fl' 
A (n) 

where g is any element ofSU(n) and A (1), ... ,..1. (n) satisfy 
Eq. (3,1). 

(3,3) 

(B) For SO(n), where n = 2j + 1 andj;;'l, any element of 
its Lie algebra is conjugate by some element ofSO(n) to 
diag(A (1).1, ... ,..1. (j).l,O)forsomeA (1);;. ... ;;...1. (j);.0, whereJde
notes the skew-symmetric 2 X 2 real matrix with J I2 = 1. 
Here let,u = (2a l , ... ,2al .P'), where aJ3EN, 2~~~ I 

a j + /3 = n and I;. 1. We let :1 fl contain all elements of ~ 
conjugate to diag(A (1 ).1" .. ,..1. (j).l,O), where 

A (1);;. ... ;;.A (ad>A (a l + 1);;. ... ;;.A (a l + ... + all 

>A (a l + ... + a l + 1);;. ... ;;...1. (j);;'0, (3.4) 

Letting A ~ = diag(A °(1).1, .. ,,..1. °(j).l,O) with A D(i) fixed and 
satisfying 

A °(1) = ... =..1. D(al»A D(a l + 1) 

= ... = A O(a l + ... + all >A D(a l + '" + a l + 1) 
= ... = A (j) = 0, (3.5) 

then ~ fl = G (A ~) and rfl is defined by 
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A 0] -I 0-1 o g _gA I'g E~I" 

where g is any element ofSO(n) and A. (1), ... ,A. (j) satisfy 
Eq. (3.4). 

(3.6) 

(C) For SO(n), where n = 2j andj>3, any element of f1 
is conjugate, by some element of SO(n), either to AI + I 

= diag(A. (1 ).I, ... ,A. (j).l) or to AI _ I 
= diag(A. (1).1, ... ,A. (j - 1).1, - A. (j).l), for some 

A. (1» ... >A. (j»0. Letll be given by one of the following three 
expressions: 

(ia) 11 = (2a" ... ,2a[t + ), 
/ 

where ajEN, a l > 1, and 2 Laj = n, or 
i= I 

(ib) 11 = (2a l ,···,2a
" 

+ ), 
I 

where ajEN, a l = 1, and 2 Laj =n, or 
i= 1 

(ii) 11 = (2a" ... ,2a
" 

- ), 
I 

where ajEN, al> 1, and 2 Laj =n, or 
i= 1 

I 

where ajEN, f3 = 4,6, ... , and 2 L a, + f3 = n, 
i= I 

where in each case I> 1. [We may sometimes refer to (ia) and 
(ib) together as (i)). !!J I' is given by all elements of ,,§ conju
gate to AI +) for 11 of type (ia) and AI _ I for 11 of type (ii) for 
some A. (1 ), ... ,A. (j), which in each case satisfies 

A. (1) > .. , >A. (a d > A. (a, + 1) 

> .. >A.(a,+,,·+al_,»A.(a,+··.+al_, +1) 

> ... >,1 (j»0. (3.7) 

For 11 of type (iii) !!J I' is given by all elements of ~ conjugate 
to AI +) or AI _ I for some A. (1 ), ... ,A. (j) satisfying 

A. (1» ... >A. (ad >A. (a, + 1» ... >A. (a, + .,. + al) > 0 

and 

A. (a l + .,. + a l) > A. (i»A. (t»o, 'if i,t with 

al+···+al<i<t<,j. (3.8) 

For 11 of type (ib ), !!J I' is given by all elements of f1 conjugate 
to AI + I or AI _ I for some A (1 ), ... ,A. (j) satisfying 

A. (1) > ... >A. (ad >A. (a, + 1) 
(3.9) 

For 11 of type (i), or (ii), we letA ~ = diag(A. O( 1 ).I, ... ,A. 0(j).l), or 
diag(A O( 1 ).I, ... ,A. °u - 1).1, - A °U).I), respectively, where the 
A 0(i) are fixed and satisfy 

A. 0(1) = ... =A.°(a l»A.°(a l +l) 

= ... = A. D(a l + ... + a l _,) 

>A. o(a l + ... +al_ 1 + 1) = ... =A. °U»O. (3.10) 

For 11 of type (iii) we letA ~ = diag(A. O(I).1, ... ,A. °U).I), where 
the A O(i) are fixed and satisfy 
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A. 0(1) = ... =A. O(a,»A. O(a, + 1) 

= ... =A. D(a, + ... +a/»O 

and 

A. O(i) = 0, 'ifi>a l + ... + al' (3.11 ) 

We put !!J I' = G (A ~ ) and r
l
, is defined by 

.W A -I 0 -, () rl , .• Y I' 3g (big -gA I'g E.y 1" (3.12) 

where g is any element of SO(n). Here, for 11 of type (ia)' 
A(b) = AI ~ I and, for 11 of type (ii), Alb) = A( _ )' where 1 A. (i) I 
in each case satisfy Eq. (3.7), for 11 of type (iii), AIIl) = AI + I or 
AI _ I and 1 A. (i) J satisfy Eq. (3.8), and, for 11 of type (ib), 
AllJ) = AI + I or AI _ I' where 1 A. (i) J satisfy Eq. (3.9). 

[Note: The Cartan subalgebra of ,C/j , in our case, is given 
by all its diagonal or block-diagonal elements, as appropri
ate. The Weyl reflection groups act on this Cart an subalge
bra as follows: A. (i)->-A. (1T(i)), for SU(n); A. (i)- ± A. (1T(i)), for 
SO(n), n odd; and A. (i)_ ± A. (1T(i)), with an even number of 
( - )'s, for SO(n), n even. Here 1Tdenotesa permutation of the 
diagonal or block-diagonal elements. The fundamental Weyl 
chamber may then be given as follows: For SU(n), 
A. (1»· .. >A. (n);forSO(n),nodd,A. (1» ... >A. ([n!2]»O;andfor 
SO(n), n even, A. (1» ... >A. ([nI2] - 1» IA. ([nI2])1. Thus our 
construction of neighborhoods !!J I' may be induced by the 
action of G on the various subsets of this fundamental Weyl 
chamber obtained by the omission of combinations of its 
faces, edges, etc.] 

It is evident that in each case above, rl' is a deformation 
retraction and that the bu!!dle !!J 1" with projection r 1" is a 
tubular neighborhood of ~ I' ' 

For (!,b,w)EWwe define PI' = P - cP --I(~ - !!J 1') for 
each 11. Since Pil C P, the bundle projection on P is also de
fined on PI' and we denote by MI' the image of PI' by this 
map. We impose a technical restriction here, in that we only 
consider such configurations (!,b,W)E W which are nondegen
erate in the sense that either MI' is a manifold of the same 
dimension as M or void. [Only for 11 of type C(i) or (ii) above 
do we allow the possibility that MI' is void, i.e., it may hap
pen that either one of !!J,t' or !!J 1'" does not intersect the 
image of M under cP, where 11' = (2a p ... ,2ajt + ) and 

" ; - ~ 11 = (2a" ... ,2al, - ), 2Lj~ 1 a j = n; however, ,,§ l',u:.1'I'" 
must intersect the image of M under !,b.] The discussion of the 
paper will now proceed for those MI' which are non void. For 
any 11 we have that PI' = MI' X G is a trivial principal fiber 
bundle over MI" Letting il': PI' 4 P denote the i~c1usion 
map of PI' inP, it is c1ear that the map!,boifL : P,t - f1" c:.1' is 
a tensorial O-form of type (ad, f1) on PI" valued in !!I" More
over, we ca~ define the map!,bl' = rl' o!,bOi,t: PI' _.'!II' C ffj 

which is a :.1'1' -valued tensorial O-form of type (~d, 811 on Pit 
(we will regard such maps as!,bl' to be valued in 811" :Y It' ~~, 
en >< n, ••• as appropriate, throughout the paper). The map i" : 
PI' 4 P together with the identity map on G defines a bun
dle homomorphism PI' _Po It follows (Proposition 6.2, p. 81, 
Ref. 7) that the connection on P with connection form W 

determines uniquely, via this bundle homomorphism, a con-
nection on PI' with connection form i:w. A 

For each 11, the stability subgroup of any point of :.1' I' is 
conjugate to Hit = G A::' the stability subgroup of A ~ . More-
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over, ~ is clear that, via the map G /H" 3gH,,-;:::gA ~ 
g- 'E~ 1" the coset space G / H" and the orbit ~ I' may be 
identified. Specifically, the stability subgroups H" are: for 
case A, with,u = (a " ... ,a[), L~ ~ , a, = n, H" 
g;;S (U(a ,) X '" X U(a[)) (here S means that the overall deter
minant is 1); for the cases Band C (iii) with 
,u = (2a" ... ,2aJ3),/3 + 2L~~, a i = n, H" g;;U(a,) 
X"'X U(a[)XSO(f3); for the cases C(i) and (ii) with 

,u = (2a" ... ,2a[, + or - ), 2L~~, a i = n, H" g;; U(a,) 
X ... X U (a [). In each case H'l has the block diagonal form 
co,!(patible with A::. Now the trivial bundle E" = M" 
X ,Cf/ I' g;;M'l X G / HI' with bundle projection onto Mil gives 
an associated bundle with PI' with fiber G / H". Denoting by 
0'0 the section of PI"j!o: M" 3x-(x,I)E P", then the map 
<p ~ = cPll 00'0: Mll-,r.; I' gives the section of E,,: 
M" 3x-(x,<p ~ (X))E EI" It then follows, by Proposition 5.6, 
p. 57, Ref. 7, that P" is reducible to a principal fiber bundle 
QI' with structure group H". Q" is, in fact, uniquely deter
mined by the map <p ~ to be the pullback bundle QI' = <p ~*G, 
where G here is viewed as the principal fiber bundle over 
,f9 I' g;; G / HI' with struS!ure group H" and bundle projec
tion: G3g-gA ~g-'E~ I" Letting Yr'" denote the subalge
bra of ~ which is the Lie algebra of HI' < G, we need the 
following result: 

Proposition 3.1: H" is a reductive subgroup of G, i.e., 
[I) = /7t"ll Ell JI and ad (HI' ) jl = JI. 

Proof The scalar product on ~, (-, .), is the G-invariant 
Cartan-Killing form. LeLtf = Yr'l with respect to (-, .). For 
any hE H,l , AE jl, BE Yr'1' we have that (ad(h )A,B) 
= (A,ad(h -')B). However, since ad(h -')B is in Yr'1" it fol
lows that (ad(h )A,B )iszero, 'I;j BE Yr'1" Hencead(h)AE .~, 'I;j 
hEHI"AEj(. 

From this and Proposition 6.4, p. 83, Ref. 7, a connec
tion is induced on the bundle Q" from the connection on PI' 
and its connection form is given by (E!li.I) k',,' where (A ) k'" 

denotes the dY'1' component of any element A in ~ under the 
decomposition ~ = Yr'1' Ell ~I(, and E" = ii' 001" where 01': 
Qil 4 PI' denotes the inclusio,Q map of QI' in PI' . 

We now define maps Pi,,: ~ ,,_G a,n onto the complex 
Grassman manifolds Ga,n' i = 1, ... ,/, for each,u [where each 
,u is given by (a" ... ,a[), (2a" ... ,2a[.f3), or (2a" ... ,2a[, + or 
- ) as appropriate]. Here, for convenience, we take Gan 
= \AEenAnIA t = A, A 2 = A, trA = a J, a<,n. Gan may be 
identified with Ga (e), the space of a-planes in e. The maps 
Pill' i = 1 , ... ,f, are as~ociated with projections onto the var
ious eigenspaces of ~ ,,' Specifically these maps are given as 
follows: 

(A) For SU(n) with,u = (a" ... ,a[), ~~~, a i = n,pi/l is 
defined by the map 

(3.13) 

(we will regard the range of Pi/l as belonging to Ga,n or e xn 

as is appropriate), where 0il' = diag(O, ... ,O, 1, ... ,1,0, ... ,0), 
with 1 in the a] + '" + a i _ , + 1 to a, + ... + a i diagonal 
positions and ° elsewhere. Since 0 t = 0 i/l' 0 71' = 0il" and 
tr0 i" = a" it follows thatg0il.g-] EGa,n' The maps given by 
Eq. (3.13), on Ga,n' are onto and Ga,n may be identified with 
the orbit homeomorphic to the coset space SU(n)/S(U(ai ) 

963 J. Math. Phys., Vol. 24, No.4, April 1983 

xU (n - a i )). Not all of the maps Pil' are independent in the 
sense that if we regard the range of Pi I' as belonging to e nxn 

-:J G a,n' then, since en x n is a vector space, linear summation 
of IPi/l J is defined, and we have the relation 

[ 

LPi" = In' 
i= 1 

where In denotes the identity n X n matrix. 

(3.14) 

(B) For SO(n), n odd, or C(iii) for SO(n), n even, where 
,u = (2a " ... ,2az,/3) and n = 2~~ = , a i + /3, the maps Pil' are 
again given by Eq. (3.13) but where now 

o =_1[0~2+(_1)I/20'] (3.15) 
1J.J 2 IJ.l 1J.l ' 

and 0:1' = diag(O, ... ,O, J, ... ,J, 0, ... ,0) with J in the 
a, + ... + a i_, + 1 to a] + ... + a[ (2X2)-block-diagonal 
positions and ° everywhere else. Since 

0;"T= -0:", and tr(-0:/)=2ai, (3.16) 

it follows that, indeed, g0'jIg-' is in Ga,n' The image of fj I' 
by Pi/l' given by Eqs. (3.13) and (3.15), defines the algebraic 
sub manifold of G a,n obtained from all elements A of G a,n 
which satisfy A T A = 0. This submanifold is homeomorphic 
to the coset space SO(n)/U(a;}XSO(n - 2aJ 

(C(i) or (ii)) For SO(n), n even, and,u = (2a], ... ,2al , + 
or -), 2~~ = ] a i = n, the maps Pil' are again given by Eqs. 
(3.13) and (3.15), where 0 i", i = 1, ... ,1 - 1 are defined in the 
same way as for Eq. (3.15), but where 0 11' is now given by 
diag(O, ... ,O,J, ... ,J, ± J), withJin thea, + ... + a Z _] + 1 to 
a, + ... + a l - 1 (2 X 2)-block-diagonal positions, + j or 
- J in the last (2 X 2)-block diagonal position depending on 

whether,u = (2a" ... ,2az, + or - ) and ° elsewhere. Since 
Eq. (3.16) is again satisfied, Pi" maps fj" into Ga,n' Regard
ing the range of Pi" as belonging to cnXn-:J Ga,n [for,u of type 
C(i) or (ii)] so that linear summation of (Pi" I is defined, we 
have that the following condition is satisfied: 

[ 

L Re(Pi,,) = !In· (3.17) 
i= 1 

For t~2 the image of f§ I' under Pi" defines the same algebra
ic submanifold of G a,n as for the previous cases of Band 
C(iii). However, for 1 = 1 a special situation arises in that the 
image of fj " under P il' is the algebraic submanifold of G a,n 
given by all elements A of Gan which satisfy A TA = ° and 
pf(Im A ) = + lor - 1 for,u = (n, + ) or (n, - ), respective
ly, where pf denotes the pfaffian (also in this submanifold 
ReA = ! In)' Either of these algebraic submanifolds is ho
meomorphic to the coset space SO(n)/U(a]). 

Over Gan we have defined the Stiefel bundle 
Ran CGan xcnxawith (A,B)E Ran ifandonlyifAB = Band 
B t B = Ia; the bundle projection is given by the map: 
Ran 3 (A,B )-AEGan and the group U(a) acts on (A,B) E Ran 
by (A,B ).g = (A,Bg), for any gEU(a) [Uta) is represented by 
all unitary elements of e axa]. Associated with Ran we have 
the vector bundle Ean CGan Xenxa over Gan and 
(A,B)E Ea. ifandonlyifAB = Banddet(B tB )#0. The bun-
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dIe projection and group action of GL (n,q on Ean is the 
same as for Ran. Through the mapspj/L: f1 /L-+Gain , i = 1, ... ,/ 
[p = (al, ... ,al), (2a I , ••• ,2aI , p, +, or -) as appropriate] 
defined above, we can pull back the bundles Ea ,,, and Ra,n to 
~fine the bundles P::: Eain and P::: Rain, respectively, over 
[§ 1'. We can further pull back using the maps tP?/L = P;f.L °tP ~ : 
M/L -+G ain to define the bundles tP ~* Eain and tP ~ Rain' re
spectively, over MI'. Thus we have 

tP~*Eain(Rain) p:::Eain(Ra,n) Ea",(Ran ) 

! ~:: ! p", !" (3.18) 

M
" 

-+ f1 /L -+ Gain 

fori= I, ... ,/. 
For eachp [of the form (al, ... ,al ) or (2a I , ••• ,2aI ,P, +, 

or - )], we now wish to see that the following three maps 
give a bundle homeomorphism: Qf.L-+tP ~Rain' i = 1, ... ,/: 

(i)hf.L: Q/L 3(x,g)-+(x,tP~(x),tP~(x),grjf.L) EtP~*Rain' 
where gEG is such that gA ~g-I = tP ~ (x). 

(ii)!;/L: HI' 3 h-+!:/L (h) = r~hrjf.L E U(aJ 

(iii)!:~ : M/L 3 X-+XE M/L' i.e., the identity map on M/L. 

Here rj/L denotes the n X a j complex-valued matrix defined 
as follows: 

For case A, with p = (a I, ... ,al ), !.~ ~ I a j = n, the 
(a I + ... + a j _ I + r,r) component of rj/L is 1 for r = I, ... ,a; 
and all other components are zero, where i = 1, ... ,1. 

For case B or C(i), (ii), or (iii), with p = (2a I , ••• ,2al , p, 
+ , or - ), 2!.~ ~ I a j + P = n and with i = 1, ... ,/ in the case 

ofB or C(iii) and withi = 1, ... ,/- 1 in thecaseofC(i), (ii), the 
(2a1 + ... + a j_ I + 2r - I,r) component of rj/L is m1l2 

and the (2a l + ... + 2a;_ I + 2r,r) component of r il, is 
( - 1)1/2·m l

/
2 for r = I, ... ,a i and all other components are 

zero. 
For cases C(i) or (ii) withp = (2a 1, ••. ,2af> + or - ) the 

(2a l + ... + 2al_1 + 2r- I,r)componentofrlf.L is (!)1/2, for 
r = I, ... ,al , the (2a I + ... + 2al _ 1 + 2r,r) component is 
( - I)'/2·W1l2, for r = I, ... ,al - 1, the (n,atl component is 
( - I)'/2·m ' /

2 for p = (2a" ... ,2a/, + or -), respectively, 
and all remaining components are zero. 

The three forms for rjf.L are respectively: 

0 0 0 

0 0 0 0 0 

0 0 

0 0 
( _1)1/2 0 0 

0 0 

. 1 0 ( _ 1)112 . -. 
~ 

. . 
0 

0 0 0 0 

0 0 (_ 1)1/2 

0 0 0 0 0 

0 0 0 
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From the following properties of rj/L ' 

rj/Lr~ = ej/L' ej/Lrjf.L = rjf.L' r~rj/L = la,' (3.20) 

and 

r~hrj/LEU(aj), hrjf.L = rjJ;/L(h), 'V hEH/L' (3.21) 

it follows that the maps!:f.L J;/L' and!;~ (in fact!:~ is induced 
by the bundle projections on Q/L and tP ~* Ra,n fromh/L and 
J:/L ) do indeed define a bundle homomorphism of Qf.L to 
tP ?/L* Rain [i.e., thath/L (x,gh ) = hI' (x,g)!:f.L (h ), 'V (x,g) EQ/L' 
hE H/L and that!;f.L: HI' -+U (a j) is a group homomorphism]. 
The group homomorphism!;/L induces a map, which we also 
denote!:/L: dY'f.L -+~ (a;), between the Lie algebras of Hi' and 
U(a i ), and is given by 

!;/L(A)=r~Ar;f.LE~(ai)' 'V AEdY'f.L' (3.22) 
Here °2-'(a) is represented by all complex aXa Hermitian 
matrices since the map!;~, being the identity on Mi" is a 
diffeomorphism, it follows by Proposition 6.1, p. 79, Ref. 7, 
that the bundle homomorphism above and the connection 
on Qi' uniquely induce a connection on tP ~* Ra,n' for each i. 
Thus, recalling that the connection form on Qf.L is (E"!w) h',,' 

using the expression for the induced connection form given 
in Proposition 6.1, p. 79, Ref. 7 and using Eq. (3.22), the 
following result is established. 

Proposition 3.2: For each i the bundle tP ~* Rain over M
" has a connection induced on it from the connection on the 

bundle P over M. Letting the respective connection forms be 
wli) and w, then wli) is determined from w by 

!t,wii) =!;/L ((E"!w).w) = r~ (E"!w)ri/L" (3.23) 

A tensorial O-form on PI' of type (ad,CnXn
) is defined by 

the map: tPif.L =::"Pif.L 0tPf.L: Pf.L-+Ga,n ccnxn, for each i. Since 
tP I' 081' : Qf.L -+ [§ I' C e x n is a tensorial O-form of type 
(ad,e Xn

) on Q" which is constant, its value being A ~, we 
have the following proposition for tPi/L. 

Proposition 3.3: For each i, 8! tPil': Qi' -+Ga,n ce xn is a 
constant tensorial O-form on Qf.L of type (ad,e Xn

), its con

stant value being ejf.L' i.e., 8 !tPji' = e'i" 
Here, let us make the general remark that for any ten

sorial O-form! of type (p, V) on any principal fiber bundle 
with structure group G and on which a connection is defined 
with connection form w, letting p also denote the induced 

0 0 0 

0 0 0 

0 0 
(_1)1/2 0 0 

1 . (3.19) . . 
-
~ 

0 0 

0 (_ 1)1/2 0 

0 0 1 

0 0 ±(_1)1I2 
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representation of the Lie algebrap: Y -.2"(V, V), then the 
exterior covariant derivative off, Df, may be expressed in the 
form:Df(X) = df(X) + p(w(X))f,whereXisanytangentvec
tor field on the bundle. In particular, whenp is defined by the 
adjoint action of G on V = .2"( V', V') for some vector space 
V', thenDf(X) = df(X) + [w(X ),f](heredis the exterior de
rivative on the bundle manifold). 

Proposition 3.4: For each i, 
D!DtPil' (X) = [w(€I',X),eil']' whereXis any tangent vector 
field on QI' . 

Proof DtPil' (Y) = dtPil' (Y) + [i!w(Y),tPil']' for any tan
gent vector field Yon PI'. Now consider D!DtPil' and use 
Proposition 3.3. 

For convenience we denote rt(·jFil' by (.);1'. 
Lemma 3.5: For any A,B E cnxn 

([A,B 1);1' - [(A )il' (B);I' ] 
= - ([ [A,eil' ], [B,eil' ] ]);1'. (3.24) 

Proof Suppressing the SUbscript on eil' and letting 
RHS and LHS denote right and left hand sides, then for Eq. 
(3.24) we have: RHS = - (AeBe + eAeB - Ae 2B 
- eABe - BeAe - eBeA + Be 2A + eBAe)il'. Butby 

Eq. (3.20): e 2 = e, eril' = ril" e = ril'r t; thus, 
RHS = (AB - BA - Aril'rtB + Bril'rtA )il' = LHS. 

We are now in a position to state and prove the main 
result ofthis section which concerns the generalization of the 
formula employed by 't Hooft. 

Theorem 3.6: The curvature form on the bundle 
tP ?:Ra,n associated with the connection form w(i), n (i), is re
lated to the curvature form n on the bundle P by 

f'!;.nli)(X,Y) = (€!(n(X,Y) 

+ HDtPil'(X),DtPil'(Y)]J);I" (3.25) 

where X, Y are any tangent vector fields on QI'. 
Proof Let x' = hI" X, Y' = hI" Y, the curvature on 

tP?:Rain is given by (see Ref. 7): n 111 (X',Y') = dwlll (X',Y') 
+ ![wlll (X'), wli) (r)J. Now using expression (3.23) for will 

implies n 111 (X',Y') = (€!(dw(X'Y)))il' + H!€!w(X));1' , 
(e!w(Y));l'l = (e!n (X,Y));I' - !We!w(X),e!w(Y)J);1' 
- [(€!w(X));I" (€!w(Y));l'lJ. By Lemma 3.5, then, n lll 

(X',r) = (e!n(X'Y))il' + !([[€!w(X),eil'],[e!W(Y),eil']]);l'. 
Applying Proposition 3.4 to this last expression proves the 
theorem. 

Having thus obtained for each i the expression for the 
curvature n Ii) on the bundle tP 't.* Rain' which we recognize as 
corresponding to the generalization of the 't Hooft electro
magnetic field, we shall conclude this section by discussing 
the role it plays. Let qi denote the bundle projection on 
tP ?I'* Rain' for each i, let H * (., A ), and H *(., A ) denote homol
ogy and cohomology spaces over a ring A, respectively, and 
let H i'>R (.) denote the de Rham cohomology space 
[H i'>R (.) e;H *( .,JR)). The first Chern class on the associated 
bundle tP ?: Ea,.", for each i, eM?: Eain ) E H tR (MI') can be 
represented by the closed 2-form t'l on MI" given by (see 
Theorem 3.1, p. 307, Ref. 8) 

(3.26) 
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From Eq. (3.25), trn (i) is given by the expression 

f'!;.trn (i)(X,Y) = €!(tPil',{n (X,Y) + ![DtPil'(X),DtPil'(Y)]J), 
(3.27) 

where X, Yare any vector fields on QI'. Since t i) is a closed 2-
form, it defines a conserved current (in the physical sense). 
We may obtain another conserved current on MI' by using 
the following property (see Ref. 8, p. 306) 

(3.28) 

where, here, tP ?: is also used to denote the map on cohomo
logy, i.e., tP?:: H*(Gain ,) -H*(MI".). If we now represent 
cl(Ean ), the generator of H2(Gan ,Z) ~Z by kan' a closed 2-, " 
form on Gain' then, for each i,tP 't.* kain gives a closed 2-form 
on MI' different from t'l, in general. To be specific, since G an 
is a Kahler manifold, we take k an to be proportional, by a 
numerical constant, to the Kahler form on G an. To make kan 
explicit, we must obtain coordinates on G an. For the open 
neighborhood U given by all elements A in G an such that 

A = [~](BtCt), (3.29) 

where BEcaxa, CECln - alxa, and det B #0, coordinates are 
defined by thea(n - a) components of the matrix T = CB - I 
ECln - a)X" (similarly for other open neighborhoods). On U 
then 

(3.30) 

where a, a, respectively, denote the exterior derivative with 
respect to the components of T and their complex conjugate 
(see Ref. 8, p. 160). The constant S is fixed by putting 

L~:"kan = 1, (3.31) 

where C~n denotes the closed 2-cycle in Gan , given by all 
e1ementsAA tin Gan , whereAECnx " is such that 

Zl 

Z2 

A = 0 , for a = 1, 

0 

Zl -z~ 0 

Z2 Z* I 
0 

A= 
0 

0 

0 

0 

. . . fora> 1, (3.32) 

0 

0 

for any ZI,z2EC with zlzT + zzZ~ = 1 (C~n defines a copy of 
the one-dimensional complex projective line in G an). Both 
expressions t'l and tP ?I'*k",n have appeared in the physics 
literature for the SU(2) case, and the identity relating them 
there shown in Ref. 9 we now generalize by writing 

CM?:E"in)= [t'l] =tP?I'*[k"in ], (3.33) 
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(we let [.] denote cohomology or homology class). That the 
latter expression in Eq. (3.33) does not contain the connec
tion form (J) follows from the general property that Chern 
classes are independent of the connection. Since conserved 
currents were obtained on Mit in two steps by usingpt, and 
t/J~. to map H~R(Ga,n) onto H~R(MIt)' i.e., 

rfJ~· A P:l 
H~R(MIt)-H~R(:1 1t)-H~R(Gain) (3.34) 

it is clear that all possible conserved currents are obtained if 
9 = [pt, C I (E a,n ) I generates H ~R (f1 It ). We show in an ap
pendix that this is indeed true. However, 9 in general will 
not be a linearly independent set; in particular for SU(n) (see 
Appendix) 

(3.35) 

Using the 2-forms r '1 or t/J ?;kain , an integer can be associat
ed, for each i, with any closed, compact, connected two
dimensional submanifold without boundary, i.e., any ele
mentary 2-cycle N in Mit' for some f..l. Since [N] generates 
H2(N,'l)~'l and [C~,n] generates H2(Ga,n ,'l)~'l and since 

the map t/J ~ °i N: N-+G ain induces the map (t/J ~ Oin ). : 
H 2(N,'l)-+H2(Ga,,, ,'l) on homology where iN denotes the in
clusion iN: N4 Mit we can write 

(t/J ~ OiN). [N] = ri(t/J ~,N) [C~,n ], (3.36) 

for each i, where ri(t/J ~,N) is an integer given by anyone of 
the following expressions: 

rM~,N) = 1 ku" 
It/» ~,OiN).N ' 

= L(t/J~oiN)·kain = J!tr il
• (3.37) 

Since the integers r; (t/J ~ ,N), i = 1, ... ,/, depend only on the 
homology class iN- [N] E H2 (MIt,R), they will be un
changed if N is replaced by any other elementary 2-cycle 
which, with N, defines the boundary of a 3-cycle in Mit' 
Moreover, r;(t/J ~ ,N), i = 1, ... ,/, will ren;..ain unaltered under 
a deformation of the map t/J ~ oiN: N-+:1 It' which leaves 
(t/J ~ OiN ). [N] EH2(Ga ,n ,R) unchanged for all i. For SU(n), 
since (see ApRendix) there are only /- 1 independent gener
ators of H2(:1 It,R) [f..l = (al,. .. ,a/)], we may expect a con
straint to exist on the / integers r;(t/J~,N), i = 1, ... ,/ in this 
case. Because ofEq. (3.35) this constraint is given by 

L r;(t/J ~,N) = 0. (3.38) 
; 

Finally let us remark that, for some f..l and for sufficient
ly large R, VR = [xEM 1 (x,x) > R I must be contained in 
Mit' and that specifying the integers r;(t/J ~ ,S~.), i = 1, ... ,/, 
and someR 'such thatR <R' < 00 isequivalenttospecifying 
the homotopy class aE'rr 2 (Z ( U)) defined by the configuration 
(t/J,(J))EW. IO 

IV. FURTHER PROPERTIES ARISING FROM THE 
VARIATIONAL EQUATIONS 

In this section we consider some analytical properties 
which can be inferred for the invariants (or tensorial O-forms) 
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constructed from the Higgs form, as a consequence of the 
variational equations (2.3). These properties take the form of 
differential inequalities satisfied by, and involving only, the 
above invariants, first on all of P and then on P'l for a certain 
f..l (specified below). 

We define the tensorial O-forms of type (O,R) on P by 
Or = (t/J r,t/J r), rEN. Only a finite number of the Or's are alge
braically independent, this number being given by the rank 
ofG. 

Theorem 4.1: At every point of M 

.doOr - 2r(t/J',t/J r - i.d",t/J »0, \I rEN. (4.1) 

Proof We have the following identity: .doO, = r~;~ u2 

(As, A,) + (t/J ,-IDt/J,t/J'- IDt/J) + 2r(t/J ',t/J ,-I.d",t/J), where 
A, =t/J,--s-2Dt/Jt/Js+1 +t/J,-s-IDt/Jt/J'. Since (A"A,»O 
and (t/J'- IDt/J,t/J'- IDt/J »0, the result follows. 

When the variational equations (2.3) are satisfied, Eq. 
(4.1) gives differential inequalities only involving the O,'s. 

Corollary 4.2: At every pointofM[a, = 1 forSU(n);a, 
= ( - 1)' - I for SO(n)] 

.doO, - 2rar[!!""U(t/J + tt/J2, -I)] >0, \I rEN. (4.2) 
dt I ~o 

We consider now the submanifolds Mit and Pit of M and 
P, respectively, wheref..l is given by: (1, ... ,1) for SU(n); 
(2, ... ,2,1) for SO(n), n odd; and (2, ... ,2, + ) for SO(n), n even. 
In each case !'1/1 defines the generic stratum of the group 
action and the labelf..l defines the interior of the fundamental 
Weyl chamber [i.e., without the walls; see [Note] after Eq. 
(3.12)]. For the remainder of this sectionf..l will be as just 
defined. On P'l we have tensorial O-forms t/J, t/Ju t, tu and to 
of type (ad,JFnXn) [JF = C for SU(n); IF = R for SO(n)], which 
are given as follows: for SU(n), t = t/J = t/Joilt and 
t; = t/J; = t/J;It' i = I, ... ,n; for SO(n), t/J = t/Joilt , t = t/JTt/J, 
t/J; = - 2 Imt/Jilt' t; = t/JJt/J; = - 2 RetP;/1' i = I, ... ,[nI2], 
and when n is odd to = In - ~1:~J t; [i.e., to is nontrivial 
only for SO(n), n odd]. We then have the invariants or tensor
ialO-formsonPIt of type (O,R),A; = (t/J;,t/J),a; = (;;,t),i:~O, 
which satisfy: forSU(n), a; =A;,~; A; = O,A I > '''>An; for 
SO(n), n = 2j, a; = A~, AI > ... >A)_ I> IA) I; and for SO(n), 
n = 2j + 1, a; =A 7, AI > ... >Aj >0. Noting that the space 
oftensorial O-forms of type (ad,lFnXn) on P'l is closed under 
linear summation and product, we state the following 
further properties: t/J = ~; A, t/J;; t = ~,,,,o a;t;; ~; s; = In; 
t;t) = bij;" \I i,j; (t;,;;) = bij' (i,j)#(O,O), (to,to) =!; It; I 
are Hermitian and are self-adjoint with respect to (', .) [in 
fact, (t;A,B) = (A,t;B), (At;,B) = (A,Bt;), \I A,BElFnxn]. 
For convenience we let D denote the covariant derivative on 
P/1and.d=.d,. . 

IJlW 

Proposition 4.3: (i) (t;,D;;) = 0. 
(ii) (t;,.dt)) = - (D;"D;J 
(iii) (D;"Dt)) = 2[(Dt"Dt;)bij - (Dt;,t)Dt;ll· 

(iv) (Dtut;Dt;) = (Dt),;;Dtj»O. 
Proof (i) and (ii) are obvious. (iii) Taking the derivative 

of t ~ = t; implies Dt; = tiDti + Dtiti' The inner product 
of this equation withDtj then gives the result when i = j. For 
i#j, taking the inner product of this equation with Dt; and 
using the fact that t;t) = ° implies tiDtj = - Dt;b) gives 

P. Houston 966 



                                                                                                                                    

(DS;,DSj) = (S;DS;.DSj) + (DS;S;,DSj ) 
= (DS;'S;DSj) + (DS;,DSjS;) = - 2(DLsjDS;), 

which is the result for i =/=J. (iv) follows from (iii) and the fact 
that (Ds; ,SjDs ,) = (SjDs;,SjDsJ~O. 

Lemma 4.4: (i) For SU(n) and SO(n'), n' even, Jdl; 
= 2Lj",; (a; - aj ) (Ds" SjD~;) + (S;,..:1~)· 

(ii) For SO(n), n odd, Joa; = 2Lj ",;>0 (a; - aj ) 

(Ds;, SjDs;) + 2a; (Ds;, soDs;) + (L..:1s), i>O. 
Proof Differentiate a; = (S;, S), using Proposition 4.3 

and the fact that };; s; = lL n • By Proposition 4.3(iv) and the 
previous lemma we get: 

Theorem 4.5: 
(i) For SU(n), .10 (};; ~ I A;) - (};; ~ I S;.JS );;'0, 

r= l, ... ,n - l. 
(ii) For SO(n), ..:10 (};; ~ I A ~) - n; ~ I A; (1/';..1 1/');;'0, 

r = 1, ... ,[nI2]. 
On application of the variational equations (2.3), we ob

tian the following differential inequalities on MI" for! Ai J. 
Corollary 4.6: (i) For SU(n),..:1o (};; ~ I A,;) 

- [(d Idt )U(I/' + t };; = I 1/';)]/ ~ 0 ~O, i = 1, ... ,n - l. 
(ii) For SO(n), .10 (};;~ I A, 2) 

- 2[(d Idt )U(I/' + t};;= I A;I/';)]/=o~O, i = 1, ... ,[nI2]. 
As an application, let us consider now the limit ofvan

ishing Higgs potential U----+-O. Corollary 4.2 in this case be
comes: Joa,;;'o, V rEN, i.e., a, for each r, is a subharmonic 
function. The asymptotic condition on the invariants ar (re
placing the finite energy constraint for U~O) is that, for each 
r = 1, ... ,rank(.~), ar(x) tends to a finite limit (ar )"" as 
(x,x)-.oo. Thus at each point x of M 

[..:1 o[(arLyo - ar ] j(x)<O, V rEN. (4.3) 

By multiplying Eq. (4.3) by the Green's function 
[16r«(x - y),(x - y)]-1/2;;.0 and integrating over all 
points x in M, the following pointwise bounds on the Higgs 
invariants may be obtained: 

(4.4) 

Previously, only the r = 1 case ofEq. (4.4) had been shown.2 

V. SUMMARY AND CONCLUSIONS 

The subject matter of this paper may be divided into 
two main parts, corresponding to Secs. III and IV. In Sec. III 
we establish the generalization of the 't Hooft field, for gauge 
groups of physical interest larger than SU(2), as the curva
ture forms induced on vector bundles E over submani
folds Mil of Euclidean 3-space M. The s;~tement of this re
sult is given in Theorem 3.6. In the remainder of Sec. III we 
show how, via the first Chern classes of the bundles E . , to 
associate sets of integer charges with (almost) any close';(sur
face. In Sec. IV we obtain differential inequalities for, and 
involving only, the Higgs invariants which follow from the 
variational equations (2.3) for arbitrary Higgs potential. 
These inequalities are of two kinds, the first kind hold on all 
of M and the second on a specific submanifold MI"' The 
statements of these results correspond to Corollaries 4.2 and 
4.6, respectively. In an application to the limit of vanishing 
Higgs potential, new bounds are obtained on the Higgs in
variants [Eq. (4.4)]. 
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APPENDIX 

Here it is shown that [c I (p~ Ea,n)j generate H 2( ~ I" ) 
[throughout the Appendix H *(.) will mean H *(.,R) 
~H]!;R (.)]. First we introduce a more convenient notation 
for this purpose than the one used in the text. Let X (/31, ... ,[31; 
0-) consist Q.fall elements (YI'''''YI) = (PII" (A ),,,,,PII"(A )), 
where AE.'11" and where J.l = (/31,· .. ,/31; 0-) [i.e., /3; = a l _, + I 
for SU(n), /3; = 2a l _; + lA-and 0- = +, -, or /30 for SO(n) 
andn = };;/3J. Clearly .'11" andX(/3I, ... ,/3I; 0-) maybeidenti
fied. For / > 1 we have the fiber map 'lT1: X (/31, ... ,/31; 0-) '3 

(Yl, ... ,y/)-.y/EBl.l(/3/) [B/,/(/3/)CGa1 " in the notation used in 
the text] with typical fiber X (/31, ... ,/31- I ; 0-). We leUI denote 
the inclusion map 

i l : X (/31, .. ·,/31- I ;0-) '3 (Y!""YI- I) 

4 ([~ ~J ... ,[~ ~/_I] , e;1" )EX(/3I, ... ,/3I:o-). (AI) 

We also define the maps p\/l: X (/31> ... ,/31; 0-) '3(YI, ... ,Yd 
-'Y;E Bi./(/3;) (pIli = 'lT1)' 

Each of the spaces X (/31>' .. ,/31; 0-) and B;,I(/3;) may be 
considered as an orbit of the adjoint action of the group G. 
For any such orbit G (A ), AE.'1, it has been shown II that 
dim[H2(G(A))] = dim(centerofGA ). HenceH2(B;,I(/3;))~R 

and H 2(X(/3I, ... ,/3I; o-))~Rd, where d = /- 1 for SU(n) and 
d = / forSO(n). Moreover, both Bi./(/3; )andX(/3I, ... ,[3I; 0-) are 
0- and I-connected and since all orbits G (A ), AE.'1, are 
Kahler manifolds,12 it follows that H r(B;.I(/3;)) 
= H r(x (/31 , ... ,[31; 0-)) = ° for r an odd integer. By use of 

Theorem 1O.6.2C, p. 431, of Ref. 12, we may write the exact 
sequence. 

LemmaA.l: 

17'/' 2 
+-H (BI,I(/3I))+---O' (A2) 

LettingH2(Bu(/3;)) be generated by k \/), i = 1, ... ,1 [k \llrepre
sents the first Chern class of the vector bundle over Bu(/3;), 
denoted Eajnin the text]. Our task now reduces to proving 
the following theorem. 

TheoremA.2: !p~/)*k \11];d generatesH 2(X (/31, ... ,[31; 0-)). 
Proof We used induction on I. The initial case [I = 2 for 

SU(n), / = 1 for SU(n)] is obviously true. Now let us define 
the inclusion maps 

'(/1. (/3 4 [0 0] . J; . BU_I i)'3y ° Y EBi./(/3;), 1= 1, ... ,/-1. (A3) 
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Hence the following diagram commutes, for each i, 
i = 1, ... ,1- 1: 

(A4) 

i.e.,j}llop\l- II = p\llo;I' On 2-cohomology,jPl is an isomor
phism, i.e.,j}il*: H2(Bi,llfJi))~R~H2(Bi,l_ IlfJi))~R, for 
; = 1, ... ,/- 1, so let us choose to havej}il*k \11 = k ll-I). 
Hence, from Eq. (A4)p\I-I)*kV- II =p\I-I)*j/I*k\1l 
= irpVI*k VI, for i = 1, ... ,1- 1. Making the inductive hy

pothesis for the /- 1 case, it follows that {irp\ll*k \Ill gener
ates H 2(XIfJI, ... ,/3I_ I; u)). By the exactness of the sequence 
(A2), n1k VI must define an independent element in 
H 2(X (/31, ... ,/3/; u)) to {p\ll*k \IIL .. I_ I' Since 
dim[H 2(XIfJI, ... ,/3I;u))] = dim[H 2(XIfJI, ... ,/3I_I;u))] + 1 and 
since tTl = pIll, the proof by induction is complete. 

Finally, let us remark that for SU(n) only /- 1 elements 
of I C I (p~Ea,n )J i .. 1 (in the notation of the text) are linearly 
independent and that the following relation is satisfied: 

(A5) 
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This equation is a consequence ofthe Whitney sum formula 
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and the fact that e i Eo," is a trivial vector bundle over Y!J. . 
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In an earlier paper we established an equivalence between the dynamics of interacting sine
Gordon solitons and the motions of poles of the corresponding Hamiltonian density. In 
particular, we found analytic expressions for the forces acting between the solitons and used these 
to represent the N-soliton solution as an N-body interaction between classical particles. In this 
paper, we apply the methods of our previous analysis to obtain a dynamically equivalent particle 
representation for interacting Korteweg-de Vries solitons. The representation is faithful and a 
detailed analysis is present for the one- and two-soliton solutions. In these cases the particle 
motions accurately reflect the behavior of the solitons, giving, respectively, a uniform motion and 
a repulsive interaction. Furthermore, in the case of the two-soliton solutions, the phase shifts 
calculated from the particle trajectories are the same as those obtained from an asymptotic 
analysis of the waveforms. Because of the nature of the Korteweg-de Vries equation, there are 
important differences between the present analysis and that employed for the sine-Gordon 
equation and these are discussed in some detail. A comparison with related work on other 
solutions of the Korteweg-de Vries is also presented. 

PACS numbers: 11.10.Qr, 11.10.Lm, 11.S0.Jy 

I. INTRODUCTION 

One of the many interesting aspects of the theory of 
nonlinear evolution equations is the field-particle duality 
that exists between the regular and signular parts of special 
solutions of these equations. 1.2 To be more precise, as the 
regular component of the solution evolves in time according 
to the field equation, the singular features, such as poles, etc., 
which lie on certain submanifolds of a (generally) complex 
domain, execute well-defined motions which can be identi
fied with those of a classical many-body problem with two
body forces. This establishes a direct link between an infi
nite-dimensional system represented by the field equation 
and a finite-dimensional system of classical particles. 

For example, if we consider the Korteweg-de Vries 
equation (KdV) 

(1.1) 

then, as shown by AirauIt et al. 3 and the Chodnovsky broth
ers,4 the motions ofthe poles of the rational and elliptic solu
tions of (1.1) can be related to certain solutions of many-body 
systems with the Hamiltonians 

(1.2) 

where V are repulsive pair potentials which only depend on 
the (complex) inter particle separation Zkl = Zk - ZI' In the 
case of the rational solutions these potentials are proportion
altozki 2 or Zki

4
, whileforthe elliptic solutions Va: .9 (Zkl ) or 

.9 2(Z k/)' where .9 is a Weierstrassian elliptic function. 5 

In a similar manner, though from quite a different point 
of view to that adopted in Refs. 3 and 4, we have established6 

a strong correlation between the dynamics of interacting so
litons of the sine-Gordon equation (SGE), 

<Pxx - <Pit = sin <p, <p:(x,t )ER2-¢ (x,t )ER mod 21T, 
(1.3) 

and the motions of the poles of the corresponding Hamilton
ian density, 

J¥'= J.-[(<Pns);+(<Pns)~ +2(1- cos <Pnsl] , 
2 

<Pns n-soliton solution. (1.4) 

In this case the imaginary parts of the pole positions turned 
out to be constants and, hence, the projection onto the real 
axis gave us a one-dimensional, many-body problem (with a 
real phase space), which was also a one-to-one map, i.e., one 
particle per soliton. The two-body problem was worked out 
in detail and led to the pair potentials. 

V,,(x) = Sy(l - tanh rlxl), (1.5a) 

for the repulsive, soliton-soliton scattering state and 

Vsa(x) = Sr(l - coth rlxl) (Ub) 

for the attractive, soliton-antisoliton scattering state, where 
r is the Lorentz factor and 12x1 the (real) distance between 
the particles in the center-of-mass frame. 

Our success with the SGE prompted us to extend the 
analysis to some of the other well-known soliton equations, 
and in this paper we report on an attempt to obtain a particle 
representation for the KdV solitons. The study effectively 
brings together two earlier works on the problem. The first is 
a paper by Thickstun,7 in which the analysis is motivated by 
a formal analogy between the soliton solutions and the veloc
ity field of a set of dipoles in a perfect two-dimensional fluid, 
an analogy originally suggested by Kruskal,8 while the sec
ond is a paper by ourselves,9 which, in retrospect, turned out 
to be a very preliminary version of the present work. 

Thickstun's analysis, although interesting in its own 
right, does not appear to us to be a satisfactory solution to the 
original problem. There are three reasons for this, two phys
ical and one mathematical. First, the association of dipoles, 
which are vector particles, with the solutions of a scalar field 
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equation is physically inconsistent, or at best, incomplete.4 

Secondly, the interpretation of the details of the soliton inter
actions in terms of "slipping dipoles" seems to be more of a 
conjecture than an assertion, since it is not supported by any 
quantitative arguments. Thirdly, and what is perhaps the 
most relevant criticism, the method used by Thickstun for 
finding the poles of the two-soliton solution has three major 
disadvantages: (I) It only leads to solutions for rational val
ues of the square-root of the speed ratio; (2) it does not make 
use of the extra degrees of freedom which are available in the 
complex plane; (3) it does not lead to a faithful representa
tion, i.e., a particle problem where the number of particles is 
the same as the number of solitons. In fact, the solutions 
obtained in Ref. 7 exhibit an unstable property in that the 
number of poles depends explicitly on the speed ratio of the 
solitons and small changes in the latter can produce extreme
ly large changes in the former, whereas if a faithful represen
tation exists, we expect it to the stable, i.e., in the case of the 
two-soliton solutions it should contain two and only two 
poles for all values of the speed ratio. 

Now in our preliminary analysis,9 we showed that it is 
possible to obtain such a faithful representation for the two
soliton solutions. However, the method we used was some
what ad hoc, and, as a consequence, our results were math
ematically incomplete (we missed the random poles) as well 
as being physically obscure (we worked with complex time). 
In the present study we remedy both these deficiencies. Our 
method is more general and, working with real time, we ob
tain both the faithful and random representations. The for
mer is then used to discuss the dynamics of interacting soli
tons. 

Our results indicate that KdV solitons repel each other 
and that the forces acting between them have a short range. 
Moreover, these forces are local in nature, rather than of the 
action-at-a-distance type, and are generated by the absorp
tion and emission of energy and momentum by the underly
ing field. As a consequence, the solitons exchange, rather 
than preserve, their identities during the interaction. Note 
that this explanation of the manner in which the interaction 
occurs is based on the assumption that the faithful poles can 
be identified with the center of mass of the individual soli
tons in the two-soliton waveforms. It differs considerably 
from the "conventional" view and from an earlier interpre
tation given by Lax, 10 in which the solitons are identified by 
the "peaks" on the waveform. We shall elaborate on this in 
Sec. V. 

From a general point of view the results obtained for the 
KdV are not as satisfactory as those we obtained for the sine
Gordon equation. This stems from the fact that, apart from 
the presence of random poles, the KdV does not have the 
right symmetry for a particle interpretation. Thus, in calcu
lating the mass spectrum of the pole particles from the wave
forms, we have had to abandon the Hamiltonian density for 
a phenomenologically defined mass density. Nevertheless, 
the results are interesting in their own right and provide, we 
think, a satisfactory picture of the translational mode dy
namics of interactng KdV solitons. 

The plan of the rest of the paper is as follows. In Sec. II, 
we compare and contrast the objectives and methods of our 

970 J. Math. Phys., Vol. 24. No.4, April 1983 

approach with those of Refs. 3 and 4. We feel that this com
parison is important and, for pedagogical reasons, is better at 
the beginning rather than the end of the paper. In Sec. III we 
present our physical interpretation and compute the mass 
spectrum of the particles. Section IV deals with the kinema
tics of the polemotions, and Sec. V with the dynamics of the 
solitons. Our concluding remarks are contained in Sec. VI. 

II. TWO APPROACHES TO DUALITY 

Apart from establishing a duality between fields and 
particles, the examples cited above also illustrate two differ
ent ways of exploiting this duality. On the one hand, there 
are the mathematically motivated studies of Refs. 3 and 4, 
and on the other, the more physically oriented analyses of 
Refs. 6 and 7. The contrast between them is best explained 
via specific examples and can be sketched in the following 
manner. 

First, from a formal point of view, the evolution equa
tions can be used to generate and study solvable many-body 
problems. To see how this can be done, consider, for exam
ple, the following fairly simple nonlinear equation: 

u, + Ux + u2 = 0, u:(x,t )ER2-+U(X,t )ER, (2.1) 

which has the general solution 

u(x,t) =f(x - t)1 [1 + t/(x - t)], u(x,O) = f(x), (2.2) 

wherefR-+R is an arbitrary function. To study the motions 
of the singularities of(2.2), for general/, we continue u to the 
map u(z,t ):C X R-+C via the substitution x-+z = x + iy. 
Then, from (2.2), the orbits of these singUlarities are given by 

Zi(t) = fi-- I( - lit) + tEC, tER, (2.3) 

wherefi- I is the ith branch off-I. Thus, both the number 
and nature of the orbits (2.3) can be varied by adopting differ
ent choices for the initial profiles of (2.1). 

Now the most interesting examples occur when the ini
tial profile is chosen so that u(z,t ) is a meromorphic function. 
In this case the singularities manifest themselves as a finite, 
or at worst an infinitely countable, set of poles. The simplest 
nontrivial choice for our example is the four-parameter ra
tional function 

fIx) = 1 - r + 1 - {j, a, {J, r, {jER, 
x-a x-{J 

(2.4) 

which leads to the complex solution 

2 

u(Z,t) = I [l-zi(t)]/[z-zi(t)], 
i= I 

. dZ i 
Zi=-' (2.5) 

dt 

with an obvious identification of the parameters with the 
initial positions and velocities of the two first-order poles. 
The trajectories Zi(t) can be computed from (2.3) and turn 
out to be 

ZI2(t)=a+bt±(At 2 +Bt+C)I/2, A=(l-bf, 
. (2.6) 

where, a, b, B, and C are constants which are fixed by the 
initial conditions. 

We turn now to the dynamics of the pole motions. If we 
consider the poles as representing classical particles of unit 
mass, then we have a two-body problem with a configuration 
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space C2 and a phase space C4
, i.e., the state of the system is 

given at tER by the vector v(t) = (VI' v2, V3' v4 ) = (ZI(t), Z2(t), 
ZI(t), Z2(t ))EC4

• The dynamical properties of the system can 
now be computed from (2.6) and are as follows: (1) The equa
tions of motion take the form (dvl dt) = Xp (v), where the vec
tor field Xp :C4---+C4 is given by Xp (v) = (V3' v4 , w, - w), 
w = 2( 1 - v3)( 1 - v4 )/(v! - v2 ). Note that Xp is autonomous 
and globally well defined except on the collision set ZI = Z2' 
(2) Xp defines a smooth flow on the manifold 
~- = C4 '\collision set, i.e., v(t) = exp(tXp) [v(O)], VEC4

-, 

tER. (3) The system has two independent constants ofmo
tion, V3 + V4 = alEC and (1 - v3 )(1 - v4 )(v! - V2)2 = a 2EC, 
and thus the flow takes place on the submanifold, N C C4 

- , 

defined by the values of these constants. 
The situation vis-a-vis the evolution equation (2.1) is 

now as follows. Let X F be the vector field of (2.1), i.e., 
u, = XF(u), and M the manifold of its solutions with initial 
profiles given by (2.4). It is straightforward to check that M is 
invariant under the flow generated by X F and, hence, that 
every solution in M has the form (2.5). We now consider a 
map cfJ: M---+C4

, which relates the orbits off(x) inM to those 
4> 

of its poles in C4
, i.e., exp (tXFV'(x)CM---+ exp (tXp)v(O)C C4

. 

This induces a map betweenXF andXp , and thus we have at 
least two representations of the dynamics of(2.1): (i) as a flow 
on an infinite-dimensional function space M (the natural 
flow) and (ii) as a flow on a finite-dimensional complex space 
NC C4 (the induced flow). The next step is to identify Xp (via 
transformations if necessary) with the vector field of a two
body Hamiltonian system. 

Thus, consider the Hamiltonian, H:VEC4I---+H (V)EC, de
fined by 

(2.7) 

which is a straightforward extension, from R4 to C4
, of the 

real Hamiltonian representing two particles moving in R un
der the influence of an inverse-cube force law. The vector 
field X H of H is defined on C4 

- , and if we choose the constant 
fJ equal to a 2 , then it is easy to see that X H IN = Xp ' i.e., the 
flows on N generated by X Hand Xp are identical. Thus the 
evolution equation (2.1) can be used to study the phase por
trait of(2.7) on NCC4

- and possibly in its immediate neigh
borhood. 

Remarks: (1) The analysis presented above can be gen
eralized to solutions of (2.1) which contain n simple poles, 
i.e., those of the form 
u(z,t) = l:Z~ 1[1- zdt )]/[ 1 - zdt)], for any n. In this 
case we make a connection with the n-body version of (2.7): 

n 

H(C2n ) = Iz]/2 + fJI(Zj - Zk)-2. (2.8) 
j= I j<k 

However, such an unrestricted extension is not always possi
ble. For example, if we consider the pole flows of the rational 
solutions of the KdV [which are also related to those of the 
system (2.8)], then nontrivial connections are limited to val
ues of n for which (1 + 8n) is a perfect square. 3 Thus, n = 2 is 
trivial and we have a peculiar (from a physical point ofveiw) 
situation in which there are two-body forces, but no two
body problem. 
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(2) In our particular example, the pole flow is embedded 
directly into the flow of a physically meaningful Hamilton
ian, that is, one which is identified with the total energy 
function of the system and hence is the bonafide generator of 
translations in time. When this is not possible, a rather less 
direct connection may be made as follows. Consider an n
dimensional Hamiltonian system which is known to be com
pletely integrable. Then the system has n independent con
stants of motion Cj(q,p), including the Hamiltonian, which 
are in involution, i.e., the Poisson brackets I Cj , Ck J = 0 for 
allj, k. Thus, there are n basic vector fields, Xj = (Vp' V q)Cj , 
which are linearly independent and commute with each oth
er. It may now be possible to identify the vector field of the 
pole flow with some linear combination oftheXj • For exam
ple, the real version of (2.8) is known to be completely inte
grable!! and, in Ref. 3, the poleflows of the rational solutions 
of the KdV are related to (2.8) in this indirect manner. Of 
course, the physical meaning of this relationship now be
comes obscure, since we no longer have an embedding into 
the Hamiltonian flow. Nevertheless, from a mathematical 
point of view, the connection is interesting and may prove 
useful. 

We now turn our attention to the more physical ap-
proaches of Refs. 6 and 7, which concentrate on soliton solu
tions. The example discussed above shows, quite clearly, 
that the main objectives of the mathematical approach to 
field-particle duality are (i) to establish formal connections 
between the pole flows of evolution equations and the mo
tions of particle systems with two-body interactions and (ii) 
to use these connections to transfer mathematical informa
tion from one system to the other. For example, solvable 
evolution equations can be employed as a tool for analyzing 
and classifying integrable many-body problems. 12 However, 
we can also look at related field and particle systems from a 
physical point of view and ask whether the mathematical 
connections between them have more than just a formal sig
nificance. In other words, is it possible to give these connec
tions a physical interpretation? For the most part the answer 
is no; there is, in general, no natural map (at the classical 
level) between the field solution and its associated particle 
systems. However, for evolution equations with soliton solu
tions the situation is different. In this case, when the field is 
excited into its pure soliton modes, it is clearly trying to 
mimic the behavior of a particle system, and thus it seems 
physically reasonably to identify an associated pole flow 
with the center-of-mass motions of the individual solitons in 
an n-soliton solution. Such a "particle" interpretation would 
given quantitative insight into the nature of soliton interac
tions as well as have other advantages. For example, it can be 
used as a computational tool in the perturbation theory of 
the translational modes of free and interacting solitons, since 
this analysis is sometimes technically easier to carry out in a 
particle picture. 13,14 Thus, in the physical approach, we con
centrate on the solitons and look for a unique particle system 
which has the same dimensionality as the evolution equation 
and which is also afaithful representation of the particular 
solution it comes from. 

Now it is somewhat surprising that such a system exists, 
but it does and to see briefly how it can be obtained let us 
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consider the soliton-soliton scattering state solutions of the 
SGE [Eq. 1.3)]. In the center-of-velocity frame extended to a 
map over a complex-space domain, Z = x + iYEC, these are 
given by 

<P •• (z,t) = 4 tan -I(U sinh yz/ cosh yut). tER, (2.9) 

where UE(O, 1) is the common speed of the solitons and 
y = (1 - u2

) -1/2 is the Lorentz factor. We now identify the 
poles of the corresponding (complex) Hamiltonian density 
[Eq. (1.4)] with the center of mass of the two "interacting" 
solitons on the real line, i.e., (2.9) withy = O. These poles 
occur at the points zp(t) = xp + iYp(t), where 
Yp(t) = (2n + 1)1T/2y, nEZ, and exp[ ± YXp(t)] = [cosh yut 
+ (cosh2yut - U

2
)1/2]/U, and have the following properties. 

First, the periodicity with respect to Y can be factored out via 
an equivalence relation and thus we only need to consider 
the strip yE(O, 1T/Y). This gives us uniqueness. Secondly, 
within this strip there are only two poles, for all allowed 
values of the parameter u, so that the representation is faith
ful. Finally,yp = 0 for all t and hence the pole motions are 
parallel to the motions of the solitons on the real axis, i.e., 
dimensionality is preserved. The projection of these poles 
onto the real axis then gives us a unique, two-particle system 
in one real space dimension and is the representation we are 
looking for. The vector field of the system can be computed 
from xp (t ), and the masses of the particles obtained from 
(1.4) and (2.9) in the limitsy-o, t--+ ± 00. It turns out, as we 
mentioned in the Introduction, that the vector field is 
Hamiltonian with the pair potential (1.5a). The details of 
these computations are given in Ref. 6. 

The "philosophy" of the physical approach may be 
summarized in terms of the following proposition: 

Proposition: A physically meaningful particle interpre
tation of soliton dynamics can be based on the pole flows of a 
suitable mass or energy density of the field provided that: (i) 
There exists a set of poles of the density which is a faithful 
representation of the soliton solution for all allowed values of 
the essential parameters of the latter [e.g., u in (2.9)]; (ii) the 
pole motions of the faithful set are parallel to the real axis for 
all t, i.e., the induced vector field is one-dimensional and thus 
preserves the dimensionality of the evolution equation; (iii) 
the chosen density leads to a well-defined mass spectrum for 
the particles (this will be explained in the next section). D 

In what follows we shall establish this proposition for 
the solitons of the KdV equation. We start with (iii), i.e., the 
choice of a suitable mass density for the KdV field. 

III. THE PARTICLE INTERPRETATION 

Since the KdV is a completely integrable Hamiltonian 
system 15 and hence conservative, one approach to its deriva
tion is via a Lagrangian. The advantage of this method of 
obtaining the equation is that it also leads to a well-defined 
Hamiltonian densiy. For example, the Lagrangian density 

.Y' 1 A" _lA,,3 1 A,,2 
= T'I'x<Pt + (iYx - T'I'xx, (3.1) 

where <P is a potential for the KdV field u, i.e., U = <Px, leads 
to the equation 
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Ut + UUx + Uxxx = 0 (3.2) 

and to the Hamiltonian density 

JY' = - ~ u3 + ~ u2 
• 

6 2 x 
(3.3) 

Now in any physical application of(3.2) it is usual to identify 
JY' with the energy density of the system being described. 
Such an identification also leads to a natural association 
between particles and the poles of JY', since they both repre
sent points at which the mass/energy density is infinite. The 
assumption that the poles of JY' move in accordance with the 
center-of-mass dynamics of the corresponding soliton solu
tion then allows us to compute the mass spectrum of the pole 
particles from the energy spectrum of the solitons. 

In order to implement such a procedure, it is first of all 
necessary to check whether it can be consistently applied to 
the KdV in general and to its soliton solutions in particular. 
There are two points to consider. First, since we are dealing 
with a nonrelativistic system, we would like both the field 
and particle equations to be invariant under Galilean trans
formations. Secondly, since the total energy of the system is 
given by the integral 

E (u) = J: 00 JY'dx, (3.4) 

where U is the soliton solution under consideration, this inte
gral must converge in all Galilean frames. Now both these 
conditions would be satisfied if the KdV field transformed 
like a Galilean scalar. However, it is easy to check that (3.2) 
remains invariant under the transformation x--+x - ct, t--+t, 

and U--+U - c, showing that u transforms like a time-re
versed velocity rather than a scalar. This implies that if E (u) 
is finite in one frame of reference it will certainly diverge in 
any other. Consequently, we either have a finite energy inte
gral together with a noncovariant equation of motion or else 
a covariant equation with a divergent energy functional. It is 
interesting to note that this "ambiguous" behavior of the 
Kdv is in direct contrast to that of the SGE, where a scalar 
field interpretation is consistent both with Lorentz covar
iance and an integrable Hamiltonian density. The Hamilton
ian could thus be identified with the energy of the sine-Gor
don solitons and hence used to obtain the mass and energy of 
the corresponding pole particles. Unfortunately, this 
straightforward method cannot be applied to the KdV. 

We see two ways out of the difficulty. The first is to 
develop a "renormalization" technique, which enables us to 
cancel out the energy infinities introduced by frame changes, 
while the second is to abandon the Lagrangian approach 
altogether and adopt a more phenomenological and physi
cally intuitive way of deriving the KdV. The second option is 
easier to implement and is the method generally employed 
by hydrodynamicists. 16 In their approach the basic field is 
assumed to be scalar and the field equations, such as , for 
example, the KdV, are derived as structural perturbations of 
the linear, unidirectional equation 

U t + CU x = 0, cER>O. (3.5) 

If we adopt this derivation, then the following argument 
leads to a consistent particle interpretation. 
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Consider the solitary wave solutions of(3.5) and, in par
ticular, those of the form 

n 

Uns = I ai sech2 bi(x - ct + Di ), 
i= 1 

(3.6) 

where the subscript on U refers to the fact that there are n 
individual waves in the profile and the ai> bi> DiElR with 
ai > 0. These may be thought of as free-field solitons since (i) 
they do not interact with each other, i.e., the superposition 
principle applies, and (ii) there is no self-interaction, i.e., the 
speed is fixed and the a; and b; are free parameters. Now the 
form of (3.5) tells us that U is a locally conserved density. It 
follows, therefore, that, since both U ns and its x derivative 
vanish as Ixl~oo, the functional 

m(u ns ) = J~ = unsdx < 00 (3.7) 

is a constant of motion for the system of noninteracting soli
tons represented by the solution (3.6). This establishes the 
existence of an integrable conserved density for the field 
equation (3.5). 

We now turn to the question of Galilean invariance. 
Since we have defined U to be a scalar, (3.5) will only be 
covariant under the Galilean transformations if the coeffi
cient ofux transforms like a velocity. In order for this to be 
physically meaningful, we have to assume that the system 
has a characteristic velocity, i.e., the solitons are local excita
tions of the field which move with a definite speed relative to 
a quiescent background. Thus, we have no control over the 
speed of the solitons other than by changing inertial frames. 
On the other hand, we do have a Galilean invariant interpre
tation in which u is a conserved scalar density. 

If we adopt this interpretation, then we can identify u 
with the Newtonian mass density of the field. This has two 
immediate consequences. First, it gives us the required iden
tification of the poles ofuns with Newtonian particles and, 
second, it allows us to attribute definite masses to these parti
cles via the conserved functional (3.7). This latter property 
can easily be checked by evaluating (3.7) for the n-soliton 
solution (3.6). We have, in this case, 

n 

m(u ns ) = I 2a; Ib; I, a;ElR> 0, (3.8) 
i= 1 

which shows that m(u) has all the properties required of 
Newtonian inertia, i.e., it is finite, constant, Galilean-invar
iant, and additive. 

We thus have a consistent association of classical parti
cles with the free-field solitions (3.6). Our next step is to ver
ify that the desirable features of this association are pre
served in the transition to the KdV equation 

(3.9) 

considered as a perturbation of(3.5). [Note that (3.9) reduces 
to (3.2) under the transformation x~x - ct, t~t, u~u]. 
Now it is obvious from the form of (3.9) that u retains the 
property of being a locally conserved density-this would 
not be true, for example, if the nonlinear term was u2 rather 
than (u 2 )x. On the other hand, since the underlying structure 
of the field has been changed, the role played by c, the coeffi
cien t of u x has to be redefined if we are to maintain Galilean 

973 J. Math. Phys., Vol. 24, No.4, April 1983 

invariance. Thus, consider the single-soliton solutions of 
(3.9), i.e., 

Us =3a2sech2[(a/2)[x-(c+a2)tJ +Dj, a,DER, 
(3.10) 

Comparing this with the corresponding single-soliton solu
tion in (3.6), we note that the amplitude factor a;, the shape 
factor bi> and the speed of the soliton are no larger indepen
dent quantities. As a consequence, c no longer represents the 
characteristic speed with which disturbances travel through 
the field. Rather, it acts as a lower bound for the speed of 
propagation of solitons. In other words, in any given frame 
the coefficient of Ux represents the minimum speed with 
which KdV solitons can be generated. However, this is also a 
Galilean invariant interpretation, with u transforming as a 
scalar, and by adopting it we preserve the identification of u 
with the Newtonian mass density of the KdV field. The func
tional (3.7) thus gives us the total mass of the solitons, and, 
since u is a locally conserved density of the KdV which is 
integrable for its soliton solutions, this total mass is a con
stant of the motion. Furthermore, we know that the asymto
tic (t~ ± 00) form of the KdV n-soliton solution is given by 
(3.6), with 12b 7 = ai and c replaced by c + aJ3, and thus 
the mass functional is additive over the soliton masses as 
required. In fact from (3.8) we see that this total mass is given 
by 

n n 

m(u ns ) = Im;(us ) = r 121ai l, (3.11) 
;=1 i= 1 

where 3a; is the maximum height of the ith soliton. We have 
thus recovered the consistent pole-particle association that 
we had for the linear solitons, and we can proceed with the 
exercise of locating the poles and computing their orbits. 

IV. THE POLES AND THEIR MOTIONS 

We shall work in the fram in which the lower bound of 
the soliton speeds is zero, i.e., c = 0 in (3.9). Then, using the 
results of Hirota, 17 the n-soliton solution can be written in 
the form 

(4.1) 

where/is the determinant of the symmetric n X n matrix, 
A = (aij)' whose elements are given by 

2~ a; + a) (5 + 5 ) aij = {j;) + ----'----'- exp _i_

2
-) , 

a; +aj 

a; =j=a) for i =/=), (4.2) 

with 5; = a;x - ait + {j;. The a; and D; are the amplitude 
and phase factors, respectively, of the ith soliton. Note that 
this form of the solution shows, quite clearly, that the inter
actions between n solitons, n>2, can be analyzed in terms of 
two-soliton forces determined by the invariants 
2(a;aj )1/2 /(a i + a)). Thus, as in the case of the sine-Gordon 
equation, the essential features of the translational mode dy
namics of KdV solitons are already contained in the two
soliton solutions. Hence, in this paper, we restrict ourselves 
to the cases n = 1 and n = 2. 

From (4.1) we see that the poles of uns are given by the 
zeros of/provided that these zeros do not coincide with 
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those of Ix. However, one can easily check, from the expres
sions for the matrix elements of A, that this coincidence of 
zeros does not occur and thus the problem of finding the 
poles of U ns is reduced to the problem of finding the zeros off 

The question now arises as to whether! has any isolated 
zeros. It is evident that, as long as Uns is considered to be a 
map from RZ --+-R, then it has no poles and therefore! has no 
zeros. However, if we allow the space variable x to be com
plex, while still keeping the time t real, then U ns becomes a 
map from C X R--+-C and the equation! = 0 has solutions. As 
we shall see, these solutions, parametrized in terms of t, lie on 
well-defined orbits in the complex plane and are isolated for 
almost all t. Furthermore, the faithful solutions have con
stant imaginary parts, and thus their trajectories are parallel 
to the real axis. This means, of course, that the dynamics of 
the faithful pole motions is essentially one-dimensional and 
identical to that of their projections on the real axis. 

Thus, consider the single-soliton solutions Us' In this 
case we havefs = 1 + exp(ax - a 3 + 8), a, 8ER, and, hence, 
in terms of Z = x + iy, the poles of Us occur at the points 

Zn = Xn + iYn = (aZt - Ma) + i(2n + 1)1T/a, nEZ, tER. 
(4.3) 

We see that there is an infinite set of isolated poles whose 
orbits are parallel to thex axis for all time, i.e',»n = O'iln and 
t. The pole motions are therefore one-dimensional, and, 
since the x n are independent of n, the projection on to the real 
axis, 1Tt :Zn (t ~xn (t), of the set! Zn l is a single point! Xs l (t) 
which moves with a constant speed a Z in the direction of 
increasing x. Thus we have a faithful representation of the 
center-of-mass motion of the single soliton. Placing a parti
cle of mass 121a I at the point Xs (t ) and allowing it to move 
with the point then completes the particle picture. 

Remark: In the above analysis we have kept (8 fa) real. 
However, since we are working in a complex space domain, 
we are free to choose the initial position of the soliton any
where in the Z plane, i.e., to put (8 fa) equal to a complex 
constant. For the single soliton this only has a trivial influ
ence on the results, as it merely produces a shift in the Y n 

values by the constant amount Im(8/a). However, in the 
case of the two-soliton solutions the choice of initial posi
tions is important, for, as we shall see below, it is only when 
the imaginary part of the relative phase satisfies a certain 
necessary condition that we obtain the faithful representa
tion. 

We turn now to the two-soliton solutions. Here we have 

!2s = 1 + eXP51 + exp52 + a 2 exp(51 + 52), (4.4) 

where a Z = (a I - a 2 )Z/(a I + az)2 > 0 and 51,2 are as defined 
in (4.2). There is no loss of generality in treating a as a posi
tive constant, so that if we redefine our phases to have 
5; = ai(x - a~t + 8;) -Ina, then (4.4) can be written as 

a!2s = a + exp 51 + eXP52 + aexp(51 + 52)' (4.5) 

Before we solve for the zeroes of!2s it is useful to reduce 
(4.5) to its minimal form, i.e., to eliminate all degrees offee
dom which only have a trivial influence on the numbers and 
positions of the zeroes. First, we note that the speeds of the 
solitons in the solutions given by (4.4) are ai and a~, respec-
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tively. Since the KdV is unidirectional and, in the form (3.2), 
has solitons moving from left to right, a I and a z are real. 
Thus, without loss of generality, we can take a I> a z > 0 and 
definep = (al/az) > 1, so thatp2 is the speed ratio. We now 
scale x and t via the substitutions azX--+-x and ai t--+-t, which, 
together with the redefinitions of the phases mentioned 
above, reduce 51,z to 51 = pix - pZt + 8tl and 

5 Z = (x - t + 82), Furthermore, as only the relative phase is 
important, we can set 81 = 0 corresponding to the faster soli
ton reaching the origin at t = O. Then, in terms of Z and 8zEC, 
the minimal form Of/2s = 0 is 

a + eP(z-p't) + e(z- t+ 0,) + aeip+ I)z- (p' + I)t+o, = 0, 

(4.6) 

where a = (p - 1)1( P + 1). The problem of finding the 
faithful representation can now be posed as follows: Identify 
those values of 82EC for which (i) (4.6) has two and only two 
distinct solution functionsz l( p,t) andzz( p,t) for all pE(I, 00) 
and almost all tEl - 00,00) and (ii) the imaginary parts of z 1 
and Z2 are independent of time. 

Remarks: (i) Note that for pEQ* = !p/qjp,qEN,p > q,p 
and q relatively prime l, (4.6) is invariant under the transla
tions Z--+-Z + i21Tqn, nEZ, i.e., Z is periodic in the imaginary 
direction. Thus, when we talk of distinct solutions we mean 
modulo this periodicity. (ii) Almost all t is put in to take care 
of possible collisions. (iii) The second condition on Z 1.2 means 
that the dynamics of the pole motions are identical to that of 
thier projections on the real axis as in the single soliton case. 
(iv) By identifying 82EC we mean only the imaginary part, 
since the real part corresponds to the phase of the slower 
soliton and is always a free choice. 

Before we present our solution to this problem, let us 
briefly review the method used by Thickstun.7 Let p = pi 
qEQ*, 82ER+. qw = (z - t + 82), and 
r = p[( pz - l)t + 82]ER. The periodicity of z can be factored 
out by setting ¢ = expw, and, for convenience, let 
T = exp r ~TE(O, 00). Then (4.6) reduces to 

(p - q)¢p+q + (p + q)(¢P + T¢ q) + (p - q)T= 0, (4.7) 

which is a polynomial in ¢, of degree p + q, with real coeffi
cients. Thus, in any period strip L1 w = 21Ti, there are p + q 
distinct poles for almost all TE(O, 00 ). A qualitative descrip
tion of the motions of these poles (in the w plane rather than 
thez plane) is given in Ref. 7, and we shall not dwell on them 
here. However, we wish to make three points about some of 
the general features of these solutions. First, since p + q>3, 
it is obvious that the representation is not faithful. What is 
not so apparent is that it is also unstable; that is, in a neigh
borhood of any P L EQ*, P + q has infinitely many values and 
is unbounded, e.g., consider the sequences defined by 
Pn = (2n ± l)1n withp L = 2. The same phenomenon occurs 
for rational sequences with irrational limits, e.g., 
Pn = [(n + 1 ))/n r, and thus it seems virtually impossible to 
analyze the pole motions for irrational p. Secondly, the p + q 
solutions of(4. 7) do contain the faithful poles, but, as we shall 
see below, only whenp + q is an even integer. However, 
since Q* as a subset of R has measure zero, these faithful 
solutions are sparse in the set of all such solutions, i.e., for 
pER+ > 1. Thirdly, in general, the motions of the poles are 
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two-dimensional, i.e., both real and imaginary parts are 
time-dependent, except in the asymptotic (It 1---+00) regions. 
Thus, for finite t, projection onto the real axis does not pre
serve the "poledynamics." 

We now turn to our method of solving (4.6). Let 82 = i8, 
8ER. Combined with our earlier choice of 8 1 = 0, this corre
sponds to choosing t = ° when both the solitons are at the 
origin of the x axis. Set w = u + iv, 7 = r + is, u, v, r, s E R, 
and consider the affine map (z, t, 8)---+(w, 7) defined by 

(w) 1 ((P + I) - (p3 + 11)(z) 1 ( i8 ) (4.8) 
7 = 2" (p - 1) - (p3 - 1) t + 2" - i8 . 

This is essentially a map form C X R X R---+C X C, and it is 
easy to check that the matrix in (4.8) is nonsingular for all 
p > I. Thus, if we recall that z = x + iy and that t is real, then 
the inverse of (4.8), expressed as a map from R4---+R4, takes 
the form 

° ° ] ° ° Y+2IA IB, 
2A 2X2 

II =determinant, 

(4.9) 

where A is the inverse of the matrix in (4.8), X = (x,t,y,O), 
Y = (u,r,v,s), and B = (0,0,p38,p8). We now have the follow
ing lemma about the real quantities y(t ), v(t ), and sIt ). 

Lemma 1: Fixp > 1 and 8ER. Then (i) (v - s) is constant 
ifand only if(v + s) is constant, (ii) visconstant ifandonly ifs 
is constant, (iii) y is constant if and only if v is constant. 0 

Proof The last equation of (4.9) can be written in the 
form p8 = p(v - s) - (v + s)'If t, from which (i) follows and 
(ii) follows from (i). From the last two equations of (4.9) we 
have y = (v - s) - 8 and (iii) follows from (ii). • 

Having established necessary and sufficient conditions 
for the constancy ofy, we now go back to (4.6). In terms ofw 
and 7, (4.6) can be written in the form 

eW(a cosh w + cosh 7) = 0. (4.10) 

For finite x and t eW #0 and so the pole positions, in (W,7) 
space, are given by the solutions of the two real equations 

a cosh u cos v + cosh r cos s = 0, 

a sinh u sin v + sinh rsins = 0, 

subject to the constraint 

s=av-(p8/p+ 1) 

(4.lla) 

(4.llb) 

(4.llc) 

which, as mentioned in Lemma I above, comes from (4.9). 
To analyze the solutions of (4.11), let us think of these 

equations as defining a set of maps, ! ¢Jpa J, each of which is a 
many-valued function from VEVpo CR to (u, r, S)EUpo CR3 

for some fixed values of p and 8. The problem then is to 
specify the branches, domains and ranges of this set for all 
pER + > 1 and 8ER. Since the main purpose of this paper is to 
present and analyze the faithful maps, i.e., those ¢Jpo which 
lead to only two poles in the z plane for all p > 1, we shall not 
enter into a detailed discussion of the other solutions, i.e., 
those poles which form what we have previously referred to 
as the random or unstable component. Instead we list the 
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salient features of the solutions of (4.11) in a sequence of 
propositions and supplement this information with some nu
merical examples. 

Proposition 1: For p = p/qEQ* and any 8ER, the map 
¢Jpo is (i) periodic in v with period..dv = 1T(P + q) and (ii) has 
p + q distinct branches in a period strip..dv for almost all t. 0 

Proof (i)..dv = 1T(P + q)=>..ds = 1T(P + q). Ifp + qiseven 
(odd), thenp - q is even (odd). Therefore, cos(v + ..dv)! 
costs + ..ds) = cosv/coss and similarly for the sines. (ii) With
in a period strip, Eq. (4.10) may be rewritten as a polynomial 
of degree p + q, similar to (4.7), but with complex coeffi-
cien ts for 8 # n1T. • 

Proposition 2: The relationship between the branches of 
¢Jpo and the pole orbits in the z plane is one-to-one. 0 

Proof This follows immediately from the linearity of 
(4.9). • 

Proposition 3: In a period strip ofthezplane,..dz = i21Tq, 
the p + q pole orbits split into two distinct classes: (i) those 
which are parallel to the real axis, i.e.,.W) = ° 'If t and (ii) 
those which are not, i.e., y(t) #0 'If t. 0 

Proof There are three types of poles, doublets and sing
lets whose orbits are in class (i) and random poles with orbits 
in class (ii). We shall prove the existence of each of these 
types and give a brief description of their motions. 

(ia) Doublets or faithful poles: For fixed p = p/ qEQ*, 
choose a value of 8 from the sequence 8m 

= [p - (2m + I )q]1T/p) defined over mEL Now, for fixed m, 
consider the sequence of points I Vnm J, defined by vnm 

= [(p + q)n + m + 1]1T, nEZ, and the function Vnm'-Hnm 

= [(p - q)n + m]1T. The graph of this function satisfies 
(4.llc) for all n, mEl.. Furthermore, COSVnm = - cos Snm 

= ± 1 and sin Vnm = sin Snm = 0, m, nEZ. Hence (4.llb) is 
identically satisfied and (4.11a) reduces to 

a coshu = coshr 'If m, nEZ. (4.12) 

The solutions of (4.12) lie on two distinct, smooth curves in 
the (u, r) plane defined for rEi - 00,00) and u = ± (a, 00 ), 
a = Icosh-I(l/a)l, the picture being similar to that of the 
hyperbola u = ± a(1 + r)1/ 2

• Thus, ¢Jpo' 8E!8m J, maps the 
set! Vnm J onto the set !snm J and the two solution curves of 
(4.12). The net result, for fixed m, is a stratification of the 
(W,7) space by planes parallel to its real subspace, each plane 
being located at definite values of Vnm and snm and contain
ing an identical copy of the solution curves of (4.12). The 
corresponding picture in the z plane is a stratification by 
lines parallel to the x axis and located at the points y nm 

= (2np + 2m + 1)(1T/p). Each line contains two noninter
secting pole orbits 'If pE Q*, the pole motions along these 
orbits being independent of nand m, and, for fixed m, there 
is only one such line in each period strip ..dz = i21Tq. This 
then is the faithful representation for rational p. 

Remark: !8m J = [80 JnI8e ,J where 80 and 8e are 
phases which lead to faithful poles whenp and q# 1 are both 
odd and when one of them is even, respectively. ! 80 J con
tains zero, but 18e I does not. However, for the special cases 
in which q = 1, DEI 8m J. This explains why some of the solu
tions obtained in Ref. 7 contain faithful poles while the oth-
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ers do not. 

(ib ) Singlets: These come in two varieties, poles with 
regular motion and poles with singular motion. As in the 
case of the faithful poles, the maps ¢ p{j define a stratification 
of the (w, r) space by planes parallel to the real subspace (u, r) 
and this translates into a stratification of the z plane by lines 
parallel to the x axis. Thus, for a fixed value of the phase, 
each period strip in the z plane contains a single pole whose 
motion is along some line y(m, n,p, q) = const, where m, nEZ 
label the phase and the period strip, respectively. The gen
eral features of these singlets are as follows. Choose u and s so 
that cosv = coss = 0. Then sinv = ± sins and Eqs. (4.lla) 
and (4.llb) reduce to 

a sinhu ± sinhr = 0, (4.13) 

defining two smooth curves u+(r) and u_(r) in the (u, r) 
plane. From (4.9), the transformations to the corresponding 
(x, t) planes are given by 

x = u - r+ t, 

p(pZ _ l)t = (p - l)u - (p + l)r, 

(4. 14a) 

(4.14b) 

and, from (4.13), it is easy to see that u-;-(r) + u_(r) = 0. 
Thus, if (x+, t+) and (x_, C) label the (x,t) planes of u+(r) 
and u _(r), respectively, straightforward substitution into 
(4.14) leads to the relation 

(4.15) 

so that the (x, t) trajectories of the poles corresponding to u + 

and u _ are connected by a nonsingular linear transforma
tion. It follows that the velocities of the poles satisfy the 
equation 

x+ = [(p4 + pZ + I) _ (pZ + IlX-]! 

[(p2+ l)-x_], (4.16) 

implying that (dx + Idx _) < 0, i.e., the accelerations are al
ways in opposite directions. The occurence and motions of 
these poles are as follows. 

Irregular singlets (u _, x_, t_): The relevant sequences 
are om = [p - (2m + 2)q](1T/p), Vnm = [(p + q)n + m + 3/ 
2] 1T and Snm = [(p - q)n + m + !] 1T. In the z plane the poles 
move along the linesy = (pn + m + 1)(21T/p), and their com
mon trajectory in the (x, t ) plane has the following properties. 
It passes through the origin and in a neighborhood of t = ° 
has the form 

x(t) = - at 1/3 + bt + 0 (t 5/3), 

a,b > 0, (a/b) < O.S. (4.17) 

Thus, x;::: ° when t = ± to = ± (a/3b )3/2, X < ° for It I < to 
and x- - 00 ast-D. On the other hand, as It 1-00, we have 
x(t) = t + const and therefore x_I as It 1-00. Thus, in 
terms of the coordinates (x, x, t), the motion of the pole is 
( - 00, 1, - 00 )-(xo, 0, - to)-(O, - 00, 0)-( - xo, 0, 
to)-( 00, 1, 00), where x o;:::4(1 - a)/3(3 + aZ)l/z. This mo
tion is rather curious. The (x,t ) trajectory is "s" -shaped with 
the middle leg of the s inflecting through the x axis at (0,0). 
The pole therefore bounces twice about the origin, and in 
between bounces, i.e., when x < 0, it is subjected to unbound
ed accelerations and decelerations so that is passes through 
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the origin with infinite negative speed, i.e., x a: - x- 5
, 

X a: - X - Z in a neighborhood of (0,0). 

Regular singlets (u +,x+,t +): The sequences are om 
= (2m - l)q1T/p, Vnm = [(p + q)n - m + l/2]1T and Snm 

= [(p + q)n - m + l/2]1T, and in the z plane these poles 
move along the linesy = (2pn - 2m + 1)(1T/p). In the (x,t) 
plane their common trajectory looks very much like the 
curve x = tanh [t /( p4 + p2 + 1)] rotated anticlockwise 
through e = tan - [pZ, this approximation being exact in a 
neighborhood of the origin and giving the correct speeds in 
the asymptotic regions, i.e., in terms of the coordinates (x, x, 
t) the motion of the pole is ( - 00, p2, - 00)-
(O,p~ + 1,0)-( 00 ,pl, 00). The motion is smooth and unidirec
tional with no stationary points or singularities of the speed. 
Note that, in terms of the original coordinates [Eq. (4.5)], 
x = I-x = ai andx = p2_X = ai, i.e., asymptotically the 
irregular pole moves with the speed of the slower soliton, 
while the regular pole has the speed of the faster soliton. This 
completes the description of the singlets. 

Remark: Note that, for pEQ*, a necessary condition for 
the occurence offaithful poles and singlets is that (P0!1T) 
must be an integer. 

Now the faithful poles and the singlets are the only ones 
which move parallel to the x axis, and the results given above 
can be used to prove a useful classification lemma. 

Definition: A representation or multiplet is the set of 
poles which occur in a period strip. Thus, each multiplet is 
labelled by its phase ° and, as shown earlier, contains 
p + q;;.3 poles. 

Lemma 2: Let p + q = NEN;;.3 and (P0!1T) = MEZ; 
then the following are true. (a) Ifboth Nand M are even, the 
multiplet may contain faithful poles, but will not include any 
singlets. (b) If N is even and M is odd, one or both of the 
singlets may be present, but the faithful poles will not occur. 
(c) Ifboth Nand M are odd, the multiplet may contain faith
ful poles and/or one, but both, of the singlets. (d) If N is odd 
and M is even, then one of the singlets may be present, but 
there will be no faithful poles. 0 

Remark: This lemma explains why the results of Ref. 7 
contain irregular poles, regular poles, and faithful poles in 
different representations. 

(ii) Random poles: These are solutions of (4.11) which 
differ from the ones described above in two essential ways. 
First, v and s are not constant which implies that the pole 
motions in the z plane are two-dimensional. Secondly, the 
number of these poles in a given multiplet is a function of the 
speed ratio and thepEQ*lies betweenp + q - 3 andp + q. 
Now these solutions are difficult to analyze in general, and 
so we shall work with a specific example. Thus, consider 
functions v(t), s(t), =/=n1T/2 at the same time, such that cosu 
and coss have opposite signs. This ensures that (4.lla) and 
(4.llb) have solutions, and we can now rewrite these equa
tions in the equivalent form 

sinhr = - f(a,v,s)sinv, (4.ISa) 

asinhu = f(a,v,s)sins, (4.ISb) 

wheref2 + I = (1 - a 2 )(1 + cos2v)/(cos2v - cos2s). This 
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introduces additional constraints on v and s, namely 
1 + cos2v> 1 + cos2s>a2(1 + cos2v), which means that 
the solutions to (4.18) go through definite "windows" in (v, s) 
space. Let us now choose p = 2, q = 1, and 8 = 31T 18. It is 
easy to check that this choice of phase excludes faithful poles 
and singlets, and, since the multiplet contains three poles, we 
expect (4.18) to have three distinct solutions in each period 
interval on the line v = 3s + (31T14), the periods ofv and s 
being 31T and 1T, respectively. From the constraints on v and s 
it follows, by a straightforward though tedious computation, 
that there are two windows per period interval and, for the 
interval SE[O,1T] , these are (i) 1T/16<s<1T/8 and (ii) 
O.54111T<s < O.56251T. The first window contains two solu
tions, which in a neighborhood of r = 0 are 
sinh2u = 7.4 - (sgnu)O.44r + 9.5r, while the second win
dow contains only one solution u(r) + u( - r) = 0 with 
u'(O):::::: - 3.237 and ul/( ± (0) = - 1. Thus, as expected, all 
three poles in the multiplet are of the random type. 

Remarks: (i) As mentioned earlier, these random poles 
have two-dimensional dynamics, i.e., ji#O V t. The easiest 
way to see this is to compare the values of y = (1 - a)1i as 
JrJ-oo and in a neighborhood ofr = O. (ii) Ifwe had chosen 
8 = 1T12 in the above example, then the multiplet would 
have consisted of two faithful poles and a regular singlet. 

This completes our somewhat lengthly demonstration 
of Proposition 3. • 

The information contained in the three propositions 
given above can be summarized as follows. (i) Ifp = plqEQ*, 
the pole-positions Zj = Xj + iYj are periodic iny with period 
.:ly = 21Tq. Thus the z plane is divided into period strips with 
each strip containing a multiplet of p + q distinct poles. (ii) If 
P + q> 3, then the multiplet contains at least p + q - 3 ran
dom poles. This number is a "chaotic" function of the speed 
ratio and is unbounded when this ratio is irrational. (iii) If 0 is 
chosen so that pOI1T is an integer, then the multiplet contains 
stable components, i.e., the doublet and the two singlets. As 
their names imply, the numbers of these poles are fixed and 
their motions are always parallel to the real axis. (iv) The 
maximum number of stable poles that can appear in a multi
plet is three; thus the doublet can never occur together with 
both the singlets. 

Now it is fairly clear that the random poles do not pro
vide a useful model for a particle interpretation of the two 
interacting solitons and, hence, can be eliminated from 
further consideration. This leaves the faithful poles, i.e., the 
doublet, and the two singlets. The next step is to isolate the 
faithful poles and to analyze the dynamics of their motions. 
This is done in the following section. 

V. DYNAMICS OF THE FAITHFUL REPRESENTATION 

So far, our classification of the pole motions has been 
restricted to rational values of p. This means, of course, that 
we only have a sparse set of solutions, because, although the 
rationals are dense in R, they are countable. Furthermore, 
there is still the possibility that the singlets plays some role in 
the particle representation, since, for even p + q, the phase 
can be chosen so that both singlets occur in the same multi
plet. However, it turns out that the extension to irrational 
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values of p also eliminates the singlets. This follows from the 
following proposition. 

Proposition: For any pER> 1, the multiplet will contain 
(a) faithful poles for the sequences s = (n - m)1T, 
v = s + (2m + 1)1T, and 8 = (2m + 1)1T - (2n + 1)(1Tlp), (b) 
regular singlets for the sequences s = (2n - 2m + 1)1(1T12), 
v = s + 2m1T, and 8 = 2m1T - (2n + 1)(1Tlp), (c) irregular 
singlets for the sequences s = (2n - 2m + 1)/(1T12), 
v = s + (2m + 1)1T, and 8 = (2m + 1)1T - (2n + 2)(1Tlp), 
where n, nEZ.D 

Proof Straightforward substitution into Eqs. (4.11) 
leads to the desired results. • 

Remark: Note that the pole orbits are now continuous 
functions of p and, hence, of the speed ratio. 

Corollaries: (i) For irrational values of p, the doublet, 
regular singlet, and irregular singlet appear in different mul
tiplets. Thus, the singlets are isolated from each other as well 
as from the doublet and, as a consequence, the latter is the 
only representation which is faithful for all values of p. (ii) In 
the z plane the motions of the faithful poles are along the 
linesy = (2n + 1)1Tlp, i.e., the z plane is divided into period 
strips.:ly = 21Tlp. 

Having eliminated the singlets, we can now concentrate 
on analyzing and interpreting the dynamics of the faithful 
poles. Recalling the computations of the last section, we see, 
from (4.12), that the orbits of these poles in the (u, r) plane are 
given by u = ± gIrl, where 

gIrl = In[coshr + (cosh2r - a 2)1/2] -Ina, rER. (5.1) 

It is fairly clear that gIrl is an even, differentiable function of r 
which, since 0 < a < 1, is positive V rER. The other proper
ties of g that we shall need in our analysis can be summarized 
in terms of the following lemma. 

Lemma: Given gIrl as defined by (5.1), then (i) gIrl > JrJ 
and (ii) g'(r) is a diffeomorphism from ( - 00, (0) to ( - 1, 1), 
'V rER. 0 

Proof (i) Since a < 1, cosh2r - a 2
; sinh2r. Therefore, 

gIrl > Ine lrl - Ina> Ine 1rl = JrJ. (ii) g'(r) = sinhrl 
(cosh2r - a 2)1/2=?Jg'(r)J < 1 'V rER. Furthermore, g' is differ
entiable and we havegl/(r) = (1 - a 2)coshrl 
(cosh2r - a 2

)
3/2=?O <gl/(r) < 00 V rER. Hence g' is a diffeo

morphism. • 
Now, from (4.9), the orbits of the faithful poles in the (x, 

t ) plane are given, in parametrized form, by the equations 

X 2,1 = ± ag(r) + br, (5.2a) 

t2•1 = ± cg(r) + dr, (5.2b) 

where a = (p2 +p + l)c, b = (p2 -p + l)d, 
c = (p2 + p)-I, and d = - (p2 - p)-I. Note that, since 
pEl 1, (0), these coefficients satisfy the inequalities 1 < a < 31 
2, - 00 < b < - 1, 0 < c < 112, and - 00 < d < O. Equations 
(5.2) are in computable form in the sense that, given a nu
merical value for p, the individualtrajectories r l = [(XI' tIl J 
and r 2 = [(X2,t2) J may be calculated and plotted in the (x,t ) 
plane by letting the parameter r run through all its values. 
The resulting graphs are hyperbolic curves, typical of a re
pulsive interaction, and their essential features are listed in 
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the following theorems. 

Theorem 1: In the (u, r) plane there are two and only two 
solutions for each tER. 

Proof The pole orbits in the (u, r) plane are given by 
u 1.2 = ± g(r) and the "curves" of constant t by the straight 
lines Lt:u = (ria) + (t Ie). Thus, the gradient of L t is 
a - I > 1, whereas, from the lemma above, Ig' I < 1. Hence, for 
each t, L t intersects eaeh of the curves U 2,1 in one and only 
one point, giving rise to the distinct solutions (g(r2), r2, t) and 
( - g(rd, rl, t), where r l =/=-r2 since a> O. 

Theorem 2: In the (x, t) plane the pole orbits r l and r 2 

are distinct for all values of pEl 1, 00), i.e., there is never any 
collision or overtaking. 

Proof From (S.2) and Theorem 1, the pole orbits are 
given by 

x 2(t) = ag(rz) + br2 and xdt) = - ag(rd + brl, 

subject to the constraint t = t2 = t l==X1(g(r2) + g(rl)) 
= r2 - r l· Therefore, X2 - XI = a[g(r2) + g(rdJ 
+ b (rz - rd = 2[g(rz) + g(rdJ/(p + 1). Hence, using the 

lemma and Theorem 1, we have 

Xz - XI > 2(lr2 1 + Irll)l(p + 1) > O=>X2 >X I V tER. • 

Theorem 3:x2(t) andxl(t) are monotonically increasing 
functions of t with closest approach at t = O. 0 

Proof Consider the constraint equations t = 12 = t I and 
differentiate them with respect to t. This gives (.=d Idt) 

'k = -p(p - 1)1[ 1- (- l)kag'(rk )), (S.3a) 

rk = - ( - l)kg"(rk ),Up(p + 1), (S.3b) 

where k = 1,2. Then, since a < 1 and, from the lemma, 
Ig'l < 1 andg" >0, we have _p(p2 - 1)<2'k <0, r l <0, 
and r2 >0. 

Differentiating (S.2a) with respect to t and using (S.3) 
and the constraint equations gives 

xk = (p2 +p + 1) + 2'k / (P - 1), 

xk = [2/(p - 1)]rk • 

Then, from (S.4a) and the inequality on 'k' we have 

xk >(p2 +p + 1) -p(p + 1) = I V tER. 

Hence X k (t) are strictly increasing functions of t. 

(S.4a) 

(S.4b) 

A stationary value of (xz - X d occurs when x2 = x I' 
which, from (S.4a), =>'2 = 'I' Using (S.3a) translates this 
into the condition g'(r2) + g'(rd = O=>rz + r l = 0 since g/ is 
odd and globally univalent. Substituting into the constraint 
equations, I = t2 = t l, then gives t = O. Hence (X2 - XI) has a 
unique stationary value at t = O. 

To check that it is a minimum, we consider (X2 - XI)' 
From (S.4b), (p - l)(x2 - XI) = 2(r2 - rd > 0 V tER since, as 
shown above, r l < 0 and r2 > 0 V IER. Hence the orbits X 2(/) 

and X I(t) have their closest approach at t = O. • 

Corollaries: (i)x2(t ) andx I (t ) are smooth repulsive orbits, 
i.e., X2 > X I and X I < 0 < x 2 V tER. (ii) (x 2 - X d is a positive, 
even function of t. 0 

Theorem 4: In the asymptotic regions of the (x,l) plane, 
i.e., Ixl,lt 1-00, the trajectories of the poles coincide with 
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those of the peaks of the soliton waveforms. 0 

Proof The behavior of the quantities g(r), x(r), and I (r), 
as Irl-oo, can be computed from (S.I) and (S.2), and are as 
follows: 

g(r)-Irl -Ina. 

p(p - 1)lk -( - l)ka(lrk I -Ina) - rk, 

X k -( - W(h I-Ina) - rk + t, 
where k = 1,2 and t = tl = t2 • Recalling thatp = (a l la2), 

where ai and a~ are the speed of the faster and slower soli
tons respectively, and transforming back to original (x,l) co
ordinates [see Eq. (4.S)J then leads to the trajectories 

a 2x 2- -ail -Ina, 

alx l- -ait+lna, rk-oo, t_- 00, 

a IX2-t -ai t - Ina, 

azXt-a~/+lna, rk-- 00,1-00. 

Hence, asymptotically, the poles move at the same speed as 
the solitons. Furthermore, by comparison with Eq. (3.10), 
the phase shifts are (a I12)(xt - x l-) = -lna>O for the 
faster pole and (a212)(xI+ - x 2-) = Ina < 0 for the slower 
pole. These are the same as those obtained from an asympto
tic analysis of the two-soliton waveforms. 18 Combining these 
results with our choice of phase for the solitons then proves 
the theorem. The resulting "picture" is as follows: At 
I = - 00, the pole on the trajectory r 2 starts out with the 
slower soliton and gradually accelerates to the speed of the 
faster soliton, which catches it up as t_ 00. Similarly, the 
pole on the trajectory r 1 starts out with the faster soliton and 
decelerates smoothly to the speed of the lower soliton, catch
ing it up as 1-00. • 

Remark: In Ref. 18, the authors work with the equation 
U t - 6uux + Uxxx = O. Hence, in order to compare their re
sults with ours, it is first of all necessary to make the transfor
mation (u, x, 1)-( - u16, - x, - t). Apart from changing 
the amplitudes, this has the effect of reversing the phase 
shifts. 

Weare now in a position to use the pole motions to 
interpret and analyze the dynamics of the two-soliton solu
tions, and the first step in this analysis is to decide on the 
manner in which the interaction takes place. If the taller, and 
hence faster, soliton is initially behind the shorter one, then 
the usual description of the ensuing motion is that the faster 
soliton overtakes the slower one and then proceeds on its 
way, the only effect of the collision being to introduce a 
phase shift into the system. Thus, in this interpretation, the 
individual solitons maintain their identities right through
out the period of their effective interaction. 14

(b) This is obvi
ously a zero-order approximation to the actual state of af
fairs since it assumes that the solitons behave like rigid 
bodies undergoing an impulsive type of interaction. 

A more realistic description was given by Zabusky and 
Kruskal,19 who, on the basis of numerical experiments, 
made the following observations about the interaction. 
When p> I, then the faster soliton absorbs the slower one 
and reemits it later, i.e., an apparently straightforward case 
of overtaking. However, when the speeds of the solitons are 
of the same order, they interact as follows: As soon as the 
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faster soliton comes reasonably close to the slower one, the 
latter starts to grow while the former begins to shrink. This 
process continues until the solitons interchange their roles, 
after which they separate. These observations were later con
firmed by Lax 10 in his theoretical analysis of the evolution of 
the peaks of the two-soliton solutions. However, in addition 
to the two different kinds of behavior described above, Lax 
also found a third way, intermediate between the other two, 
in which the interaction takes place. Lax's results can be 
summarized as follows: (a) If p2 > 3, then the waveform 
evolves with the formation of a single maximum during the 
period of interaction. (b) 1f2.62 <p2 < 3, then there are inter
vals during which the waveform has three maxima. (c) If 
p2 < 2.62, then the waveform has two maxima at all times. 
Lax refers to the first two as overtaking modes and to the 
third as an exchange mode. In all cases, during the initial 
stage of the interaction, the height of the smaller soliton in
creases, while that of the larger soliton decreases. The final 
state of the interaction is an exact time reversal of this pro
cess, i.e., the amplitUde of the smaller soliton decreases, 
while that of the larger soliton increases till they teach their 
asymptotic values. Thus, if we identify the solitons by their 
asymptotic amplitudes, then these amplitudes are certainly 
not conserved during the interaction. 

Now, although the Lax analysis clarifies the description 
given by Zabusky and Kruskal, the interpretation of the 
waveforms in (a) and (b) as overtaking modes is ambiguous. 
Since in case (a) the waveform has a single maximum during 
the period of strongest interaction, while in case (b) it has 
three maximam, one could equally well argue for an ex
change of identities as the solitons lose themselves in the 
total profile. In fact this is the picture presented by the pole
motions. From Theorem 2 above, we see that the faithful 
poles neither collide with nor overtake each other; rather 
there is a smooth transfer of speed from the trailing to the 
leading pole, which eventually leads to an interchange of 
their asymptotic speeds. Thus, if we assume, as we did in our 
study on the SGE, that the poles can be identified with the 
center of mass of the individual solitons, then we are forced 
to conclude that KdV solitons exchange, rather than pre
serve, their identities during an interaction for all values of 
the speed ratio. Note, however, that asp-oo, a-I, and 
g(r)_lrl. Thus, both the phase shift and the distance of clo
sest approach of the poles tends to zero, while the pole orbits 
r l and r 2 degenerate into the straight lines 

XI = aTl, X 2 = a~l, l< - E<O, 

XI = aTl, X 2 = aTt, l>E>O, 

where E is of order p -4 for p_ 00 . Therefore, even for moder
ately large speed ratios, the interaction becomes pointlike, 
and hence it is not surprising that the evolution of the wave
form is interpreted as the faster soliton overtaking the slower 
one. 

If we accept this "exchange" hypothesis, then the next 
step is to establish the mechanism by which it occurs. In our 
model, in which the KdV field is treated as a mass density, it 
can only take place by "convection" via the underlying field. 
That is, by a continuous transfer of mass from the trailing 
soliton to the underlying field and from the underlying field 
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to the leading soliton, until the exchange of identities has 
been effectively completed, the process being similar to that 
of pushing air from one lobe to another of a corrugated rub
ber balloon. As a consequence, the forces acting on the soli
tons during the interaction are local in nature, rather than of 
the action-at-a-distance type, and are generated by the ab
sorbtion and emission of mass, and hence momentum, by the 
underlying field. Apart from being correlated with the pole 
motions, another point in favor of this "exchange" interpre
tation is that it provides a natural explanation for the phase 
shift of the solitons. This is not the case with the "overtak
ing" description, in which the phase shift enters rather ab
ruptly and its origin is obscure. 

Having established a possible mechanism for the inter
action, we can now compute the effective forces and poten
tials acting on the solitons. The calculation is a straightfor
ward application of Newton's second law of motion, but it 
does have two nonstandard features. First, since the KdV is a 
unidirectional equation, the potentials, in the case of the 
two-soliton solution, will be one-sided. That is, the trailing 
soliton will always lose mass while the leading soliton always 
gains it. Secondly, because of these mass changes and the 
particular dependence of the soliton mass on its speed [Eq. 
(3.11)], we are forced to treat the poles as particles whose 
masses are not fixed, but vary as the square roots of their 
speeds. Now it is easy to check that the effect of such a pow

er-law dependence of mass on speed, i.e., m(v) a: vP, f3 > 0, is 
to change the numerical factor in the expression for the kine
tic energy from its fixed-mass value of half to rp + 1)/ 
rp + 2). In our case f3 = ~, which means that a KdV pole 
paritcle has a kinetic energy of 3mv2/5. The potential ener
gies rPk (xk) for the poles on the orbits r l and r z can now be 
obtained from the conservation equations 

(5.5) 

where mk = 12F:, rPk-0 as X k - - 00, and the a k are as 
defined before. Note the unidirectional nature of these po
tentials, i.e., rP ( - (0) =f.rP (00), and also that they are generat
ed by the underlying field and not by the solitons. Now we 
have not been abJe to obtain an explicit solution for rP (x), but 
numerical computations, supported by asymptotic analysis, 
show that it has the shape of a modulated, tanh "kink" with 
the bend at the high-speed end being drawn out over a dis
tance proportional to a 2- I, while the bend at the low-speed 
end is confined to a distance of the order of a 1- I. Thus, the 
force acting on the faster soliton changes much more slowly 
with distance than the force acting on the slower soliton. 

Another feature, which emphasizes the local nature of 
the forces acting on the solitons, is that IXk I do not attain 
their maximum values at the point of closest approach. A 
small a (p_l) analysis leads to the following results: (1) At 
the point of closest approach, X z = - X I;:::; 2 -- I 

X (2 - 5a)ln(2Ia). (2) At the points where IXk I attain their 
maximum values, X 2 = - x l ;:::;4 -1(5 - 8a)ln(2/a). (3) In a 
neighborhood of these maximum points we have 

xk a: ( - l)ksech2! (a/2l[ 4Xk - ( - 1 )k(5 - 8a)ln(2/a)] J. 
Thus, from (1) and (2), we see that the trailing soliton has its 
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maximum deceleration before the point of closest approach, 
while the leading soliton has its maximum acceleration at the 
corresponding symmetrical point after closest approach. 
This implies that the curve [X2(t) - xl(t)] is fairly flat in a 
neighborhood of t = O. Note further that since the forces 
acting on the solitons are proportional to Xl 12x, the maxi
mum values of these forces occur somewhat further along 
from the point of closest approach than the maximum values 
of IXk I· 

Finally we see, from the expressions for xk given in (3) 
above, that the range of the interaction is of the order of a - I. 

Thus, solitons moving with nearly the same speeds interact 
with the underlying field over a large part of their trajector
ies, irrespective of the actual values of these speeds. This 
behavior is consistent with the exchange hypothesis since, 
from (I) above, as a~ the separation at closest approach 
tends to infinity and hence the convection process has to take 
place over larger and larger distances. On the other hand, 
numerical computations show that as a increases the range 
begins to decrease more rapidly than a - I. Thus, for all but 
the smallest values of a, the forces acting on the solitons have 
a relatively short range. 

VI. CONCLUDING REMARKS 

In this paper, we have shown how methods developed 
for the SGE can be extended to the KdV equation to obtain a 
consistent particle interpretation of free and interacting 
Korteweg--de Vries solitons. The main assumptions behind 
the interpretation are, first, that the KdV field can be treated 
as a Newtonian mass density and, second, that the faithful 
poles of the soliton modes of this mass density represent par
ticles which move in step with the center of mass of the indi
vidual solitons in the solution. Thus, the dynamics of the 
translational modes of the solitons can be computed from the 
orbits of these faithful poles. 

Working explicitly with the one- and two-soliton solu
tions, we have (1) shown that such a faithful representation 
exists for all values of the speed ratio, (2) isolated the faithful 
poles, and (3) analyzed both the kinematics and dynamics of 
the corresponding pole motions in some considerable detail. 
However, the results are not as nice as those we obtained for 
the SGE. Apart from the presence of a background of ran
dom poles and singlets, the special properties of the KdV and 
its solitons has meant the representative particles are forced 
to have variable masses and to interact via a mediating field 
rather than directly. Furthermore, the potentials are unidi
rectional and, at the mathematical level, the dynamics is ob
tained in parametric form and not explicitly as was the case 
for the SGE. 

The last shortcoming is due to our lack of success in 
unravelling the analytic structure of the implicit equation. 

girl = In[coshr + (cosh2r - a 2)1f2] -Ina 

for all values of aErO, I). This is not a trivial task, since the 
object of the exercise is to obtain explicit, and recognizable, 
closed-form expressions for the orbits, accelerations, forces, 
etc. For example, in a recent paper20 Hagedorn and Rafelski 
analyzed a similar equation 

gIrl = In[(1 + a)g(r) + (a - r)) -Ina, 
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known as the "boot strap equation," and obtained an explicit 
integral representation of girl for the case a = I. However, 
although their analysis is fairly complicated, the advantage 
gained is numerical rather than analytical. That is, it merely 
leads to a representation which may be directly used for 
making numerical calculations of high precision, rather than 
to a representation which can be used for obtaining explicit, 
closed-form expressions. Thus, applying a similar procedure 
to our equation does not lead to useful results, and the prob
lem still remains. On the other hand, we have obtained ex
plicit formulae for those cases in which a is close to its ex
treme values (i.e., 0 and 1). 

Apart from the defects mentioned above, most of which 
are intrinsic to the KdV, the pole-particle picture is both 
interesting and informative. It gives us both qualitative and 
quantitative information on the forces acting on the solitons 
and their reactions to these forces, and also provides a natu
ral explanation of the phase shifts that occur as a result of 
these interactions. The significant information in this case is 
that the KdV forces are repulsive, generated locally, and 
have a relatively short range and that the solitons exchange 
their identities during collision. 

Now both in this paper and in our study of the SGE, we 
have concentrated on the soliton solutions because of their 
physical importance and their obvious particlelike behavior. 
However, if one looks at the question from a purely math
ematical angle, then it is possible to associate classical parti
cle motions with other solutions as well, for example, the 
rational and elliptic solutions of the KdV. 3

,4 

We have presented a detailed analysis of this approach 
and have come to the conclusion that the established equiva
lences (between these solutions and their corresponding 
many-body problems) merely have a formal significance. 
This is based on the following observations. First, at the clas
sical level, there are no compelling physical reasons for re
quiring particle representations of solution other than the 
soliton solutions. Second, the pole flows of these other solu
tions are, in general, generated, not by the Hamiltonians of 
the associated particle problems, but, rather, by other con
stants of motion whose physical meaning is obscure. Third, 
as a consequence of the above, the equivalent many-body 
problems are not unique. Another point worth mentioning, 
in the case of the KdV, is that the rational and elliptic solu
tions have a relatively simple pole structure, whereas, as we 
have seen, the pole structure of the soliton solutions can be 
extremely complex. 

Finally, we see two ways in which our analysis can be 
improved. First, there is the difficult problem of obtaining 
explict solutions to the parametric equations of motion and, 
second, there is the question of reconciling the pole picture 
with the specific interaction regimes found by Lax in his 
analysis of the waveforms. 10 We think that the singlets may 
have something to do with the latter. 
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The inverse scattering transform method is used in order to achieve a group-theoretical 
characterization of the sine-Gordon equation considered as a relativistic dynamical system. The 
action of the Poincare group is formulated in terms of scattering data variables and the three basic 
components of the sine-Gordon field, namely, solitons, breathers and radiation are identified with 
simple canonical realizations of the Poincare group. In particular, the nonlinear flow associated 
with the one-parameter group of pure Lorentz transformations is integrated by means of the 
inverse scattering transform method. 

PACS numbers: I1.3D.Cp, 11.30.Na 

1. INTRODUCTION 

The most characteristic property of solitons is that they 
are objects which in many respects resemble particles. But to 
what extent can this analogy be formulated in a precise 
mathematical way? Since Wigner's work 1 we have learned to 
describe particles mathematically by means of realizations 
of invariance Lie groups. Thus, quantum particles are asso
ciated with projective unitary representations 1,2 on Hilbert 
spaces and classical particles with canonical realizations3

.4 

on phase spaces. The two main invariance Lie groups of 
physical theories which provide us with specific mathemat
ical models of the concept of particle5 are the Galilei and the 
Poincare groups. Recently, we have analyzed6 the nonlinear 
Schrodinger equation considered as a Galilean-invariant 
dynamical system and we have verified that from the group
theoretical point of view the solitons of this equation are 
classical Galilean particles. The fundamental tool used in 
our analysis was the inverse scattering transform method 
which enabled us to reduce the realization of the Galilei 
group to a direct product of well-known Galilean-invariant 
dynamical systems. 

The aim of the present paper is to study the sine-Gor
don equation 

¢tt - ¢xx + mY sin( Ii ¢) = 0, 
Ii m 

(1.1) 

as a relativistic dynamical systems according to Wigner's 
group-theoretical point of view. Here the invariance group is 
the Poincare group G in two-dimensional space-time whose 
elements are of the form 

(b,a,O') = exp( - bi!) exp(ap) exp(O'K), b,a,O'ER, (1.2) 

where iI, P, and K are the generators of time translations, 
space translations, and pure Lorentz transformations re
spectively. Given one element (b,a,O')EG, the sine-Gordon 
equation is invariant under the transformation 

¢ (t,x)--'><fi '(t ',x') = ¢ (f,X), (1.3) 

t' = y(f + vx) + b, x' = y(x + vt) + a, 

where y = cosh 0' and v = tanh 0'. If Eq. (1.1) is formulated 

as an infinite-dimensional Hamiltonian system then the ac
tion (1.3) determines a canonical realization (CR) of G. At 
first sight this CR seems to be quite different from the usual 
ones like those describing relativistic particles or the free 
Klein-Gordon equation. Nevertheless, the inverse scattering 
transform method7

-
9 for solving (1.1) provides a picture of 

this dynamical system which can be analyzed in terms of 
simple relativistic systems. 10 

Following Wigner's ideas we consider the CR of the 
Poincare group as the fundamental mathematical object as
sociated with the sine-Gordon equation and consequently 
we look for its decomposition as a direct product of simple 
CR's. This decomposition is attained by means of the inverse 
scattering transform. Scattering data variables define an ap
propriate local coordinate system for the phase space of (1.1) 
in which the generating functionals H, P, and K of the CR of 
G take a simple form. We notice that the expressions for H 
and P were already calculated by Takhtadzhyan and Fad
deev.1O However, the derivation of the corresponding 
expression for the generating functional K of pure Lorentz 
transformations is in our knowledge new and it constitutes 
the main contribution ofthe present paper since it leads us to 
a complete characterization of the Poincare group realiza
tion in terms of scattering data variables. 

It is well known that the inverse scattering transform 
reveals the existence of three basic independent components 
of the sine-Gordon field, namely, solitons, breathers and ra
diation. Our analysis provides the following group-theoreti
cal characterization of both the decomposition and the basic 
components of the sine-Gordon field. 

(1) The CR of the Poincare group G associated with ( 1.1 ) 
is locally equivalent to a direct product of three distinct CR's 
R I' R II' andR III which represent the solitons, the breathers, 
and the radiation component, respectively. 

(2) The realizationR I is a direct product ofa finite num
ber of copies of the Poincare group CR describing the ele
mentary classical relativistic particle of mass 8 m3/g. Conse
quently, from the group-theoretical point of view, solitons of 
the sine-Gordon equation are relativistic classical particles. 

(3) The realization R II is also a finite direct product of 
the form R 8 @ .. ·@R B where RB is a nonelementary CR of 
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the Poincare group. Moreover, it is found that R B cannot be 
interpreted as a composite system of relativistic particles if 
the "manifest covariant" and the Poisson bracket involution 
conditions for particle positions are imposed. However, the 
explicit form of R B turns to be very simple. It may be formu
lated in terms of four coordinates, two of them transforming 
as position and momentum observables and the other two 
remaining invariant under the action of G of the dynamical 
trajectories. In this way, the realization R B which represents 
the breather solution of (1. 1) describes a nonelementary rela
tivistic particle with an internal structure. In the center-of
mass frame this internal structure evolves periodically in 
time. 

(4) The realization R III is the infinite-dimensional CR 
of the Poincare group describing the Klein-Gordon field of 
mass m. 

Incidentally, the expression of the generating func
tional K in terms of scattering data variables allows us to 
apply the inverse scattering transform method to its asso
ciated Hamiltonian flow which is given by 

A. 2Ao A. 2 m
3 

• (,[g A.) 'l'tt -x 'l'xx -x'l'x +x -SIO -'I' = O. 
,[g m 

(1.4) 

This equation has the interesting property that independent
ly of the initial conditions solitons reduce to step functions 
centered at the origin as t_ ± 00. Moreover, there are solu
tions of (1.4) which suggest processes of creation and annihil
ation of soliton-antisoliton pairs. 

2. THE CANONICAL REALIZATION OF THE POINCARE 
GROUP 

The Hamiltonian formulation ofEq. (1.1) is obtained by 
considering an infinite-dimensional phase space V consisting 
of pairs (¢ (X),1T(X)) of regular real functions such that 

lim ¢ (x) = 0 (mOd ~ 21T)' lim 1T(X) = O. (2.1) 
Ixl~oo ,[g Ixl-oo 

The symplectic structure is defined by means of the follow
ing Poisson bracket operation 

(FI' F21 = f'" (8FI 8F2 _ 8FI 8F2) dx. 
- '" 8¢ (x) 81T(X) 87T(x) 8¢ (x) 

(2.2) 

Then we can express Eq. (1.1) as the Hamiltonian system 

J,¢ (x) = (¢ (x),H J, J,1T(X) = (1T(x),H I, (2.3) 

where the Hamiltonian functional H is 

H = + J~ 00 {~+ ¢; + 2;4 [1 - cos (! ¢ )]} dx. 

(2.4) 

As a consequence the evolution law 
U(t ):¢ (O,x),1T(O,X))-(¢ (t,X),1T(t,X)) associated with the sine
Gordon equation is a one-parameter group of canonical 
transformations over V. 

Let us consider the action (1. 3) of the Poincare group G 
on the solutions of the sine-Gordon equation. It determines a 
correspondence between initial data which defines a realiza
tion g-R ( g) of G on the phase space V given by 
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(R ( g)¢ )(x) = (U (t )¢ )(x), 

(R (g))1T(X) = r[( U (t )1T)(X) - v(Jx (U (t)¢ ))(x)], (2.5) 
where 

t = - r(b + v(x - a)), x = r(x + vb - a). (2.6) 
Observe that the appearance of the evolution map U in the 
expressions (2.5) implies that R (g) is a nonlinear realization 
of the Poincare group. Moreover, from (2.5) one deduces at 
once that the generators of R ( g) are Hamiltonian fields on V. 
That is, for each element A in the Lie algebra of G there is a 
functional A [¢,1T] such that 

~ I R(eXp(aA))(¢(X))=((¢(X),A I). (2.7) 
da a ~ 0 1T(X) { 1T(X), A J 

The functional associated with the generator iI of time 
translations is the Hamiltonian H defined in (2.4) and the 
two other basic generators of G are represented by the func
tionals 

P= - f:", ¢x 1Tdx, 

K= -- x ~+¢x +-1 f'" { 2 2m
4 

2 - '" g 

X [ 1 - cos ( ! ¢ )]} dx. (2.8) 

They satisfy the Poisson bracket relations 

(H,PI =0, (K,HI = -P, (K,Pj = -H, (2.9) 

which characterize the Lie algebra structure of the Poincare 
group. In this way, the action (2.6) of the Poincare group is 
an infinite-dimensional CR. 

3. THE INVERSE SCATTERING TRANSFORM OF THE 
GROUP REALIZATION 

A. Scattering data variables 

Let us perform the transformation 

,[g (t X) u(t,x) = -¢ -,- , 
m m m 

(3.1) 

which reduces the sine-Gordon equation (Ll) to the usual 
form 

Utt - Uxx + sin u = O. (3.2) 

In order to describe the inverse scattering transform of(3.2) 
we follow the method due to Zakharov-Takhtadzhyan
Faddeev9 based on the spectral problem 

1 
L (A.,u,w)F(A.,x) = 0, L (A.,U,w)==JJx + A + - B - A., 

A. 
(3.3) 

where F = F(A.,x) is a 2 X 2 matrix, and J, A, and Bare 2 X 2 
matrices defined by 

J = (~ - ~), A = ~ (~ ~} 
B = _1_ (eXP(iU) 0) 

16 0 exp( - iu) , 
(3.4) 

w = Ux + u,. 

Let us consider the solutions F ± of (3.3) which satisfy the 
asymptotic conditions 
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F + (A.,x) -+ E (A.,x), F _(A.,x) -+ E (A. ,x), (3.5) 
x_+ 00 x_- ~ 

where 

E (A.,x) = (e(A.,x),e*(A.,x)), 

e(A.,x) = exp [{A. - I~ )x] C). (3.6) 

The essential information about scattering data variables is 
related with the transition matrix T(A. ) defined by the rela
tion 

(3.7) 

This matrix turns out to be of the form 

T= (: - ::), (3.8) 

where a and b are two complex-valued functions depending 
on A. and satisfying the properties 

lal z + Ib IZ = I, a(A.) = a( -A. )*, b (A.) = b ( -A. )*.(3.9) 

The function a(A.), the first columnfl{A.,x) of the matrix 
F + (A.,x), and thesecondcolumngz{A.,x) ofthematrixF _(A.,x) 
may be analytically continued to the half-plane Imk > 0. 
Moreover, 

lim a(A.) = 1. 
1-' 1-00 

(3.10) 

It follows that for each zero A. k of alA. ) a complex number b k 
exists verifying 

(3.11) 

We shall assume that the following two conditions are satis
fied 

(i) alA. ) has no zeros on the real axis, 
(ii) the zeros of alA. ) are simple zeros. 

In this case, the relevant set of scattering data which deter
mines the potential functions u and w uniquely is given by 

[A.komkor(A.)), k= 1, ... ,N, A.>O, 

where 
mk = - ib

k 
(~ (A.

k
)) - I, r(A.) = b (A. ) . 

JA. alA. ) 

(3.12) 

(3.13) 

The zeros A.k and their corresponding coefficients mk are 
distributed symmetrically with respect to the imaginary 
axis. As a consequence the discrete part of the scattering data 
may be divided into two different subsets 
[A.j,mj:j= 1, ... ,Nd and [A."m,:i= 1, ... ,Nz] 
(NI + 2N2 = N) according to the following two cases 

(1) A.j = - At = ikj' kj > 0, 

(2) Re A.I > 0, 1m A.I > 0. 

(3.14) 

(3.15) 

The Poisson bracket relations among the scattering data 
10 h . were calculated by Faddeev and Takhtadzhyan w 0 mtro-

duced the following set of variables 

[ C;j' Pj,'TI1 ,S/,¢>JJI>¢> (A. ), piA ) J, 
j = 1, ... ,N1, i = 1, ... ,N2 , A. > 0, 

where 

(3.16) 

C;j =81nlcj l, Pj =lnkj' (cj=mj ;~ (Aj )),(3.17a) 
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'TIl =41nld/ l, SI =41nlA. / I. (d,=m, ~~ (A.I)) , 

(3.17b) 

¢>I = - 16 arg d
" 

(JI = arg A. I , (3.17c) 

8 
¢>(A.) = -argb(A.). p(A.) = - 1TA. Inla(A.)I· (3.17d) 

Observe that the determination of the scattering data (3.12) 
from the variables (3.16) requires the additional specification 
of the following signs 

€j = sgn( - imj)' j = 1, ... ,N1• (3.18) 

According to the results of Ref. 10 we have that the Poisson 
bracket relations between two of the variables (3.16) are zero 
except for the following ones 

['TII,S/'] = [¢>I,(JI'] = ~811" 
m 

(3.19a) 

[¢> (A. ),p(A ')] = ~ 8(A. - A. '). 
m 

(3.19b) 

We notice that because of(2.2) and (3.1) our Poisson bracket 
definition differs from the one used in Ref. 10 by a factor g/ 
m Z

• 

B. Poincare generators in terms of scattering data 
variables 

As it was shown by Faddeev and Takhtadzhyan,1O the 
functionals Hand P associated with the generators of time 
and space translations may be expressed in terms of scatter
ing data variables as follows 

H= m
3 [I (e-,o, + 16/j

) 

g j 

+ I 2 sin (J1(e- S/14 + 16es/14
) 

I 

+ loo (8~ + u }(A.) dA. ], 

P = m
3 [I (e -.oj - 16/j

) 

g j 

+ I 2 sin (JI (e - S/14 - 161/14
) 

I 

(3.20) 

(3.21) 

We are going to prove that the functional K associated with 
the generator of pure Lorentz transformations also admits a 
representation of this kind which is given by 

K= ~[IC;j + I4'T11 + (00 A J¢>(A.) p(A.)dA.]. 
g j I )0 JA. 

(3.22) 

In order to derive this expression it is convenient to intro
duce the following notation convention. Given a function 
F = F[¢>,1T] we will denote the variation of Funder pure Lor
entz transformations by 

8F= - F [R (exp(oK))¢>,R (exp(oK))1Tl. (3.23) d I A A 

du a~O 
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Because of the canonical character of the realization of the 
Poincare group it follows that 

of= IF,Kj. (3.24) 

This relation enables us to calculate the derivatives of K with 
respect to the scattering data variables by calculating the 
variations of these variables under pure Lorentz transforma
tions. Firstly, we have that the variations ofthe functions u 
and w arising in the spectral problem (3.3) are 

Ou = x(ux - wI, ow = x(sin u - wx ) - w, (3.25) 

so it is easy to see that 

oL = ~I L (A.,u,w) 
da a~O 

= -A -x(Ax + 2[B,J)) 

- ~(- Bx + 2(AJB - BJA)). (3.26) 
A. 

On the other hand, as was found by Zakharov, Takhtadz
hyan, and Faddeev,9 the sine-Gordon ~quation (3.2) takes 
the following form in terms of the matrices A and B: 

At =Ax +2+ [B,J], B t = -Bx +2(AJB-BJA). 
(3.27) 

Therefore, for a solution F of (3.3) we have 
oLF= - (A +xatL)F= - (A -xLat)F 

= -AF+L (xFt ) -JF" (3.28) 

where the identity xL = Lx - J has been used. Moreover, it 
is known that9.11 

(3.29) 

and this implies 

JF, + AF = (L + ~ B + A. )F = L (F + A. ~~) . 
(3.30) 

From (3.28)-(3.30) and taking into account that 
oLF + LoF = 0 we obtain 

L (oF + xFx -A.F;. - 2(x/A. }JBF - F) = O. (3.31) 

This equation together with the asymptotic conditions (3.5) 
leads us to the following expression for the variation of the 
solution F + 

of+= -xaxF++A.a;.F++2(x/A.}JBF+. (3.32) 

Now it is plain to calculate the variations of the spectral data. 
One gets 

aA.k = - A. k , obk = 0, 

oa(A. ) = A. d:~ ), ob (A. ) = A. d~~) , (3.33) 

or equivalently, in terms of the variables (3.17) 

oqj = 0, OPj = - 1, 

0111 = O¢JI = oBI = 0, OSI = - 4, (3.34a) 

o¢J (A. ) = A. d¢J (A. ) op(A. ) = pIA. ) + A. dp(A. ) . 
dA. ' dA. 

(3.34b) 

Consequently, according to (3.24) and the Poisson bracket 
relations (3.19) we deduce from (3.34) that 
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aK _ aK _ aK _ aK _ 0 
apj - atl - a()l - a¢JI - , 

aK 1 aK m 2 

=--= 
aqj 4 a111 g 

oK = m
2 A. d¢J (A.) , 

0p(A.) g dA. 

~ = _ m
2 

( (A.) + A. dp(A. )) . 
0¢J (A. ) g P dA. 

These relations imply the identity (3.21). 

(3.35a) 

(3.35b) 

The inverse scattering theory for the spectral problem 
(3.5) shows9.10 that the set (3.16) of scattering data deter
mines the functions u and w of(3.3) uniquely. Then, we may 
consider this set of variables as a local coordinate system for 
the phase space V. Therefore, Eqs. (3.20) and (3.21) express
ing the generators of the Poincare group CR in terms of this 
local coordinate system, define the group realization com
pletely. As we shall see in the next section, the scattering data 
variables provide us with a picture of the Poincare group CR 
which can be analyzed in terms of simple CR's. 

4. ANALYSIS OF THE GROUP REALIZATION 

A. Physical variables 

The group realization R takes a more appropriate form 
when the following scattering data variables are introduced 

qj = - ~qj(e-Pj+ 16/J)-I, 
m 

m 3 - -
Pj =-(e- PJ -l&"j), (4.1) 

g 

QI = -~111 [sin ()/(e- SI/4 + 16e<'/4)]-I, (4.2a) 
m 

PI = 2m
3 

sin ()de - 5114 - 16eSI/4 ), 
g 

PI = ~ ¢JI - QIPI , (4.2b) 
g tan ()I 

m 2 aA. 
q(k) = ¢ (A. (k)), p(k) = - - -pIA. (k I), 

g ak 

One shows easily that the expressions (3.20)-(3.22) for the 
generators of the group realization reduce to 

H= L(pJ+M 2)1/2+ L(P7+ M (()tJ2)1/2 
j I 

+ f"'", (k 2 + m2 )1/2p(k) dk, (4.4) 

P= t Pj + ~PI + f: '" kp(k)dk, (4.5) 

K= - I.(p]+M 2)1/2qj - I. (Pr +M(()lfl I/2QI 
j I 

- J"" (k 2 + m 2 )1/2 aq(k) p(k) dk, (4.6) 
- '" ak 

where 
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8m3 

M= --, M(OtJ = 2M sin 01, 
g 

(4.7) 

The phase space V may be described locally by means of the 
following set of scattering data variables 

[qj'Pj,Q"P,,p,,O,,q(k ),p(k) J, (4.8) 

j = 1, ... ,N1, 1= 1, ... ,N2, kER. 

Moreover, from (3.19) and (4.1)-(4.3) we have the Poisson 
bracket relations 

[qj,P;-J =OjJ, [QI,Prl = [PI,OI,j =0/1', (4.9a) 

[q(k ),p(k ')J = o(k - k '). (4,9b) 

All other Poisson brackets between two variables of the set 
(4.8) vanish. The continuous part of this set is represented by 
the two real functions (q(k ), p(k )). Observe that q(k ) is an an
gle variable and the p(k) is positive and vanishes at infinity. 
Therefore, if we introduce the functions 

¢ (x) = (21T)-1/2 Joo ~ 
- 00 (2UJ)I/? 

X (a(k )eikX + a*(k )e - ikX), 

JOO ()1/2 1T(X) = i(21T)-1/2 _ 00 dk ~ 

X (a*(k )e - ikx - a(k )eikx ), 

(4,1Oa) 

(4.10b) 

where 

liJ = liJ(k) = (k 2 + m2)IIZ, 

a(k) = p(k )IIZ exp( - iq(k)), (4.11) 

then there is a bijective correspondence between the pairs of 
functions (q(k), p(k)) and (¢ (X),1T(X)). Hence, we may define a 
local coordinate system for the phase space V by means of 
the correspondence 

(¢ (X),1T(X))-(qj' Pj,QI ,PI,p1 ,Ol'¢ (X),1T(X)). (4,12) 

We now note that according to (4.9), (4.10), and (4.11) the 
Poisson bracket operation (2.2) adopts the form 

[Fl,F21 = I (JFI JF2 _ JF1 JF2) 
j Jqj JPj JPj Jqj 

+ Joo (~FI bF2 _ oFI ~Fz) dx. 
- 00 o¢ (x) 01T(X) b1T(X) o¢ (x) 

(4.13) 

Moreover, from (4.4)-(4.6) and (4.10), (4.11) the generators of 
the group realization can be written as 

H = I (p] + M2)1/2 + I (P; + M(OtJ)I/2 
j I 

+ ~ Joo (r + ¢ ~ + m 2¢ 2) dx, (4.14a) 
2 - 00 

P = ~ Pj + ~ PI - J: 00 1T¢x dx, (4. 14b) 
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K = - I (p] + M2)1/2qj - I (P; + MWtJ2)I/ZQI 
j 1 

- ~ JOO x(r + ¢; + m2¢ 2) dx. (4. 14c) 
2 -00 

B. Decomposition of the group realization 

The local coordinate system (4.12) allows us to analyze 
the properties of the sine-Gordon equation (1.1) considered 
as a relativistic invariant dynamical system, This is so due to 
the structure of the expressions (4, 14) of the generators of the 
group realization R. It exhibits the fact that R is locally equi
valent to a direct product of three distinct CR's of the Poin
care group 

R=Rj®RII®R III . (4.15) 

The first factor R I is a direct product of NI identical CR's 
N , 

R I = Rs ® ..• ®Rs , (4,16) 

where Rs acts on the two-dimensional phase space RZ with 
canonically conjugate variables (q, p) and such that the gen
erators of Rs are the functions 

Hs = (p2 + M2)1/2, Ps = p, Ks = _ (p2 + M2)1/2q. 
(4.17) 

This means that Rs is the well-known Poincare group CR 
describing the free elementary particle of mass M in classical 
relativistic mechanics in two-dimensional space-time. Un
der the action Rs the coordinate p transforms as a momen
tum observable and the coordinate q satisfies the "manifest 
covariance" condition4 

q'(t') = y(q(t) + vt) + a, t' = y(t + vq(t)) + b. (4.18) 

That is to say, each point (t,q) on the trajectory ofthe particle 
transforms as an "event" in two-dimensional space-time. 
Therefore, we have that R I describes a system of NI free 
elementary relativistic particles of mass M. 

The second factor R II is also a direct product of the 
form 

N, 

RII =RB®···®RB , (4.19) 

where RB acts on a four-dimensional phase space with two 
pairs of canonically conjugate variables (Q,P ) and ( p,O ). The 
geometry of this phase space is better described by using the 
coordinate¢ = (glm2)( P + QP Itan 0 )insteadofthecoordi
nate P [see (3.17c) and (4.2b)]. In this way, the points of the 
phase space are specified by four coordinates (Q,P,¢,O) in 
such a form that 

Q,PER, ¢ER (mod 321T), 0 < 0 < 1T/2, 

The generators of R B are the functions 
HB = (P 2 + 4M2 sin2 0 )112, PB = P, 

KB = - (PZ + 4M2 sinz O)IIZQ. 

(4.20) 

(4.21) 

The question arises: What kind of relativistic system does 
R B describe? It is not any elementary one since for two
dimensional space-time the elementary classical systems of 
the Poincare group have a two-dimensional phase space. 
Then one is tempted to think of R B as describing a system of 
two interacting relativistic particles. This is particularly ap
pealing as the mass ofthe system is given by 2M sin 0, Never-
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theless, since the formulation of the "zero interaction 
theorem" by Currie-Jordan-Sudarshan I2 it is well-known 
that severe limitations arise for the description of relativistic 
dynamics within the framework of the canonical realizations 
of the Poincare group. 13 In particular, for the two-dimen
sional space-time case, there is only one possible model of a 
relativistic system of interacting particles satisfying the con
ditions 

(i) The coordinates qi describing the particle positions 
verify the "manifest covariant" condition. 

(ii) The Poisson brackets [qi ,q} J vanish. 

This model consists of relativistic particles moving in a con
stant external field. 14 Clearly, our canonical realization RB 
is not of this kind. Indeed, the equations of the motion deter
mined by the Hamiltonian H Bare 

Q=PH;; I, p= e=o, ;p =~HB(tan 0)-1. 
m2 

(4.22) 

Then due to the condition (4.20) for ¢ it is deduced that in the 
center-of-mass frame (i.e., P = 0) the trajectories are period
ic with a period given by 

T= 21T/m cos O. (4.23) 

Therefore, under the assumption of the conditions (i) and (ii) 
it is not possible to interprete R B as describing a system of 
two interacting relativistic elementary particles. In part C of 
this section we will see that R B represents the breather solu
tion of the sine-Gordon equation. This solution is sometimes 
interpreted as a bound soliton-anti soliton pair. 15 However, 
the above analysis shows that this interpretation has not a 
clear group-theoretical basis. On the other hand, the analysis 
of the transformation properties of the phase space points 
under R B shows a very simple structure; the coordinate P 
behaves as a momentum observable and Q, p, and 0 verify 

Q '(t ') = y(Q (t) + vt) + a, t' = y(t + vQ (t)) + b, (4.24) 

p'(t ') = p(t), 0 '(t ') = 0 (t). (4.25) 

The derivation of the transformation law for p is rather in
volved and it is performed in the Appendix. Observe that in 
what concerns to the coordinates Q and P the system looks 
like a relativistic particle. We will refer to R B as the "pulsat
ing nonelementary relativistic particle." Thus, we have that 
the factor R II of the descomposition (4.1 5) describes a system 
of N2 non interacting particles of this kind. 

We notice that the numbers NI and N2 of subsystems 
which appear in the descompositions (4.16) and (4.19) of R I 

and R II respectively are only locally constant in the phase 
space V. That is to say, for every point (¢ = ¢ (X),1T = 1T(X)) of 
V there is a neighborhood in which NI and N2 remain con
stant but they are not constant on the whole of V. 

The third factor R III in the descomposition (4.15) is an 
infinite-dimensional CR of the Poincare group. It acts on a 
phase space V whose elements are pairs (~(x),iT(x)) of real 
functions which vanish as Ixl--oo. The symplectic structure 
on Vis determined in the usual form [see (2.2)]. The genera
tors of R III are the functionals 

987 J. Math. Phys., Vol. 24, No.4, April 1983 

1 foo (-2 ;;. 2 2;;' 2) d Hili = - 1/ + 'I' x + m 'I' x, 
2 -00 

PIlI = - Foo 00 iT~x dx, 

1 foo -2 ;;. 2 2 - 2) d Kill = - - x(1/ + 'I' x + m ¢ x. 
2 -00 

(4.26) 

Evidently, R III describes the realization of the Poincare 
group associated with the Klein-Gordon field equation with 
massm 

(4.27) 

c. Solitons and breathers as relativistic particles 

The inverse scattering transform theory for the spectral 
problem (3.3) provides explicit solutions of the sine-Gordon 
equation for the case in which the reflection coefficient r(,1 ) 
[see (3.12) and (3.13)] vanishes. If the operator L (,1,u,w) de
fines a set [A k ,m k ,r(,1 ) = 0; k = 1, .. . ,N J of scattering data, 
then the function u(x) is determined by9 

u(x) = - 2i In det(l + U) , (4.28) 
det(l - U) 

where U denotes the N X N matrix 

(4.29) 

In terms of the local coordinate system (4.12) the condition 
r(,1 ) = 0 is equivalent to ~ (x) = iT(x) = O. That is to say, this 
condition determines a region in the phase space Von which 
the group realization reduces to a direct product R = R I ® 

R II of finite-dimensional CR's describing a system of classi
cal relativistic particles. Therefore, we have that these ele
ments of the phase space admit two distinct representations, 
either as a pair offield functions (¢ (X),1T(X)) (wave representa
tion) or as a point (q},p},QI'PI, PI,OI;j = 1, ... ,N; I = 1, ... ,N2 ) 

in a finite-dimensional phase space (particle representation). 
By using (4.28) it is easy to relate both representations expli
citly in the simplest cases. Here, we will indicate three exam
ples. Firstly, we consider the case in which NI = 1, and 
N2 = 0, then the group realization R reduces to the realiza
tion Rs of the elementary relativistic particle and Eq. (4.28) 
yields the following wave representation of the free particle 
motion 

¢s(t,x) = :;; tan-l[exp«;;'H,(x-q(t)))]. (4.30) 

Here f' stands for the sign (3.18) which, as mentioned above, 
must be incorporated to the set of scattering data in order to 
define the inverse scattering transform uniquely. The solu
tion (4.30) is the so-called soliton (f' = 1) or antisoliton 
(f' = - 1) solution of the sine-Gordon equation. Clearly, the 
present analysis proves that from the group theoretical point 
of view solitons are elementary classical relativistic particles. 
If we take NI = 0 and N2 = 1 then the group realization R 
reduces to the realization R B of the pulsating nonelementary 
relativistic particle. Its associated wave representation pro
vided by (4.28) is the breather solution ofthe sine-Gordon 
equation 
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A. ( ) _ 4m t -I [t (J sin((m/2M )((m2/g)rP (t) - (P /tan (J Ix)) ] 
'i'Bt,x -- an an . 

.[g cosh((m/2M)HB(x - Q(t))) 
(4.31) 

The dynamical behavior of this wave is a beautiful picture of the pulsating nature of the underlying nonelementary relativistic 
particle. 15 Finally, let usconsiderthecaseNI = 2andN2 = o with signs €I = 1 and€2 = - 1. Now R = Rs ® Rs and then the 
group realization describes a noninteracting system of two elementary relativistic particles. From (4.28) one derives the 
following wave representation of this system 

This is the soliton-antisoliton solution of the sine-Gordon 
equation. It follows easily from (4.32) that when the time 
goes to - 00 the solution rPis appears as the superposition of 
a soliton and an antisoliton with particle trajectories 

M I 4M21 q~n)(t)=ql(t)+ --In 1- -- , 
2mh l s 

(4.33a) 

M I 4M21 q~n)(t) = q2(t) - --In 1 - -- , 
2mh2 s 

(4.33b) 

(s-(h l + hZ)2 - (PI + P2n 

respectively. Analogously, when t-+ + 00 rPis is the superpo
sition of a soliton and an antisoliton with particle trajectories 

M I 4M21 qll"U')(t) = ql(t) - --In 1 - -- , 
2mh1 s 

(4. 34a) 

M I 4M21 qiOU')(t) = q2(t ) + -- In 1 - -- . 
2mh2 s 

(4.34b) 

The "in" and "out" asymptotes do not coincide and it shows 
the presence of an interaction process between the solitons. 
In this way, when the dynamics is looked at from the point of 
view of the asymptotic soliton components the wave repre
sentation of this system of two noninteracting relativistic 
particles exhibits an interactinglike behavior. 

5. FURTHER RESULTS 

One interesting application which emerges from the de
composition of the generator K of pure Lorentz transforma
tions in terms of scattering data variables is the integration of 
the Hamiltonian system 

a,rP(x) = IrP(x),Kj, a,1T(X) = 11T(x),Kj, (S.I) 

by means of the inverse scattering transform method. The 
corresponding field equation is the following nonlinear 
equation with x-dependent coefficients 

rPtt - x 2rPxx - xrPx + x 2 ~ sin( ~ rP ) = O. (S.2) 

The evolution law of the coordinates (4.12) derives easily 
from (4. 14c) and it takes the form 

qj = _Pjqj(p]+M 2 )-IIZ, Fj =(p]+M2)1/2, (S.3a) 

. 2 M((J )2) 1/2 p', = (P 2, + M((J,)2)1/2, Q, = -P,Q,(P, + ,-, 
(S.3b) 
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(4.32) 

PI = -2M 2 sin(2(JdQdPi+M(8d)-1/2, 01 =0, 
(S.3c) 

- 2- - 2 2- _ 
rPtt - x rPxx - xrPx + m x 4> - O. (S.3d) 

In particular, this yields 

( ) _ qj (0) cosh Dj ( ) 0 . h ( Ie ) q. t - Pj t = X Oj e J sm t - Uj , 
} cosh(t - Dj ) 

(S.4) 

where 

Dj =In I!!.-I, XOj =Pj(O) + (pj(0)2+M2)1/2. (S.S) 
X Oj 

Analogous expressions are found for the functions QI(t) and 
PI (t ). We observe that independently of the initial conditions 
the following asymptotic properties are verified 

qj(t) -+ 0, !Pj(t)1 -+ 00. 
1- ± 00 t_± 00 

(S.6) 

The trajectory qj (t ) describes a bounded motion in which the 
particle leaves the origin at t = - 00, reaches a maximum 
distance qj(O) cosh Dj at the time t = Dj' and then returns, 
arriving to the origin at t = + 00. This feature of the dynam
ics determines a curious behavior for the soliton solutions of 
(S.2). Theone-soliton solution (NI = 1,Nz = O,¢ = iT = O)is 
given by 

rPs(t,x) = :;; tan-l[exp(€;;'Hs(t)(x-q(t)))]. (S.7) 

HereHs = (pZ + M2)1/2 depends on t and consequently the 
profile of rPs deforms during the motion. Note that despite 
HS-+OO as t-+ ± 00 the product Hsq is a constant of the 
motion since the Hamiltonian K of (S.2) reduces in this case 
to - Hsq. Therefore 

21Tm 
4>s(t,x) -+ -(J(€x), 

t~± 00 ,Jg 
(5.8) 

where (J (x) is the step function. It is also easy to analyze the 
breather and the soliton-antisoliton solutions of(S.2). To do 
it we only need to introduce the new expressions for the 
motion of the variables (Q,p,e,4» and (ql' PI,q2' P2) in Eq. 
(4.31) for rPB and (4.32) for rPss' respectively. In this way, one 
finds that both rPB (t,x) and rPss(t,x) vanish as t-+ ± 00. It is 
worth noting that the analysis of rPsssuggests that this solu
tion describes a process in which a soliton-antisoliton pair is 
created at t = - 00 and subsequently annihilated at 
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t = + 00. 

Finally we notice that under the change of variables 

t' = - x sinh t, x' = x cosh t , (5.9) 

Eq. (5.2) transforms into the sine-Gordon equation (1.1). In
deed, given a solution rP '(t,x) of the sine-Gordon equation 
then according to (2.5) it follows that rP (t,x)=rP '(t' ,x') is the 
image of rP '(O,x) under the pure Lorentz transformation 
exp(tK). 
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APPENDIX 

In order to prove Eq. (4.25) for the transformation law 
of the variable p it is convenient to express the Poincare 
group realization R B as follows 

RB(g) = RB(e-bHeapeUK) 

= RB(e - bH)RB(eap)RB(eUK ). (AI) 

From the form (4.21) of the generators of RB one deduces 
that under the action of R B ( g) the energy H B and the mo
mentum P transform as 

H~ =y(HB +vP), P'=y(p+vHB). (A2) 

The generator K B = - H B Q and the variables rP and 0 re
main invariant under RB (exp(uK)) since they have a null 
Poisson bracket with K B' Therefore 

RB(eUK)(Q,P,rP,O) = (QHB/H~,P',rP,O). (A3) 

By means of the Poisson bracket relations among the varia
bles Q, P, rP, and 0 it is easy to complete the calculation of the 
action RB on the phase space. Thus, it follows that 

R B ( g)(Q,P,rP,O ) 

=RB(e-bH)(QHB + a,P',rP +a~~ ,0) 
H~ m 2 tan 0 

= ((QHB - bP')H~-l + a,P',rP 

+ g (aP' - bH~),O). 
m 2 tan 0 

(A4) 
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The evolution law of the variable rP and (A4) imply that the 
transformed variable rP ' satisfies 

rP 'It ') = rP '(0) + g t 'H ~ 
m 2 tan 0 

= rP (0) + g (aP' + (t' - b )H ~). (AS) 
m 2 tan 0 

Now, we notice that according to (4.24) and (A2) the two
component vectors (t ' - b,Q 'It ') - a) and (H ~ ,P ') are the 
images under a pure Lorentz transformation of (t,Q (t )) and 
(H B ,P), respectively. As a consequence 

(t' - b )H~ = (Q'(t') - alP' + tHB - Q(t)P. (A6) 

Hence (AS) takes the form 

rP 'It ') = rP (t ) + g (Q 'It ')P'(t ') - Q {t )P (t )), 
m 2 tan 0 

and this leads at once to the equality p'(t ') = pIt ). 
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If a current]' (x) is conserved, then the charge Q defined as the three-space integral of/( x) is a 
Lorentz scalar. In this paper we investigate the Lorentz transformation properties of Q assuming 
thatf( x) is not conserved; that is, a!, f( x)#O. We find that Q, which now depends on time, 
transforms as the infinite direct sum of the spin-O parts of the (0,2j + 1) finite-dimensional tensor 
representations of the Lorentz group plus the spin-O component of an infinite-dimensional 
indecomposable representation of the Lorentz group, [(0,1 )---+( 1,0)]:[(0, 1 )---+( 1 ,0)) 
EB Lt~ 0", (0,2j + 1), where we are using the Gel'fand, Milnos, and Shapiro notation. More simply, 

if T I' ,1'2"'1'"( x) is an n-index traceless, symmetric tensor density and S ( x) is a density transforming 
as the spin-O component of the infinite-dimensional representation, we find that Q transforms as 
the infinite sum S( x) + T( x) + TOO( x) + TOOOO( x) + TOOOOOO

( x) + .... 
PACS numbers: 1l.30.Cp, 11.40. - q, 02.20. + b 

1. INTRODUCTION 

It is well known that a conserved vector current density 
f ( x) gives rise to a time-dependent charge Q. A conserved 
current is one that satisfies 

al'f(X) = 0. (1.1) 

The charge Q is defined as the space integral of the ° compo
nent of the current 

(1.2) 

It is a simple theorem that iff ( x) transforms as a vector 
density and Eq. (1.1) holds, then the charge Q is a Lorentz 
scalar. To prove this theorem we use the assumed infinitesi
mal Lorentz transformation properties Off ( x) 

~ [r( X),jDk ] = ( Xk JD - xOak )jo( x) + / (x), (l.3a) 
I 

~ [j'( x),JOk
] = (xkJD - xOak )j'( x) + Ok] O( x), 

I 

(l.3b) 

where J Ok is the generator of infinitesimal Lorentz transfor
mations. Communting Q in (1.2) with J Ok and using (1.3a) 
gives + [Q,J Ok ] = f d3x xkJD/( x) - f d3xxOak /( x) 

+ f d3x/ (x). (1.4) 

The second integral in (1.4) vanishes because it is a total 
divergence. The third integral can be rewritten as follows 

f d3x/ = f d3x8k]' = f d3x(a, Xk )j' 

- f d3xXk a,j " 

where in the last term we have integrated by parts. Thus the 
first and third terms of(1.4) combine to give 

- f d3xxkal'jI'(x), 

which vanishes if the current/' ( x) satisfies (1.1) (is con-

served). The vanishing of the commutator in (1.4) implies 
that Q is a scalar. (In the above argument we have used the 
metricxk =xk,xo = -xo·) 

It is trivial to show that if (1.1) holds, then the charge Q 
is time independent. 

In this paper we answer the question how does the 
charge Q in (1.2) transform under the Lorentz group if the 
current is not conserved? [For example, suppose that]' (x) 
were the axial current in quantum field theory and Q the 
axial charge.] 

The answer to this question is that Q transforms as an 
infinite direct sum of finite-dimensional, irreducible tensor 
representations of the Lorentz group plus an infinite-dimen
sional indecomposable (noncompletely reducible) represen
tation of the Lorentz group. Let T( x), TI'l (x), TI'l 1'2 (x), 
T 1'11'21'3 (x), T 1'11'21'31'4 ( x), .. · be a sequence of totally sym
metric, traceless tensor densities. These objects transform as 
the irreducible representations (0,1),(0,2),(0,3),(0,4),(0,5), ... , 
where we are using the notation of Gel'fand, Minlos, and 
Shapiro. 1 The infinite-dimensional representation required 
in the direct sum transforms as the [(0,1 )---+( 1 ,0)] representa
tion. (We will explain this notation shortly.) We will show 
that the charge Q transforms as the direct sum 

00 

[(0,1 )---+( 1,0)] EB L (0,2j + 1). (1.5) 
j-O", 

Equivalently, we will find explicit formulas for the tensors 

TI',···""( x) and for S ( x) such that 

Q = S( x) + T( x) + T oo( x) + T OOOO
( x) + ... , (1.6) 

where S (x) is a density transforming as the spin-O compo
nent of the [(0,1 )---+( 1 ,0)] representation of the Lorentz group. 

We find that the infinite series in (1.6) is interesting in 
two respects. First, this infinite series must be interpreted 
using a summation procedure. (Any summation procedure 
such as Borel summation or Euler summation is sufficient.) 
Second, each of the tensor densities in the series depends on 
space as well as time. Nevertheless, in summing this series all 
of the space dependence cancels, lea vfng an object Q (t ) which 
depends only on time.2 
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We do not have a physical interpretation3 for the ten
sors TI1-1 11-, ,T11-1 11-,11-,11-4 , ... or for S. We find that reimposing 
current conservation forces each of these tensors and S to 
vanish. Thus, the series truncates, leaving only the term T 
which becomes time independent and equal to the scalar 
charge. 

This paper is organized as follows: In Sec. 2 we describe 
the notation used in this paper. Section 3 gives the solution to 
a simpler model problem in which we determine the trans
formation properties of the space integral of a scalar field 
<p (x). Finally, in Sec. 4 we give the solution to the main prob
lem of this paper and explicitly establish the results of(1.5) 
and (1.6). 

2. NOTATION 

To label the irreducible representations of the Lorentz 
group, we use the notation of Ref. 1. Each such representa
tion is labeled by a pair of numbers (/0,1 d. 1o is the lowest spin 
component in the representation, and if the representation is 
finite dimensional, 1/\1 - 1 is the highest spin in the repre
sentation. For tensor representations, 1o and 1\ are integers. 
For example, for a scalar S there is only one component and 
it has spin 0. Therefore, the lowest spin in this representation 
is 0, which gives 1o = 0. The highest spin in this representa
tion is also 0, so 1\ = 1. 

As another example, consider a vector S'"' . This trans
forms as the (0,2) representation of the Lorentz group. The 

I 

where an index with a bar over it indicates that the index is 
absent. This formula is crucial because given the spin com
ponents S N' it enables us to identify the numbers 10 and 1\. 

In addition to irreducible representations of the Lor
entz group, there exist indecomposable representations, that 
is, representations which cannot be expressed as a direct sum 
of irreducible representations. The simplest class of such re
presentations are those called operator irreducible. An oper
ator irreducible representation consists of two representa
tions (/0,/\) and (/\,10) "glued" together. 1o and 1\ must both be 
integers. Here we assume that both are positive and that 
Eo < 1\. Thus (10'/ d is finite dimensional and (1\>/0 ) is infinite 
dimensional. There are two possible structures for an opera
tor irreducible representation. In one case, the finite-dimen
sional part is an invariant subspace, but terms from the infi
nite-dimensional part mix into the finite-dimensional 
subspace. This representation is denoted [(/0,/\)+-(/\,10)]. The 
other case, denoted [(/o,/d--(I\,lo)], occurs when the infinite
dimensional part forms an invariant subspace, and terms 
from the finite-dimensional part mix into terms of the infi
nite-dimensional part. An operator irreducible representa
tion of the second type occurs in the decomposition of Q in 
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lowest spin component is So, which transforms as a rota
tional scalar (spin 0). The highest spin component is S i which 
is a vector under the rotation group (spin 1). 

In Ref. 1, it is shown that an irreducible representation 
consists of a sequence of spin components (representations of 
the rotation group) which runs by increments of one from the 
lowest spin to the highest spin. Each spin component occurs 
exactly once in this sequence. 

To illustrate this, consider the case of a symmetric, 

traceless tensor SI1-I···l1-n. This transforms irreducibly as the 
(O,n + 1) representation of the Lorentz group. It contains the 
sequence of spin components spin 0, spin 1, ... ,spin n. For 
example, when n = 2 the spin-Ocomponent isS oo, the spin-1 
component is SOi, and the spin-2 component is S ii - {jiiS 00/ 
3. 

To characterize the trasformation properties oftensor 
densities (quantum fields which are functions of space and 
time) we examine the infinitesimal Lorentz transformations. 
A field which transforms irreducibly under the Lorentz 
group can be represented as a sequence of spin components 
S~:a2···a,,,( xl,S ~ol~··;a,..+ I( x), ... ,S ~/I~''::''~'''I- I( x), where S:,···an( x) 
is a totally symmetric, traceless object transforming irredu
cibly as the spin-n representation of the rotation group. For 
example, for the traceless, symmetric tensor density TI1-V( x), 
So( x) = T OO

( x),S~( x) = TOa( X),S~b( x) = T ab ( x) 
- j{jabT OO

( x). The numbers 10 and 1\ uniquely characterize 
the infinitesimal transformation laws of the field4 

(2.1) 

Sec. 4. A more detailed discussion of indecomposible repre
sentations is found in Ref. 5. 

3. A MODEL PROBLEM 

In this section we solve a problem which is slightly 
simpler than determining the transformation properties of 
charges from nonconserved currents. Instead, we examine 
the transformation properties of the "charge" P(t) obtained 
by integrating a scalar field ¢ ( x): 

P(t) = J d3x¢ (x,t). (3.1) 

The general technique we will follow is outlined as an 
illustrative example in a paper by Bender and Griffiths.5 The 
idea is that P (t ) is a rotational scalar. If we commute it with 
the generator jOk , the result after removing the orbital part 
(xk (f - xOak)p (t) will be a spin-l objectP k . Note that even 
though P(t) in (3.1) is not a function of the space coordinate 
Xk, the angular momentum generator jOk introduces a space 
dependence in P k • Commuting P k with the generator JOI 

and again removing the orbital part (Xl (f - xOal ) pk gives a 
spin-2 object P k I and a new spin-O object, PI' If PI were a 
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multiple a of P, then there would be only one spin-O object 
generated by repeated infinitesimal Lorentz transforma
tions. This would allow us to argue that P is the spin-O com
ponent of an irreducible representation of the Lorentz 
group. Moreover, from the number a, we could compute II' 
(For this case we know that 10 = 0.) In fact, PI is not a multi
ple of P. Rather, it is a new spin-O object. Commuting PI 
twice with the generator of Lorentz transformations pro
duces yet another spin-object P2, which is linearly indepen
dent of P and PI' Repeating this process produces an infinite 
sequence of linearly independent spin-O objects P,PIP2,,· . 

The analysis now consists of two parts. First, we con
duct an infinite linear combination of the P 's using an arbi
trary set of undetermined coefficients.8n 

00 

A =P+ 2: .8n Pn· (3.2) 
n=l 

We determine the coefficients.8n by demanding that two 
successive commutations of A with the generator of Lorentz 
transformations give a spin-O component which is a numeri
cal multiple a of A. In effect, a plays the role of an eigenvalue 
for a Schrodinger-like difference equation. The correspond
ing eigenvector is the set of coefficients.8 n' We find that 
there are in fact an infinite number of solutions to this eigen
value problem, each solution for A being the spin-O compo
nent of some irreducible representation of the Lorentz 
group. We label each solution A by the corresponding value 
of II determined from a. 

Second, we select from the set of A's an infinite set Am 
which in linear combination reproduce the original quantity 
P. That is, we determine a set of coefficients r m such that 

(3.3) 

This represents a formal solution to the problem. It expresses 
the transformation properties of P as a direct sum of irredu
cible represenations of the Lorentz group. We believe that 
this decomposition is unique. 

Griffiths6 has suggested to us that to facilitate the form
mal procedure just described it is useful to introduce a multi
ply-indexed Kronecker {) function D ~~a2 ... a'n which is defined 
by 

D 2n = _1_ " {) 0 ... 0 
0,"'°2,. 2n' ~. GI G 2 aJ,G4 a 2,,_ • G1"o 

• aJJ permutations 

(3.4) 

of a.G2, .. 0211 

This object has a number of useful properties observed by 
Griffiths. Two that are useful for our calculation are 

(3.5) 

and 

(3.6) 

We have found that the possible spin-O terms are most 
simply expressed in terms of a quantity R :, ... an which is de
fined by 
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R ;, ... an ( x,t) = (if)t i (- 1)1' (n) xa, ".xa
p 

p~O p 

X f d3YYa","·YancP(y,tj. (3.7) 

(Note that for n = 0, this is the quantity P that we are investi
gating.) The most general spin-O term is then 

00 

M (x,t) = 2:.8n D ~~ .. a," R ~~ ... a'n (x,t), (3.8) 
n=O 

where.8n are arbitrary coefficients. 
Commuting this with J Ok and removing the orbital part 

gives, after much combinatorics, integration by parts, and 
use of identity (3.5), the resulting spin-l object which we call 
Mk(X,t) 

00 

Mk(X,t) = 2: [.8n - (2n + 2f.8n+ 11 
n=O 

XD2n.+2 R 2n+ 1 . (39) 
a l a2 " t I k a 1 .. ·a2 ,,-+ I • 

[Mk is the analog of pk in the discussion following (3.1).] 
Commuting again with J 01 and removing the orbital piece 
gives a spin-2 and a spin-O object. The spin-O object is 

I 00 

3" Okl n~o [(2n + 1)(2n + 2)2(2n + 3).8n + 1 

- (8n
2 + 8n + 3).8n +.8n _ 1 1D ~~ .. a'n R ~~ .. a2n' (3.lO) 

where.8_1 =0. 
Demanding that the spin-O object in (3.10) be a numeri

cal multiple a of the original spin-O expression in (3.8) gives a 
difference equation satisfied by the coefficients.8n 

I 3" [(2n + 1)(2n + 2)2(2n + 3).8n + 1 

- (8n 2 + 8n + 3).8n +.8n _ 11 = a.8n· (3.11) 

This is a second-order eigenvalue equation in which a plays 
the role of the eigenvalue. However, unlike conventional ei
genvalue problems, there is no boundary condition at n = 00 

which excludes a growing solution and therby determines a 
set of eigenvalues. This is because the possible asymptotic 
behaviors of.8n for large n are 

.8 
CI + C2logn ( ) 

~ n-+oo 
n (2n + 1)1 ' 

(3.12) 

CI and C2 are arbitrary constants. There is no justification 
for excluding any solutions because the sum in (3.8) con
verges for all solutions. Thus, the eigenspectrum is contin
uous. 

If.8n satisfies the difference equation in (3.11), thenM in 
(3.8) is the spin-O part of an irreducible representation. Using 
(2.1) we find that this representation is labeled by (0,1 d, 
where II = ~(3a + 1). 

Next we solve (3.11) in terms of a generating function 
f(z). We define 

00 

f(z) = 2: (2j)!/3jzi. (3.13) 
j=O 

The asymptotic behavior in (3.12) implies that this series 
converges for alllzi < 1. Thusf(z) is analytic in the unit circle 
in the complex-z plane. We see thatf(z) satisfies the differen-
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tial equation 

II/(z) + Sz - 3 j'(z) + 
2z(z - 1) 

2(z - 1) - Ii 
4z(z _ I)Z I(z) = O. 

(3.14) 

It is not hard to recognize that this differential equation 
has 3 regular singular points and is therefore a transformed 
hypergeometric equation.? The general solution to (3.14) is a 
linear combination of 

(z - l)"/zP 1 + 2.._ + 2... -'z ( 
I 1 I 3 ) 
2' 2 2 ' 2 ' 

and 

z- I /2(Z _ 1 ),,12 P (l.!. ~ + l.!.. ~ .z) . 
2 ' 2 2 ' 2 ' 

Choosing the solution which is analytic at the origin 
and recognizing that the hypergeometric function can be 
written in terms of elementary functions gives the following 
expression for I(z): 

I(z) = .JZ 1 - .JZ 
[

_1 log 1 + .JZ 

_1 [( 1 - .JZ)"12 _ (1 + .JZ)"12] 
.JZ 1+.JZ 1-.JZ 

(/dO), 

(3.15) 

where we neglect an overall multiplicative constant. Note 
that there is a special class of positive II'S for which/(z) in 
(3. 15) is single valued; namely, II an even integer >2.M (x,t) is 
the spin-O component of a finite-dimensional representation 
whenever II is a nonzero integer. 

The final step is to find a set of II'S such that summing 
over the irreducible representationsM (x,t ) with an appropri
ate set of coefficients Y reproduces the original expression 
P(t) in (3.1): 

I y"M" (x,t) = P(t). (3.16) 

" 
Remembering that M" (x,t ) also contains an infinite sum, we 
interchange orders of summation and find that (3.16) is true 
if and only if the following identity holds for all z: 

1 1+.JZ 1 
yo-Iog-- + I y,,-

.JZ 1 - .JZ ',#0 .JZ 
X [( 1 - .JZ)"12 _ (1 + .JZ)"I2] = 1. (3.17) 

1+.JZ 1-.JZ 
A set of y for which this identity holds is 

_ {( - l)I,/z II an even integer >2, 
YI, - 0 otherwise. (3.18) 

However, for this choice the sum in (3.17) must be performed 
using a summation procedure such as Euler or Borel sum
mation. 8 

To conclude, we have shown algebraically that 

P(t)= -Mz+M4-M6+'" (3.19) 

and group theoretically that P (t ) transforms as the O-spin 
component of the direct sum of an infinite number of finite
dimensional, irreducible, tensor representations of the Lor-

993 J. Math. Phys., Vol. 24, No.4, April 1983 

entz group: 

(0,2) 6l (0,4) 6l (0,6) 6l .... (3.20) 

It is interesting that while each of theM's in (3.19) depends 
on space and time, the identity in (3.17) implies that all space 
dependence in the right side of(3.19) cancels. Equation (3.20) 
implies thatP (t ) is the sum ofthe spin-O components of total
ly symmetric, traceless, odd-rank tensor densities 

P (t) = TO(x,t) + Tooo(x,t) + TOOOOO(x,t) + .... (3.21) 

4. TRANSFORMATION PROPERTIES OF 
Q(t) = .fd3xjO(x,t) 

To determine the transformation properties of 

Q (t ) = f d 3x/(x,t), (4.1) 

where /( x) is the zeroth component of a current which is not 
locally conserved, we follow exactly the same procedure as 
in the last section. We begin by constructing a class of quan
tities U :, ... an analogous to R :, ... an in (3.7) 

U :, ... an (x,t) = (JOt - I i ( - 1 Y' + I (n) xo, ... xa
p 

D=O P 

X f d3YYa p +, "'Yan (aIL.f)( y,!). (4.2) 

Note that U O is just Q (t) in (4.1). Next, we construct a set of 
quantities N (x,!) which are analogous to M (x,!) in (3.8) 

00 

N(x,t) = I EnD~~ ... aZn U~~ ... aZn(x,t), (4.3) 
n=O 

where the coefficients En are analogous to the coefficients 
fin· 

Now we impose the condition that N (x,! ) be the spin-O 
component of an irreducible representation of the Lorentz 
group. We commute N (x,! ) with J Ok 

, the generator of infini
tesimal Lorentz transformations, remove the orbital part, 
and repeat the process. We then demand that the new spin-O 
object that arises be a numerical multiple a of the original 
spin-O quantity N (x,t ). This gives a difference equation satis
fied by the coefficients En which is analogous to the differ
ence equation in (3.11): 

H(2n + 3)(2n + 2)(2n + 1)2nEn+1 

(4.4) 

where E _I = O. The possible asymptotic behaviors of En for 
large n are 

C I + Czn ( ) E - n-.oo , 
n (2n + I)! (4.5) 

where CI and Cz are arbitrary constants. Again we observe 
that there is no constraint on the possible choices for a. As 
before, we conclude from (2.1) that N (x,! ) is the spin-O com-

ponent (0'/1) where II = ~3a + 1. 
To solve (4.4), we introduce a generating function g(z) 

defined by: 
00 

g(z) = L (2) + l)!Ej zi'. (4.6) 
j=O 
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We find that g(z) satisfies the differential equation 

g"(z) + J.- 7z + I g'(z) 
2 z(z - I) 

1 6r +(I-n)z+2 + - 2 2 g(z) = O. 
4 z (z - 1) 

(4.7) 

For the special case I ~ = I (a = 0) there is an additional 
solution g(z) satisfying the algebraic equation 

(I - Z)2g(Z) = g(O). (4.8) 

Equation (4.7) can be transformed into a hypergeometric dif-

g(z) = 

~(I _ z)-312log I + ~ 
I-~ 

I 
(I - Z)2 

~(I_Z)-3/2 [(I_~)/'/2 _ (I +~)/'/2] 
I+~ I-~ 

Note that for II = I there are two linearly independent 
solutions. In this case, the general solution for g(z) is 

where CI and C2 are arbitrary constants. However, only one 
linear combination leads to a solution for N (x,t ) that is the 
spin component of the (0, I) representation. A second linearly 
independent solution for g(z) gives rise to the [(0, 1)--+( 1,0)] 
indecomposable representation of the Lorentz group. We 
will label the spin-O component of the (0'/1) representation by 
II:NI, (x,t). We let NI(x,t )bethespin-Ocomponentoftheirre
ducible representation (0, I). The coefficients Cn for NI(x,t) in 
the sum in (4.3) are generated by 

I+z 
g(z) = (I _ Z)2 

LetN; (x,t) denote the spin-Ocomponent of the [(0,1)--+(1,0)] 
representation. For N; (x,t), the coefficients Cn are generat
ed by 

g(z) = __ z_ 
(I _Z)2' 

As in Sec. 3, there is a special set of positive values of II 
for which g(z) is single valued; namely II an odd integer> l. 
Except for the indecomposable representation just discussed 
N (x,t ) is the spin-O component of a finite-dimensional, irre
ducible representation whenever II is a nonzero integer. 

Finally, we must find a set of l/s so that when we sum 
over the irreducible representations N (x,t ) multiplied by an 
appropriate set of coefficients AI, we obtain Q (t) in (4.1): 

A ;N;(x,t) + LA/,N/, (x,t) = Q(t). (4.10) 

This is the analog of equation (3.16). 
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ferential equation. The general solution to (4.7) is a linear 
combination of 

Z(Z_I)-3/2+1,/2F(1 + !..L J.- + !..L.~;z) 
2 ' 2 2 ' 2 

and 

ZI12(Z - I) - 3/2 + 1,/2F (~ J.- + ~.1- ;z), 
2' 2 2 ' 2 

Because of the asymptotic behavior in (4,5) we know that we 
want the solution for g(z) that is analytic at the origin. Neg
lecting an overall multiplicative constant we find that 

(/ 1 =0), 

(II = I), (4.9) 

Interchanging the order of sums in (4.10) and in N (x,t ) 
we obtain the identity that ensures the validity of (4.10): 

1 r:(1 )-3/21 I+~ 1 I+z 
"O~Z _·z og--- +"1--"":"'--

1- JZ (I -zf 

+A; z 2 + L AI ,Fz(I_z)-3/2 
(1 - z) 1,1'0.1 

X [( I - ~)/'/2 _ (I + ~)/'12] = 1. (4.11) 
I+Fz I-~ 

A set of A which satisfies this identity is: 

{

I (I] = I), 

AI, = (I] - ~)( -0 1)(/' + 1)/2 (I] an odd integer >3), 

otherwise, 
(4.12a) 

and 

A;=-l. (4.12b) 

As in Sec. 3, the sum in (4.11) must be performed using a 
summation procedure such as Euler or Borel. 

We have thus shown algebraically that 

Q(t) = NI(x,t) - N;(x,t) 

+ I (2n + ~)( - If + ]N2n + ] (x,t). (4.13) 
n=l 

We also see that Q (t ) transforms as the a-spin component of 
an infinite direct sum of finite-dimensional, irreducible, ten
sor representations of the Lorentz group plus the O-spin 
component of an infinite-dimensional indecomposable re
presentation: 

[(0,1)--+(1,0)] ffi (0,1) ffi (0,3) 6) (0,5) 6) •••• (4.14) 

Another way to state this result is that Q (t) is the sum of the 
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spin-O components of totally symmetric, traceless, even
rank tensor densities plus a density S (x,t ) that transforms as 
the spin-O component of the [(0,1 )--( 1,0)] representation of 
the Lorentz group [in fact, S (x,t ) = - N; (x,t )] 

Q(t) =S(x,t) + T(x,t) + TOO(x,t) + TOOOO(x,t) + .... 
(4.15) 

Note that this representation of Q (t ) reduces to a time
independent scalar in the case of a conserved current. If 
Jp l' (x) = 0, then 

U~, ... an=O, (n;;;>I). (4.16) 

Since for I. =1= 1, the generating function g(z) is ° at z = 0, it 
follows that to, the coefficient of U O in N I, (x,t ), vanishes. 
Thus Jp l' (x) = ° implies that 

(4.17a) 

Similarly, 

N;(x,t) =0 (4.17b) 

and 

(4.17c) 

Thus, the decomposition in (4.13) reduces to the single term 
NI (x,t ), which is a Lorentz scalar, in the case of a conserved 
current. 
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Superluminal Dirac particles are considered in a Friedmann universe. It is concluded that if such 
particles were produced at the epoch of the big bang (as assumed by Narlikar and Sudarshan) and 
also that they survived up to the present time, their metamass should be less than 8.77 X 10 - 54 g. It 
is also concluded that the wavelength of these primordial tachyons (superluminal particles 
surviving to present time) would be greater than 4.56X 10-23 cm. In this paper, expressions for 
various physical parameters such as probability density and energy and rate of dissipation of 
energy for these particles are derived. 

PACS numbers: 14.80.Pb 

1. INTRODUCTION 

In recent years, there has been continuing interest in 
research on tachyons (superluminal particles) in the back
ground of general relativity and relativistic cosmology. In 
1976, Narlikar and Sudharshan 1 published a paper in which 
they assumed that such particles would have been produced 
at or just after the epoch of the big bang along with other 
fundamental particles of ordinary matter. In their paper, 
they have discussed many features of primordial tachyons 
taking the Friedmann model of the universe, having zero 
space curvature. Recently this author2 also has done a simi
lar problem in the background of Robertson-Walker cos
mology taking the model of positive curvature. In these pa
pers spinless tachyons, following the Klein-Gordon 
equation, have been considered. 

In the present paper, we have considered spin-~ ta
chyons obeying the Dirac equation and have discussed var
ious features of such particles in the background of Robert
son-Walker cosmology taking the model of positive, 
negative as well as zero curvature. We have also analyzed the 
characteristics of primordial spin-! tachyons in the models 
containing different perfect fluids such as dust, radiation, 
super-dense matter and nonrelativistic matter. 

We consider the Robertson-Walker line element 

ds2 = df 2 - [R 2(f )1(1 + kr 2/4)2](dx2 + dy2 + dz2) , (1.1) 

whereR (f) is the scale factor, k is the space curvature having 
values + 1, - I, adn 0 and r 2 = x 2 + y2 + Z2. 

Under coordinate transformations 

T= ('~, X= (" dx 
JoR(t) Jo l+kr 2/4' 

(1.2) 

(Y dy Z= r dz 
Y = Jo 1 + kr 2/4 ' Jo 1 + kr 214 ' 

the line element (1.1) is written as 
ds2 = S2(T)(dT2 _ dX 2 _ dy 2 _ dZ 2), (1.3) 

whereS(T) =R (f). 
In Sec. 2, we describe the Dirac theory. In Sec. 3, we 

solve the Dirac equation for a tachyon using the method of 
Wentzel-Kramers-Brioullin (hereafter called WKB) ap
proximation. Also we have tested the validity ofWKB solu
tions. We get two solutions. It is found that one solution is 

valid before the age of one second of this universe. The other 
solution is valid for time beyond one second. 

In Sec. 4, we discuss the probability density of the pri
mordial spin-! tachyon. It is found that the probability den
sity decreases with time in both cases when f < I second as 
well as t> I second. We also find that probability density 
also decreases if the metamass of the tachyon increases. 

In Sec. 5, we have derived expressions for energy and 
rate of dissipation of energy of the tachyon in the medium of 
different perfect fluids. It is found that dissipation of energy 
of a tachyon is fastest in the medium of super dense matter 
and slowest in the medium of dust. 

In the last section, we show that if a primordial spin-! 
tachyon survives up to the present epoch, its metamass 
should be less than 8.77 X 10-54 g and its wavelength should 
be greater than 4.56X 10-23 cm. 

2. DIRAC THEORY 

We choose an orthonormal tetrad field e~(x) such that 

(2.1) 

wherega{J is the metric tensor given by the line element (1.3) 
and 'YJab = diag( - I, - 1, - 1, + 1). Indices a, p,. .. run 
from 1 to 4 and a, b··· = 1 ... 4. 

The Dirac equation for a primordial spin-! tachyon in 
curved space-time takes the form 

ifryi"¢;1" - m¢ = 0 , 

where 

m = ifl (Ref. 3) 

¢;I" = ¢.I" + rl"; rl" =! e~;1" eab yl'ya , 

Y' = e,:ya, yayi') = 'YJab, ~yV) =g"v. 

Standard ya-matrices4 are given as 

. [0 ya= . 
cT' 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Indices fl, b ... = 1,2,3. Semicolon ( ; ) denotes covariant deri
vative and comma ( , ) denotes partial derivative. 

The Dirac current}'" is defined by means of 1f = ¢t y4) as 

(2.6) 
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r is divergence free, hence 

J~ =0. 

This enables us a hypersurface-independent normalization 
on a hypersurface 0' with timelike normal vector ua using the 
integral (where d 3Vis the invariant volume element of 
0', dcr =dX 2 + dy 2 + dZ 2) 

IfU a
d3V . 

3. SOLUTIONS OF DIRAC EQUATION 

Here we introduce a procedure characterized as a con
formal method5 such that the metric tensor gap in (1.3) is 
related to the Minkowski metric gaP as 

gaP = S2gaP (3.1) 

and correspondingly a tetrad field 

e~=Se~. (3.2) 

For a given congruence of world lines of particles in the 
underlying manifold describing a particle, the correspond
ing currents are related according to 

j'a = S:F. (3.3) 
From Eqs. (2.6), (3.1), and (3.2), Dirac fields in the two space
times are connected by 

¢ = S 3i2if;, ¢ t = S 3/2if;t , (3.4) 

where if; is the solution of the Dirac equation (2.2), if;t and ¢ t 
are Hermitian conjugates of if; and ¢, respectively. Adjust
ment of tetrads along the coordinate lines yields 

e~ = (1/S)8~; e~ = 8~ . 

Hence the Dirac equation (2.2) takes the form 

ifl1j~Y'i'p,a + ~ ifz(S /S )y4i'p - Smi'p = 0 . 

(3.5) 

(3.6) 

The corresponding equation for ¢ is, because of Eq. (3.4), 

ifl1j~Y'¢.a - Sm¢ = 0 . 

This equation can be written as 

(if/Y'aa - Sm)¢ = 0, 

aa==={ax , a y , az , aT}, 

a 
ax = ax' etc. 

(3.7) 

(3.8) 

Now applying the operator ( - if/Y'aa - Sm) on Eq. (3.8) we 
have the squared equation 

[ - fz2T/ obaa ab + ifz2y41S m - S2m2]¢ = 0 (3.9) 

(dot over the variable denotes d /dT). 
We solve Eq. (3.9) with the ansatz 

¢ =/(T)Texp( - iki'lxi'l) , (3.10) 

wherexu 
= (X, Y, Z) and the constant spinor ris defined by 

y4lr=er, e= ± 1. (3.11) 

For the standard representation of the Y', r becomes3 

rE~I=(~) rE~I=(~) 1 0' -I 0' 

o 0 
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rE~-I=(~) rE~-I=(~) 1 l' -I 0' 

o 1 

(3.12) 

and Eq. (3.9) reduces to a differential equation for/iT) as 

d'i (S2m 2 .' 2) --+ ---lemS+K /=0, 
dT 2 fz2 

(3.13) 

where k 2 = k ~ + k ~ + k ~ . (Here k does not denote space 
curvature). But from Eq. (2.3) m 2 = - fl2, hence we have 

d'i +(_S2fl2 +eflS+k 2)/=0. (3.14) 
dT 2 fz2 

This differential can be written in one of the two forms 

d'i --+ T/ 2
/ = 0 for T/ 2 > 0 

dT 2 ' 

where 

and 

T/2 = - S2fl2/fz2 + eflS + K2 

d 'i _ T/''i = 0 for T/'2 > 0 , 
dT 2 

where 
T/'2 = S2fl 2/fz2 - eflS _ K2. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

We obtain solutions of differential equations (3.15) and (3.18) 
by the method of WKB approximation as6 

/(T)=AT/-1/2 exp( ±i iT T/dT) forT/2>O (3.19) 

and 

/(T)=BT/'-1/2 exp( ±i iT T/'dT) forT/,2>O, 

(3.20) 

respectively. 
From Einstein's field equations7 with a suitable equa

tion of state p = (y - 1)P (where p is the pressure, y is the 
ratio of specific heats at constant pressure and constant vol
ume, and p is the energy density) we have S (t ) = t q, where 
possible values of q are !, ~, !, and j for superdense matter, 
nonrelativistic matter, radiation and dust, respectively. 

Now we shall test the validity ofWKB solutions ob
tained above. For this test we shall see whether 
I (dT//dT)/2T/2 I or I (dT/'/dT)/2T/'21 is less than unity. 

From Eq. (3.16) we find that 

I 
dT//dTI = I - (fl2/fz2)qt 3q - 1 + ! eflq(2q - l)t 3q - 2/. 

2T/2 2[ _ (fl2/fz2)t 2q + eqflt 2q - 1 + k 2]312 
(3.21) 

Equation (3.21) shows that I (dT//dT)/2T/2 I < 1 up to 
t < 1; hence, solution (3.19) is valid before one second. 

From Eq. (3.18) we find that 

I 
dT/'/dT I = I (fl2/fz2)qt 3q - 1 - ! eflq(2q - 1)( 3q - 21. 

2T/'2 2 [(fl2 /fz2)t 2q _ eflqt 2q - 1 _ k 2] 3/2 
(3.22) 

Equation (3.22) shows that I (dT/'/dT)/2T/'2 I < 1 when 
t> 1. it means that beyond one second, solution (3.20) is 
valid. Connecting Eqs. (3.4), (3.10), and (3.11) we have the 
solution ofthe Dirac equation (2.2) as 
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¢ = ArrJ~ 1/2S ~3/2 exp( - ik"x" ± i iT rJ dT) (3.23) 

up to t less than one second. 
Similarly connecting Eqs. (3.4), (3.10), and (3.20), we 

have the solution of the Dirac equation (2.2) as 

¢ = BrrJ'~ 1/2S ~3/2 exp( .- ik"x" ± iT rJ' dT) (3.24) 

beyond t equal to one second. 
Both these solutions show damping of the tachyon wave 

function with the passage oftime. 

4. PROBABILITY DENSITY OF PRIMORDIAL SPIN-} 
TACHYON 

The probability density of spin-~ tachyon is defined as 

p=¢t¢. (4.1) 

From Eq. (3.23) we have 

A2 
PI = --:-----::-=--=------:-----~ 

t 3q [ _ (flz Ifzz)t 2q + €flqt 2q ~ 1 + k 2] liZ 
(4.2) 

when t < 1 second. 
From Eq. (3.24) we have 

B2 
P - (4.3) 

2 - t3q[(flZ/fzZ)tzq _ €flqtZq~ 1 _ kZ] 1/2 

when t> 1 second. 
Both expressions (4.2) and (4.3) for probability density 

show that the probability density of a spin-~ tachyon de
creases with time. From Eq. (4.2) we find that decay of the 
probability density of an antitachyon is faster than for a ta
chyon provided that for any value of t before one second 

(4.4) 

Here € = 1 corresponds to a tachyon whereas € = - 1 cor
responds to an antitachyon. Now we discuss decay of prob
ability density beyond one second taking different values of q 
for different perfect fluids, because it is difficult to decide 
what perfect fluid was present up to the time when this uni
verse was one second old. 

B2 
If q =!. P2 = -------------

[(fl2/fz2)t 8/3 _ j €flt 5/3 _ k 2t 4] liZ 

(4.5) 

B2 
If q = ~, Pz = --------------.,-

[(fl2/fz2)t 16/5 _ ~ €flt 1115 _ k 2t 12/5] 1/2 

(4.6) 

(4.7) 

B2 
P2 = --------------

[(fl2/fz2)t 16/3 _ ~ €flt 13/3 _ k Zt 4] 112 

(4.8) 

From the above computation of Pz, we find that in all cases, 
decay of probability density of an anti tachyon is faster than 
that for a tachyon beyond one second also. Above expres
sions for Pz also show that the metamass of the tachyon also 
helps in the decay of P2• This shows that "heavy" tachyons 
decay faster. 
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5. ENERGY OF PRIMORDIAL SPIN-} TACHYON 

Like Audretsch and Schafer,5 we define the energy den
sityas 

p= T uU U/3=_I_' [¢t a¢ + a¢t ¢], (5.1) 
u/3 2S aT aT 

where UU is the four-velocity satisfying uUuu = + 1 in the 
case of tachyons. 

As in the previous section, here also we are not interest
ed in the case when t < 1 second. Hence we consider the 
solution (3.20) only. From Eqs. (3.10) and (3.20) we have 

p = - (BZIR )[rJ'312 +! i1j'2] , 

but rJ,-2 ;::::(fz2 Ifl 2t 2q)[ 1 + 2€qfzZt -l/fl + 2fz2k 2t ~ 2qlfl] 

which is a very small quantity for a particular value of t, and 
also this quantity goes on decreasing with the passage of 
time. Hence, 

(5.2) 

Substituting the value ofrJ' from Eq. (3.18) we have 

= _ B 2fl 3/2t 3q/2 [1 _ 3€qfz t -I _ 3M 2 t ~ zq] . 
P fz3/2R 2fl 2fl z 

(5.3) 
Hence the energy of tachyon is given by 

E= f pd 3 V= f pdXdYdZ= f pR
2
dRdw, 

(5.4) 
where dw = sin 0 dO dtP gives the solid angle. 

Now connecting Eqs. (5.3) and (5.4) we have 

E = _ 41TB 2fl3/2 J t 3q12[ 1 _ 3€qfz2 t- I 

fz3/Z 2fl 

_ 3fz
2
k

2 
t .. Zq] R dR 

2fl2 

= ___ t 3ql2 ~ I 41TB 2fl3/2q f [ 3fzZk 2 

fz3/2 2fl2 

+ 3€qfz
2 

t 7q/2 ~ 2 _ t 7q/2 ~ I] dt 
2fl 

= __ t 3qI2 41TB 2fl3/2q [ fz2k 2 

fz3/2 qfl2 

+ t7qI2~1 __ _ 3€qfz2 2t 7q/2] 

2fl (7q12 - 1) 7q 

8~B 2fl3/Z 
__ "-..,.._ t 7ql2 + 41TB 2fl3/2qfz1l2 

7fz3/2 

X __ t 3q/2 + . 
[ 

k 2 3€qt 7qlZ ~ I ] 

qfl2 fl (7q - 2) 

For any value of t > 1 second 

8 B Z,n 3/2t 7ql2 
1T J.& 4 B 2fl3/2 fzl/2 

7fz3/2 > 1T q 

X __ t 3qI2 + . 
[ 

k 2 3eqt 7qlZ - I ] 

qfl2 fl (7q - 2) 

(5.5) 

Hence we have expression for energy of primordial spin-! 
tachyon: 

(5.6) 
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For our convenience we can choose constant B such that 
8rrB 217 = 1; hence 

E::::: - 11 312( 7q/2/,,312. (5.7) 

Now we are in a position to get the expression for ener
gy of a primordial spin-~ tachyon in different perfect fluids 
substituting different values of q. 

(a) In the case of superdense matter q = !; hence, 

(5.8) 

(b) In the case of nonrelativistic matter, q = ~; hence, 

(c) In the case of radiation, q = ~; hence, 

E::::: - 11 3/2t 7/4/,,312. 

(d) In the case of dust, q = j; hence, 

E::::: - 11 3/2t 7/3/(z312. 

(5.9) 

(5.10) 

(5.11) 

From above expressions for E, we note that energy of a 
tachyon decreases rapidly with time. Order of energy decay 

22 

20 
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16 

---~""4 1'1 .. 

>- 12 
\!l 
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2 

£& DUST MODEL 

o RADIATION MODEL 
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(I" Seer/ 

3 4 

FIG. I. Graph of rate of dissipation of energy versus time is plotted. As a 
result a comparative study of dissipation of energy in different models is 
done. 
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is given as 

Ed <Er <En <Es (5.12) 

(d, r, n, and s denote dust, radiation, nonrelativistic matter, 
and superdense matter, respectively). 

It is also interesting to note that energy decay of 
"heavy" tachyons is very fast. 

We can have the rate of dissipation of energy in all four 
cases given above as 

(a) In the case of superdense matter 

dE _ 7 11 312 
1/6 - dt - (; ,,312 t (5.13) 

(b) In the case of nonrelativistic matter 

dE _ 7 11 3/2 2/5 ------t 
dt 5 (z3/2 

(c) In the case of radiation 

dE 7 11 312 __ = ___ t3/4. 

dt 4 ,,3/2 

(d) In the case of dust 

dE _ 7 11 3/2 4/3 
------t . 

dt 3 ,,3/2 

(5.14) 

(5.15) 

(5.16) 

We can find the comparison of rate of dissipation of 
energy of a tachyon of given mass in Fig. 1. 

6. PRIMORDIAL SPIN-l TACHYON IN THE PRESENT 
DAY UNIVERSE 

In this section, we shall deal with the question of sur vi v
al of spin-! tachyons up to the present epoch. 

From the age of 108 years up to the present epoch, it is 
expected that nonrelativistic matter dominates in the uni
verse.8 Hence, for the present epoch to we consider the 
expression for energy, 

11 3/2t 6/5C2 

IEI:::::+ ,,3/2 (6.1) 

(in cgs units). 
We know that experiments to detect tachyons have 

failed so far. Hence we may expect that energy of a primor
dial tachyon surviving up to the present epoch would be even 
less than the energy of an electron. Therefore, we have 

11 3t b4/5C4/,,3 < m~c4 , (6.2) 

where me is the mass of an electron and to = 3.2 X 1017 sec 
(present age of the universe). Equation (6.2) yields 

11<" e 
[ 

m2 ]1/3 
~ t 64/5 

=l.05XlO- 27 X[ (9.11)2xlO-56 ]1/3 
(3.2) 14/5 X 10238 / 5 

= 8.77X 10-54 g. 

We also know that 

E 2 _ C2p2 = _ 11 2C4; 

hence, 

p2 = 11 2C2 + E 21 c2 • 

Connecting Eqs. (6.1) and (6.3) we have 

Sushi I K. Srivastava 
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It gives 

en 3/2t 7/5 [ fz3] 
P = fz3/20 1 + 2nt 64/ 5 

en 3/2t 6/5 

:::::; 
fz3/2 

The wavelength of a tachyon is given by 
fz5/2 

A. = fz/p~-...,..-,-en 3/2t 6/5 

1000 

(l.05)5/2 X 10-13512 

3 X 1010 X (8.77)31 2 X 10-81 X (3.2)715 X 10119/5 

= 4.56x lO-23 cm. 

J. Math. Phys., Vol. 24, No.4, April 1983 

(6.4) 

Thus we find that if a primordial spino! tachyon survives up 
to the present epoch, its metamass would be less than 
8.77X lO-54 g and its wavelength would be greater than 
4.56 X lO-23 cm. This consequence agrees with Narlikar and 
Sudarshan's result I that a primordial tachyon, surviving up 
to the present epoch, should be lighter than an electron. The 
Compton wavelength of such tachyons would be greater 
than 4 X 10

15 em. 
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Quasisteady arterial blood flow 
Paul Gordon 
Department of Mathematical Sciences, Purdue University Calumet, Hammond, Indiana 
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Fluid flow through a bifurcating system of elastic tubes is modeled with the inviscid compressible 
time-dependent equations of fluid flow. Because ofthe physical scale of the problem (the length of 
the tube is large relative to its diameter), quasisteady analysis can be applied to the system of 
hyperbolic first order partial differential equations. Several simplified models are thereby 
obtained. Although similar in some respects to the usual incompressible models, the quasisteady 
models are seen to be significantly different. For example, the sound speed of the fluid remains an 
important parameter in the boundary condition. Numerical solutions are obtained for various 
problems. Results are presented for the one-layer problem, which was studied in some depth, and 
a three-layer problem, in which the layers are connected by bifurcation boundary conditions. The 
solutions are shown to be physically reasonable. Of special interest is the clear display of the 
mechanism in the model by which the elastic wall converts the pulsatile flow to a much more 
continuous outflow. 

PACS numbers: 87.45.Hw, 47.40.Dc 

I. INTRODUCTION 

In 1970 the author collaborated on a study I in which 
the compressible equations were used to model arterial 
blood flow. It was shown that the retention ofthe finite 
sound speed did in fact produce a sensible set of equations. 
However, resolution of the time step restriction, caused by 
the sound speed, required appropriate quasisteady analysis. 
In Ref. 1 we attempted to apply the quasisteady features of 
the problem through the numerics. This was not completely 
successful and consequently a full numerical solution was 
not obtained. 

Since that time the author has worked on the problem 
of analytically applying quasisteady analysis to hyperbolic 
systems of partial differential equations. This effort seems to 
have been successful in the physical problem of large-scale 
weather prediction.2

•
3 The purpose of the present paper is to 

apply similar analysis to the time-dependent Euler equations 
for the physical problem corresponding to arterial blood 
flow. 

Womersley's work4 initiated a large and extended effort 
in terms of modeling pulsatile blood flow. For the most part 
this work falls into two categories. 

(i) The first attempts to obtain a complete description of 
all the flow variables: The starting point usually is the incom
pressible viscous Navier-Stokes equations, although non
Newtonian fluids have also been considered in this frame
work. This kind of analysis is described thoroughly by 
McDonald5

; see also Refs. 6 and 7. The complexity ofthe 
mathematics has thus far precluded three-dimensional 
studies or analysis of an entire arterial tree. 

(ii) The second category pursues wave analysis and at
tempts to calculate propagation speeds and "reflective" 
points in the system. Often an entire system is modeled. See, 
for example, Refs. 8-10. 

Our reasons for using an inviscid, compressible model 
were discussed in Ref. 1 and are briefly as follows. 

(1) There is both theoretical and experimental evidence 
to support the hypothesis that pulsatile arterial flow in large 
mammals is, except for thin regions near the wall, plug 

flow. I 1-14 Also, our numerical work with viscous flows indi
cates that the spatial and time scales of the physical problems 
preclude the possibility of viscous effects, except for thin 
regions near the wall. '5•'6 

(2) The incompressible equations are not consistent 
with the compressible equations. The difficulty lies in the 
fact that the assumption of incompressibility is not applied 
consistently to the sound speed that exists in the compress
ible model. This fact was established analytically in the case 
of asymptotic stability. I? 

Quasisteady analysis attempts to simultaneously apply 
scale assumptions (rather than an incompressibility assump
tion) to both the partial differential equations and the bound
ary conditions. It will be seen that the resulting models are 
not entirely dissimilar to the incompressible models, but at 
the same time there are important differences. 

In Sec. II the complete time-dependent problem is 
specified, inclUding all equations used at the boundary. In 
Sec. III the quasisteady analysis is applied to both the partial 
differential equations and the boundary conditions. Several 
systems are obtained. The final set of equations involves the 
calculation of variables in only one space dimension. Results 
of the calculations are discussed in Sec. IV and conclusions 
are summarized in Sec. V. 

II. TIME-DEPENDENT INVISCID COMPRESSIBLE 
MODEL 

Assuming an equation of state of the form 

P - Po = c2(p -Po), (Ll) 

where c is the sound speed (taken to be constant), the energy 
equation uncouples from the system. The remaining equa
tions of the inviscid compressible Euler equations in cylin
drical coordinates (assuming angular symmetry) are 

conservation of mass: 

P, + wp, + upz = - p(w, + Uz + wlr) ; (1.2) 

conservation of momentum (r): 
1 

w, + ww, + uWz = - - P . (l.3) 
P " 
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conservation of momentum (z): 

1 
U, + WU r + uUz = - - Pz , 

P 
(1.4) 

where p = density, P = pressure, W = radial velocity (m/ 
sec), U = horizontal velocity (m/sec), r = radial coordinate, 
and z = horizontal coordinate. If we now take p Po wher
ever it appears as a coefficient, then from Eq. (1.1), the sys
tem can be taken as 

P, + wPr + uPz = - PO(wr + Uz + w/r) , (2.1) 

e2 

W, + WWr + UWz = - -pPr , (2.2) 
o 

e2 

U, + WU r + uUz = - -Pz . (2.3) 
Po 

The physical situation we intend to model is shown 
schematically in Fig. 1. Symmetrical bifurcations are as
sumed so that we need consider only one segment leaving 
each bifurcation. Equations (2) are intended to be valid at 
interior points of each region. Additional boundary condi
tions are then required as follows. 

(i) Inlet conditions (presumably from the heart) need to 
be specified at location H. 

(ii) Outlet or downstream conditions (at, for example, 
location 0) need to be specified so as to reflect the physical 
assumptions being made in regard to the remainder of the 
system. 

(iii) In each segment conditions must be specified at the 
outer wall and at the center line. 

(iv) Conditions connecting the segments need to be 
specified at each bifurcation (locations B ). 

As in Ref. 1, the number of required boundary condi
tions is determined by considering the characteristic sur
faces ofEqs. (2) as follows. 

I; I 

II[ 

III 

'~ 
. ",,,,>,,~:,~ 

'."~ 

FIG. \. Physical configuration. 
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At any boundary point, a boundary condition is 
specified for each characteristic that enters the 
region of computation. The remaining charac
teristic variables are utilized to obtain the other 
variables. 

(3) 

(See Ref. 1 for a more thorough discussion of the procedure). 
The following transformation allows the elastic wall to 

be more easily incorporated into each segment of the system: 

1" = t, 

YJ =z, (4.1) 

t = r/R, 

where R = R (t,z) represents the position of the wall. In each 
segment the configuration is as shown in Fig. 2. The equa
tions then take the form 

PT + aPt; + uP" 

= - Po(trw{; + tzu; + u,., + w/r) , 

wr + aw; + UW,., = - (;: tr )Pt; , 

e2 

UT + au; + UU,., = - - (P,., + tz p{;) , 
Po 

where 

1 
a = Ii [(w - tRzu) - t R ,] . 

In matrix form, Eqs. (4.2) become 

Vr +AVi,- +BV,., = -F, 

A ~ (le'I;');' 
Potr P';,) 

a o , 
(e2/po) tz 0 a 

CWI') v~(0 F= 0 , 

0 

The eigenvalues A of A are 

A = a, a ± e( t; + t;)1/2, 
and the eigenvalues of Bare 

(" B= 0 
e2/po 

(4.2) 

(5.1) 

0 P,) 
u o , 
0 U 

(5.2) 

A = u, U ± e . (5.3) 

The characteristic equations corresponding to (5.2) are 

!; =1 

o 

FIG. 2. Coordinate system. 
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(;zW - ;rU)T = - a(;Zw - ;rU); + G1 , 

(cP + Po ;rW + Po ;ZU)T 

(6.1) 

= - (a + C)(CP + Po ;rW + Po ;zU); + G2 , (6.2) 

(cP - Po ;rW - Po ;ZU)T 

= - (a - c)(eP - Po ;rW - Po ;zU); + G3 , (6.3) 

where the Gj represent the remaining terms in the equation 
and e = e(; ~ + ; ;)1/2. 

The characteristic equations corresponding to (5.3) are 

WT = - UW" + G4 , (6.4) 

(eP + POUlT = - (u + e)(eP + PoU)" + Gs , (6.5) 

(eP - POUlT = - (u - eHeP - PoU)" + G6 • (6.6) 

Boundary conditions need to be specified at 1] = 0 and 
1] = L j and at ; = 0 and; = 1. 

(i) 1] = 0: Suppose this is the inlet position. (The bifurca
tion points will be discussed below). Assuming I U I .(e, from 
Eq. (5.3) we see that the characteristic surface corresponding 
to U + e enters the region, while that corresponding to U - e 
leaves the region. This then is the situation. 

(a) If U > 0, two boundary conditions are needed. We 
chose 

U =/I(t,;) , 

W =/2(t,;) , 

(7.1) 

(7.2) 

where/I and/2 are specified functions. In addition the char
acteristic equation (6.6) is used. 

(b) If U < 0, one boundary condition is needed. We chose 
Eq. (7.1). The additional characteristic equations are (6.4) 
and (6.6) 

(ii) 1] = L: Suppose this represents the outlet positions. 
It is assumed that u>O here so that, from Eq. (5.3), only one 
boundary condition is needed. This downstream condition 
was discussed at some length in both Refs. 1 and 3. The 
following equation will be used: 

p, = 1!... u,. 
e 

(7.3) 

The additional characteristic equations are (6.4) and (6.5). 
We believe that Eq. (7.3) represents the physical situation of 
an infinite rigid tube of constant diameter beyond the outlet 
position. Equation (7.3) will be used in the form 

P, = Po u, . (7.4) 
e 

Downstream boundary conditions cause difficulties in 
almost all areas of fluid dynamics. A common approach is to 
apply an infinite or steady condition at the boundary. Lie
berstein 18 deals with this question carefully and emphasizes 
the importance of a meaningful boundary condition. He pro
poses a "Windkessel" condition, which very nicely closes the 
mathematical system. However, as Lieberstein himself 
states, the Windkessel condition is of questionable physical 
significance. As noted above, we think Eq. (7.4) has a well
defined physical interpretation and is at the same time math
ematicaily sound. 

(iii) ; = 0: Because of symmetry the natural condition 
here is 
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W=O. (7.5) 

From (4.2) this gives a = 0 so that, from (5.2), no addi
tional boundary conditions are needed. Instead the charac
teristic equations (6.1) and (6.2) are used. 

(iv) ; = 1: The natural condition here is that fluid can
not permeate the wall; that is, the normal component of ve
locity is equal to the normal component of the wall velocity. 
In terms of our variables, this becomes 

(7.6) 

As above, Eq. (7.6) gives a = 0 so that no further boundary 
conditions for the flow variables are needed [the characteris
tic equations (6.1) and (6.2) can be used]. However, an 
expression for R, needs to be specified. This is a very impor
tant part of the problem. This was discussed in Ref. 1, and we 
use the same expression given there: 

_1 R, = (1 +R;)1/2 {(P-P) /3(Z) _ (R -Ro)}, 
Ro KI Peq /4(R) Ro 

(7.7) 

where P is the pressure corresponding to the initial state of 
the tube when it is inflated to the constant radius R o, and K I 
and Peq will be chosen from the experimental data of Peter
son et al. 19 /3 and/4 are defined as follows: 

1 _ e-c,(zIL)(I-zIL) 

/3 = 1 -c 14 ' -e ' 
(8.1) 

(8.2) 

For C I > 0'/3 serves to "tether" each segment at the end
points; that is, R,=O at 1] = O. For C2 > 0'/4 is such that the 
distensibility of the tube depends on the expansion that has 
occurred: The greater the expansion, the more difficult it is 
to expand further. 

Finally, we need to specify conditions at bifurcations. 
We assume a "sharp" discontinuity, so that the appropriate 
jump conditions are obtained from consideration of conser
vation of mass and momentum. This is discussed in the Ap
pendix. Let "0" and "1" denote points on either side of the 
bifurcation. LetAo and A I represent respective total areas on 
either side of the bifurcation. The equations are 

(9.1) 

Po (UO)2 [ A ~ ] 2 ( A ~) PI-PO =- - 1--
2 

=3.750uo 1--
2 

.(9.2) 
2 ~ Al Al 

Note that, at position 0 in Fig. 1, Eq. (7.4) is applied to the 
infinite rigid tube beyond 0 (u is constant in this entire 
region). 

III. QUASISTEADY MODELS 

The procedure for deriving the quasisteady equations 
will be similar to that described in Refs. 2 and 3, and will be 
based on the following physical assumption [see assumption 
(2) in Ref. 2]: 

Equation (5.1) is to be solved in a region of radius 
h and length L, with h<.L. It is assumed that 
boundary conditions and initial conditions to be 
imposed on Eq (5.1) are such that the flow varia-
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bles will experience significant variations only 
over time scales which are large compared to h I 
e. 

(10) 

Mathematically, assumption (10) is interpreted as fol
lows. Dependent variables, which can react to perturbation 
on a time scale of h Ie, are in quasisteady equilibrium with 
the slowly reacting dependent variables. The problem is to 
find these variables, while simultaneously considering ap
propriate quasisteady limits of boundary conditions. 

To find the quasisteady variables, introduce the 
following: 

u = (u - aw)/(l + a2)112 , (11.1) 

W = (w + au)l(1 + a2)1/2, (11.2) 

where 

Equation (5.1) becomes 

Wr +AIW~ +BIW1) = -Fl' 

where 

o 
a 

e2(1 + a2)1/2t, IPo 

BI 

~(Polil ;"'1'" u 
ae21Po(l + a2)112 

( 
W ) da 

1 + a2 dr 

(
waz - ua, w) 

Po +-
1 + a2 r 

( 
u ) da - --- --

1+ a2 dr 

and 

d a a a 
-=-+a-+u-. 
dr ar at a7] 

(11.3) 

(12) 

The eigenvalues of A I are given by Eq. (5.2) and conse
quently we conclude that P and ware in quasisteady equilib
rium with respect to U. From Eq. (12) we therefore obtain the 
following: 

du _ _ e
2 

P _ (_w_)!!!!... (13.1) 
dr - Po(1 +a2)1/2 '1 1 +a2 dr' 

(1 + a2)1/2 
0= (u'1 + aW1)) + t,(1 + a2 )w, + (uP1) + aP,) 

Po 

In considering boundary conditions, the underlying 
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principles [Ref. 3, Eqs. (15) and (16)] are as follows. 

If a boundary equation involves Pr or Wr , and if 
the equation involves flow conditions internal to 
the region of computation, then the equation will 
be put in quasisteady equilibrium. 

The basic quasisteady assumption, Eq. (10), re
quires that (13.2) and (13.3) be applied at all inte
rior points of the lateral boundaries. 

(14) 

(15) 

Remark: As discussed in Ref. 3, if(15) is not imposed, 
the solution may develop steep gradients which are then in
consistent with assumption (10). We now apply (14) and (15) 
to the various boundaries. 

(i) 7] = 0: Eq. (7.2) is deleted by (15) and Eq. (6.6) is delet-
ed by (14). 

(ii) 7] = L: Eqs. (6.4) and (6.5) are deleted by (14). 
(iii) t = 0: Eqs. (6.1) and (6.2) are deleted by (14). 
(iv) t = 1: Eqs. (6.1) and (6.2) are deleted by (14). 

Summarizing, the boundary conditions to be used in conjuc
tion with Eqs. (13) are as follows. 

Equation (7.1) at 7] = 0, Eq. (7.4) at 7] = L, Eq. 
(7.5) at t = 0, Eqs. (7.6) and (7.7) at t = 1, and 
Eqs. (9) at bifurcation points. 

(16) 

Equation (13) and (16) would seem to be a reasonable quasi
steady model and would be particularly applicable to the 
case of a "long" tube for which..:1 t - Lie, where..:1 t is the time 
scale of interest in terms of variation of boundary conditions. 
In the problems to be considered herein, L-0.3 m, ..:11-1 
sec., and c = 1469.14 m/sec. Consequently, Eq. (13.1) can 
also be put into quasisteady equilibrium. Application of(14) 
and (15), with ur replacing Wr , shows that Eqs. (16) still are 
suitable. 

A second model therefore consists of the following. 

(i)AIW, +BIW1) +Fl =O[fromEq. (12)], 

(ii) boundary conditions (16). ( 17) 

Preliminary calculations were made with Eqs. (17); actually, 
Eqs. (13) were iterated to a steady state. The results were 
reasonable, but for the problems to be considered herein the 
equations were much more complicated than necessary, par
ticularly because of the small variation in pressure. 

Expected magnitUdes for various quantities are as 
follows: 

One expects to obtainP, from Eq. (13.3). With the quantities 
given above, IP, 1< 1O-4 IP1) I and the dominant terms in Eq. 
(13.1) are P 1) - - (Pol c2 )uu1)' Thus, we can assume 

P; =0, (18.1) 

(18.2) 

Also, one finds in Eq. (13.2) that the dominant terms should 
be 
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(18.3) 

Equation (18) and the appropriate boundary conditions need 
to be solved simultaneously, but the general dependence is as 
follows. 

(i) w(t,O,1]) = ° and Eq. (18.3) give the w field, 
(ii) Eq. (7.6) gives R (t,1]), 
(iii) Eqs. (7.7) and (18.1) give the P field, 
(iv) Eqs. (7.1) and (18.2) give the u field. 

The solution is correct when Eq. (7.4) is satisfied. 
One further simplification is obtained by assuming that 

both lu; I and IP; I are negligible. Let starred quantities rep
resent wall values,J*(t,1]) = !(t,R (1]),1]). Specifically, we as
sume that w is linear in ;, or 

w=;w' . 
Then, Eqs. (18.2) and (18.3) take the form 

au' _ 2 [ • + R .] -- -- w u 
a1] R z' 

(19.1) 

a;' = - :~ u· (~') . (19.2) 

It turns out that, for the velocity distributions to be 
considered, the right side of Eq. (19.2) is negligible (this will 
be discussed further in Sec. IV). With this further assump
tion, we obtain 

au' = _ ~ [w' + R u·] 
a1] r z' 

ar = 0, or r = r(r) . 
a1] 

(20.1) 

(20.2) 

Equation (20.2) is perhaps surprising since it assumes that 
the spatial variation of pressure is negligible throughout the 
system. This would seem to be consistent with the results 
reported by Gams et al.20 

From Eqs. (7.6) and (7.7), 

aR '(1 + 2)1/2 • -=w a -w, 
ar 

(20.3) 

(20.4) 

where!3 and!4 are defined by Eqs. (8.1) and (8.2). The bound
ary conditions to be used with Eqs. (20) are as follows. 

u'(r,O) =!I(r), (21.1) 

ar Po au' 
= - -, at the outlet point. (21.2) 

ar e ar 

Summarizing, we have presented the following quasisteady 
systems of equations. 

(i) Eqs. (13) and (16): From a numerical point of view, 
the time step restriction is related to L Ie rather than R Ie. 

(ii) Eqs. (17): This in fact was the model that we attempt
ed to solve in Ref. 1. 

(iii) Eqs. (18) and (16): This is a simplified form ofEqs. 
(17). 

(iv) Eqs. (20) and (21): This is the simplest model since it 
involves only one space dimension. Solutions to this will be 
presented in the next section. 
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IV. DISCUSSION OF NUMERICAL CALCULATIONS 

The calculations to be described have been made with 
the model consisting ofEqs. (20) and (21). The intent is to 
show that the model is qualitatively reasonable. Although 
the results are significantly affected quantitatively by the 
values of the various parameters that need to be specified, a 
complete parameter study will not be undertaken. (This is 
expected to be part of a later study in which an attempt will 
be made to model the arterial system of an animal). 

Several preliminary comments need perhaps to be 
made. 

(1) Equation (20.4) is a "passive" equation in that the 
wall moves in response to the flow field. Thus, the heart does 
not function as a "peripheral heart": This was one of the 
conclusions of the study in which Eq. (20.4) was derived. 19 

(2) This model resembles in some aspects the usual in
compressible inviscid equations. However, there are impor
tant distinctions. For example, the quasisteady nature of the 
horizontal velocity is not usually associated with the incom
pressible model. Also, boundary conditions (21.2) involve 
the sound speed and would not usually be part of an incom
pressible model. 

The following values were chosen and kept fixed for all 
layers for all calculations: 

Po = 1.6190X 107mm Hg, (22.1) 

KI = 0.0355 sec, 

Peq = 1159.9 mm Hg. 

(22.2) 

(22.3) 

The above values correspond to the experimental conditions 
of Peterson et al. 19; in particular, K 1 and Peq are the reported 
results for the thoracic aorta of one of the experimental 
animals. 

The function,/;, Eq. (8.1), is shown in Fig. 3 for various 
values of C1. It turns out that the results are not greatly 
dependent on the particular value chosen (although the cal
culations become sensitive for extremely large values). For 
all calculations we chose the value 

C 1 = 4 . (22.4) 

The input functions!1 and!2' Eqs. (7.1) and (7.2), are 
specified as follows. 

w=o, (23.1) 

1/" ~j9 0/9 "/Q 8/9 

FIG. 3. Tethering function, Eq. (8.1). 
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u =!,(t) =!,(t +P2 ) 

= {16Umax (t /P,f(1 - t /Pd 2
, O<;t<;P, 

0, P,<;t<;P2 
(23.2) 

The above function is intended to mimic the periodic heart 
~ycle. The flow has period P2, maximum velocity Uma.x, with 
mflow occurring during the time duration Pl. 

The first problem consists of a single tube of length 
L = 0.3048 m and initial radius Ro = 0.006096 m. (The I ft 
length is 25 times the diameter). At time zero we assumed 
stationary flow (P _P, u=O, w=O, R =Ro). The inflow func
tion was specified with Uma.x = 0.3048 and P, = 0.4. For the 
firs~ case we took C2 = 0 in Eq. (8.2) and P2 = I in Eq. (23.2). 
ThIS produces an inflow distribution!, as shown in Fig. 4. 
The calculation was run for 40 sec (40 cycles), withAt = 0.02 
andAx = L /9. Pressure, P = P - P, is shown in Figs. 5 and 
6 .. Figure 5 gives the continuous pressure distribution, while 
FIg. 6 plots only the maximum pressures (but a continuous 
curve has been drawn through the discrete points). Several 
points of interest are the following. 

. (1) Many cycles are required to achieve a steady state 
(FIg. 6). At 10 cycles, the peak pressure differs by approxi
mately 15% from its final value, while at 20 cycles the differ
ence is about 3%. A similar situation was reported by Ling 
and Atabek.2' 

(2) The steady-state distribution, shown in Fig. 5 as the 
curve between t = 39 and t = 40, has a minimum pressure 
well above the "rest" pressure P. This is consistent with the 
thought that the arteries are constantly in a state of tension· 
i.e., pressure never returns to the P value. 22 ' 

(3) The pressures corresponding to the systolic and dia
stolic pressures are, respectively, 752.9 and 675.9 mm Hg. 
These values are physiologically large although the differ
ence, 77 mm Hg, is not unreasonable. 

The outlet "steady-state" velocity distribution u*(t,L ) is 
shown in Fig. 4 and with an expanded scale in Fig. 7. Several 
points of interest are as follows. 

(1) For this case S6 u(t,O)dt = S6 nt)dt = 0.06501. 
Since we are in equilibrium, and since the area at both the 
inlet and outlet points are constant and equal, this value 
should also be the average outlet velocity. For this mesh a 
numerical integration gave the average outlet velocity as 
0.06480. 

(2) Figure 4 shows clearly how the pulsatile inlet flow is 

(\ 
"I / - \----<-/-"""".--
[. ~.~ 

FIG. 4. Horizontal velocity (inflow and outflow). 
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II 

/~ 

FIG. 5. Pressure distribution. 

transformed into a much more continuous outlet flow. 
(3) Through boundary condition (21.2) one sees that the 

peak pressure (Fig. 6) is essentially determined by the peak 
outlet velocity, while the large pressure variation through 
the cycle correlates with the relatively small variation in the 
outlet velocity. Figure 7 shows the outlet velocity more 
clearly. The difference between the maximum and minimum 
velocity is Au = 0.006992; from Eq. (21.2), this produces 
Ap = 77.05. 

Figures 8, 9, and 10 display, respectively, the horizontal 
velocity, vertical velocity, and the wall position at several 
times during an equilibrium cycle. Figure 11 is intended to 
be identical to Fig. 10 except that in Fig. 11 the length and 
radius are in scale. Vertical velocity is of course much less in 
magnitude than the horizontal velocity. For this problem, 
even though the radial distension is more than 50% (at the 
center) of the initial tube radius, the actual motion of the wall 
is rather small. Nevertheless, this small motion accounts for 
the relatively constant outlet velocity. 

We next investigated the effect of the period. In Eq. (23), 
Uma.x and P, were kept, respectively, at the values of 0.3048 
and 0.4. The first three rows of Table I illustrate some of the 
steady-state results obtained by varying P2 • In all three cases 
the same amount of inflow occurred per period. In effect, the 
time between "beats" varied: for P2 = I the rest period was 
0.6, for P2 = 0.8 the rest period was 0.4, and for P2 = 0.5 the 
rest period was 0.1. The average outlet velocity should there-

1[.1,(,1 :'Iodcl 

v=------ , )-,11 

,1111 

'''~ 
II I ~ :; 1 -, 

FIG. 6. Maximum pressure/cycle. 
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FIG. 7. Outlet velocity for the I layer model. 

fore vary inversely as the period, and this will produce a 
corresponding rise in pressure. The decrease in .dP was not 
anticipated: At the shorter period, the outflow is higher but 
more continuous. Also, at the shorter period the amount of 
wall distension increases significantly, while the actual wall 
motion decreases. The required number of cycles to achieve 
a steady state also increases significantly as the period de
creases; this would seem to be related to the amount of wall 
distension that occurs. 

The effect of variable distensibility was also investigat
ed with the one-layer model. This is achieved by setting 
C2 #0 in Eq. (8.4). For our case, we chose C2 = 100. Some 
results of this calculation are displayed in the fourth row of 
Table I and should be compared with the first row. Although 
the average outlet velocity is unchanged, the outlet velocity 
is not nearly as continuous for the variable distensibility 
case: u varies from 0.03728 to 0.1066 (as compared to 
0.06130 and 0.06831). This fact is also reflected in the pres
sure distribution. As expected, wall distension decreases sig
nificantly and this would seem to correlate with the fact that 
only a few cycles are required to achieve a steady state (see 
Fig. 6). In summary, variable distensibility allows the flow to 
more rapidly adjust to the inflow conditions, but the result
ing flow has a much more severe pressure requirement. 

We next ran the bifurcating model. We chose the case of 
three layers. Referring to Fig. 1, Secs. I, II, and III are dis
tensible tubes, while Secs. IV are assumed to be infinite rigid 
tubes; bifurcation conditions are applied at locations Band 
the outlet condition is specified at O. Each of the first three 
sections was assumed to be oflength 0.3048 m. Also, it was 
assumed that the total area increases by a factor of 50% at 

VL 

FIG. 8. Horizontal velocity. 
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FIG. 9. Vertical velocity. 

each bifurcation. Letting Ro(i) be the initial radius of seg
ment i, we specified Ro( 1) = 0.006096 m, so that 
Ro(2) = 0.005279 m, Ro(3) = 0.004572 m, and 
Ro(4) = 0.003959 m. The input function!, is as before, with 
period 1 sec.; the constants K, and Peq were kept at those 
values specified by Eqs. (22) for all layers; C, in Eq. (8.1) was 
taken as 4 in all layers, while for the first run C2 in Eq. (8.2) 
was zero in all layers. The mesh was.dx = 0.3048/9 in all 
layers and.dt = 0.02. 

The pressure jump, predicted by Eq. (9.2), is negligible 
for our cases, and so we again assumed pressure to be con
stant throughout. The horizontal velocity distribution for 
this problem is shown in Fig. 12 for several time steps. The 
outgoing velocity, shown in Fig. 12 as a constant value of 
0.0183, is plotted more precisely in Fig. 13. The jumps in 
velocity are a result of Eq. (9.1). 

The pressure distribution as a function oftime is shown 
in Figs. 5 and 6. Both the absolute pressure rise and the 
variation per cycle are significantly reduced, with both pa
rameters now lying within reasonable physiological ranges. 
Table I displays some of the data for this case, as well as for 
the three-layer model with variable distensibility (C2 = 1(0). 
The effect of variable distensibility is similar to that for the 
one-layer model. It is perhaps of interest to note that the 
ratio.dP / Pis approximately 10% for both the one-layer and 
three-layer models (for the case of constant distensibility). 

Several other cases, which will not be described in de
tail, have also been run. 

,,)]()2 

,I11I'lh 

.1)1)';10 

.olOR4 

.007 

.0072 

."O6(~ 
r 

FIG. 10. Wall position. 
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FIG. 11. Radius. 

(1) The three-layer model with pressure varying with 
distance [Eq. (9.2) was applied at the bifurcations and Eq. 
(18.2) at interior points]. The maximum total variation in 
horizontal pressure at any time was 0.25 mm Hg, while the 
difference from those values shown in Table I was at most 
0.5mmHg. 

(2) Cases with backflow at the inlet point (during the 
"rest" part of the cycle) were calculated. The results were 
reasonable and indicated that the boundary conditions were 
satisfactory. 

Finally, we note that the accuracy of the computation 
was tested in two ways. 

(1) As discussed in previous work2
•
3 a sequence of three 

calculations with decreasing mesh size was made; the mesh 
size, both.ax and .at, is cut by a factor of2. Since the numer
ics is essentially first order, the differences in calculated val
ues should be cut by a factor of 2. That is, if () (t,x,h ) repre
sents any of the flow variables calculated at time t and point x 
with mesh size (.ax,.at), then 

I(} (t,x,h /2) - () (t,x,h /4)1 ,ql() (t,x,h) - () (t,x,h /2)1. (24) 

Equation (24) is considered a good test for the numerics, and 
it was satisfied. 

(2) A mass balance calculation was performed at each 
time step. Essentially, we integrate the inflow and outflow 
and compare their difference with the mass stored in the 
expanding tubes. In all cases the error was less than 0.1 %. 
Since this error did not decrease significantly with mesh size, 
it is attributed to the quasisteady assumptions. 

v. SUMMARY AND CONCLUSIONS 

We have attempted to apply the time-dependent invis
cid compressible Euler equations to flow through elastic 
tubes with parameters comparable to arterial flow in mam
mals. The mathematical procedure was as follows. 

(i) Using characteristics (principle 3), boundary condi
tions were specified for Eqs. (2). It was assumed that the 
result is a well-posed mathematical problem. 

TABLE I. Selected results of the computations. 

No. of Variable .I1P= Pmax 
layers distensibility Period Pmax Pmin -Pmin .I1R max 

no 1 752.9 675.9 77.0 0.003911 
no 0.8 921.9 860.9 61.0 0.004 795 
no 0.5 1434 1407 , 26.6 0.007471 
yes 1 1176 411.1 765.1 0.001216 

3 no 221.5 199.2 22.3 0.001 149 
3 yes 251.5 178.2 73.3 0.000631 
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FIG. 12. Horizontal velocity for 3 layer model. 

(ii) Using quasisteady analysis (principles to, 14, and 
15), various sets of quasisteady models were obtained. These 
models are similar in some respects to the usual incompress
ible equations, but at the same time show important 
differences. 

The numerical calculations indicated the following. 
(1) The models are well posed (this was seen through a 

perturbation analysis via a sequence of runs with decreasing 
mesh). 

(2) The results are physically sensible. In particular, one 
saw displayed the mechanism by which the elastic wall con
verts the pulsatile inflow to a much more continuous 
outflow. 

(3) The fluid sound speed, rather than a wave speed, was 
the pertinent parameter in the outflow boundary conditions. 
This results in a direct relationship between the pressure 
variation and the variation in the outflow velocity. 

(4) It was seen that bifurcations had the expected effect 
in terms of decreasing pressure requirements. 

APPENDIX: BIFURCATION BOUNDARY CONDITIONS 

The thought is to treat the bifurcation as a discontinuity 
over which "jump" conditions are to be applied. It is further 
assumed that the essential consideration is that of the in
creasing cross-sectional area. We will therefore derive condi
tions for a tube with an increasing cross-sectional area and 
apply these conditions to the bifurcation. 

Let the cross section of the tube be 

No. of 
cycles 

.11 (.I1R) for 
=.I1Rmax max min av steady 

.I1R min -.I1Rmin Uout Uout Uout state 

0.003542 0.000 369 0.0683 0.0613 0.0648 30 
0.004 505 0.000 290 0.0836 0.0781 0.0809 45 
0.007352 0.000 119 0.1302 0.1277 0.1300 100 
0.000 799 0.000 417 0.1066 0.0373 0.0648 6 

0.001042 0.000 107 0.0201 0.0180 0.0192 30 
0.000 530 0.000 101 0.0228 0.0162 0.0192 14 
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On L, we let r = R (z) or z = ZI(r). Also let A denote the 
indicated area. 

The following lemmas are easily established. 
Lemma 1: Letf(r,z) be continuously differentiable, and 

supposef(O,r) fo andf(zl,r) fl' Then, 

f fA r Jf dA = Rill _ R i fo - ( rf dr. 
Jz 2 2 1 

Lemma 2: Letf(r,z) be continuously differentiable, and 
supposef = 0 for (0<z<z2,r = Ro), (z3<z<zl,r = R I), and 
(O<z<z I,r = 0). Then, f f A frdA = J L Idz. 

We consider the following steady-state flow: 
P =Po,u=Uo,w=O for 0<Z<Z2' and P =PI,U=UI,w=O for 
Z3<Z<ZI' Note that on L, from Eq. (7.6) 

wdz = udR . (AI) 

Withp,=O, the conservation of mass equation, Eq. 
(1.2), can be written as 

(pwr), + r(pu)z = O. 

Applying Lemma I and Lemma 2, we obtain 

Ri PoUo R 6 lId PIUI-- + pwrdz- pur, r=O. 
2 2 L L 

(A2) 

From Eq. (AI), the integrals over L cancel. This leaves the 
expected result, R i PIUI = R 6 poUo·lfwe letAo and AI 
denote the inlet and outlet cross-sectional areas, we obtain 
AI PI UI = AoPoUo· Finally, if we assume Po = PI' then a 
further approximation is given by 

AIUI = AoUo . 

From Eqs. (1.2) and (1.4), we obtain 

r(pu), = - (puwr), - r(pu2 + P) •. 

(A3) 

(A4) 

Assuming steady state, we obtain from the lemmas, and Eq. 
(A3), 

AP=PI-Po=~ ( rPdr+ AI-Ao (AoP U6 -Po). 
RI1 AI AI 

(AS) 

, " --------------
~---

" fl/ -----------
, ---------

J L __ 

FIG. 13. Outlet velocity for 3 layer model. 
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The integral in Eq. (A5) cannot be evaluated without precise 
knowledge of P. However, extreme values can be found as 
follows. 

(i) P=Po=} rPdr = Po I 0 or 1 
R2_R2 

L 2 

(AP)min = (AI ~Ao) (p U 6) (~:), (A6) 

( (R2 _R2) 
(ii) P=PI~ JL rPdr = PI I 2 0 or 

(AP) = (AI -Ao)pU2 
max AI o· 

(A7) 

An average therefore might be 

(.::1P)min + (.::1P)max (A i-A 6) u2 
(AP) = = PO' 

av 2 2A i (AS) 

Remark: Equation (AS) is also the result obtained by 
integrating Eq. (1.4) on the centerline r = O. Takingp to be 
constant consistent with Eq. (22.1), we have 

2 (Ai -A6) (AP )av = 3.750U 0 Ai mm Hg. (A9) 
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Nonlinear periodic waves in a self-gravitating fluid 
Dipankar Ray 
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(Received 7 March 1980; accepted for publication 2 May 1981) 

Liang has obtained equations for nonlinear plane waves in a Jeans universe. While Liang has 
studied the equation for a specific equation of state, this paper makes a general study. Among 
other things it is shown that only a subsonic propagation is possible. 

PACS numbers: 98.80. - k, 47.75. + f 

Liang l has studied one-dimensional perturbations to a 
homogeneous isotropic expanding universe in the following 
way. Let Uo and Po be unperturbed velocity and density, and 
u and p be perturbed values of the same quantities. Taking 
the x direction as the direction of perturbation, v and Dare 
defined by 

u=uo+v(x,t)/R, p=poeD(JC,t l, (1) 

where t is time and R is the expansion coefficient. By special
izing in Jeans universe where R, the expansion coefficient, 
can be set equal to 1, Liang has obtained the following equa
tions: 

[C; - U2(1- wf] ~;~ 
+ [U

2
(1 - wf + C; + dC;/dD] (dW)2 

l-w ds 

and 

eD = 1/(1 - wI, 
where 

f dt 
D = D (5 ), v = UW(5), 5 = u - Ur, 7 = R2 . 
U is the constant phase velocity. 

(2a) 

(2b) 

(3) 

Equations (2) have been studied by Liang l for a specific 
functional dependence of Cs on D. In this paper we plan to 
make a general study. 

It is obvious that, for physical solutions, wand dW/ds 
have to be bounded. Further, if C; - U 2( 1 - W)2 = 0 over a 
finite range of values ofs then, using (1) and (2), wegetw = 0 
over that finite range of 5, which corresponds to the no-wave 
case. If we leave that out, 

(4) 

except possibly at isolated points. Multiplying (2a) by C; 
- U 2 (1 - wf and integrating, Eqs. (2) can be replaced by 

F2(~;r + V= 0 (5) 

provided (4) holds, 

C; 2 
F(w)_F=--- U (I-w), 

I-w 

and V = V(w) is defined by 

dV(w) = 81TGpoW F(w). 
dw I-w 

(6a) 

(6b) 

Since w is bounded, let WI and W 2 be, respectively, the 
lower and upper bounds of w; then 

dw 
-=0 at w=w I and w2• 

ds 
(7) 

Also, from (1) and (2b), the condition thatp must be finite 
and positive requires 

Wz < 1. (8) 

From (6a) and (8), Fis finite and so from (7) 

V(w l ) = 0, V(w2) = O. (9) 

Also from (5) 

V(w)<O for wI,w,WZ• (10) 

From (7), by Roll's theorem, there exists W3 such that 

WI <W3 <W2 (11) 

and dV /dw = 0 for w = w3• Therefore, from (6b) either 

w3 =0, 

or 

F(W3) =0. 

However, we shall see that 

F(w)#O for WI <w<w2• 

(12) 

(13) 

This can be seen as follows: From (4) and (5) and the finite
ness of dw/ds, 

v(w)#O (14) 

in (W I ,W2) except possibly at isolated points. Now if possible 
let F(wo) = 0 where Wo is a particular point in (W I,W2 ). Then 
from (5) and the finiteness of dw/d5 

V(wo) =0. 

Then, in view of (9), (10), and (13), there exists at least one 
minimum for V(w) between WI and Wo and at least one mini
mum between Wo and w2 • 

Therefore, there exists W4 and Ws such that dV /dw = 0 
and V <0 for w = w4 , Ws and WI <W4 < Wo < Ws <w2 • Then, 
from (6), w4F(w4 ) = 0 = wsF(ws). Since both W4 and Ws can
notbezero,eitherF(w4 ) = OorF(ws) = O. Therefore, in view 
of (5) and the finiteness of dw/ds, either V(w4 ) = 0 or 
V(ws) = 0, which violates previous assumptions. 

Therefore, ( 13) must hold and from (12) and (13) we get 
W3=O. 

Therefore, from (8) and (12), 

WI<O<W2 <1. (15) 

In view of (6), (13), and (15), V has one, and only one, extre-
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mum in (W I ,W2) and that is at W = O. Owing to (10), this can 
only be a minimum, which, owing to (16), requires that 

C; - U 2(1 - wf>o (16) 

for all w such that WI < W < W2. 

At this stage we have seen that (9), (15), and (16) are 
necessary conditions for physically acceptable solutions of 
(2) or equivalently that of(5) subject to (4). To show that they 
are also sufficient, one has to show that (9), (15), and (16) 
together, automatically satisfy (10). For this we note from (6), 
(15), and (16) that Vis monotonically decreasing between w 
and 0 and monotonically increasing between 0 and w2• Equa
tion (10) then follows from Eq. (9). 

Therefore, summarily with Fand V defined through (6), 

1012 J. Math. Phys., Vol. 24, No.4, April 1983 

necessary and sufficient conditions that solutions of (2) give 
bounded and positive p and bounded wand dw/ ds are given 
by (9), (15), and (16). Also (15) and (16) lead to 

where Co = Cs for p = Po, i.e., w = O. 
In other words, only a subsonic wave is possible. This 

result was proved by Liang for a specific equation of state, 
but is proved in general here. 

'E. P. T. Liang, Astrophys. J. 230, 325 (1979). 
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Erratum: Reduction of inner-product representations of unitary groups 
[J. Math. Phys. 24, 233 (1983)] 

R. S. Nikam, K. V. Dinesha, and C. R. Sarma 
Department of Physics. Indian Institute of Technology. Bombay-400 076 India 

(Received 24 February 1983; accepted for publication 25 February 1983) 

PACS numbers: 02.20.Qs, 99.10. + g 

The names of the three authors were inadvertently 
omitted from beneath the title of the first page of their arti
cle. 

Erratum: Geometrical perturbation theory: action-principle surface terms in 
homogeneous cosmology [J. Math. Phys. 23, 2151 (1982)] 

Robert H. Gowdy 
Department of Physics. Virginia Commonwealth University, Richmond. Virginia 23284 

(Received 8 December 1982; accepted for publication 17 December 1982) 

PACS numbers: 04.20.Cv, 02.40. - k, 98.80.Dr, 99.10. + g 

Equation (3.4) omits an important term which invali
dates the proposed correction to the action. The elimination 
of the surface terms from the action principle by imposing a 
gauge condition remains valid but is complicated by the ad
ditional terms. 

Erratum: Regge trajectories in confining potentials 
[J. Math. Phys. 23, 665 (1982)] 

D. P. Datta and S. Mukherjee 
Department of Physics. North Bengal University, Raja-Rammohunpur, Darjeeling-734430. India 

(Received 7 June 1982; accepted for publication 1 October 1982) 

PACS numbers: 11.60. + c, 14.80.Dq, 12.35.Ht, 99.10. + g 

as Z-+oo. Thus Un (z) is square-integrable in the sector Although the proof of the analyticity of En (l) given in 
Sec. II is invalid since the conditions (11) do not hold simul
taneously for <fo = 17'/3, the analyticity follows for potentials 
(4) even for a greater range of P, 0 <P < a. Note that the 
asymptotic behavior of the wavefunction Un (z) is 

larg zl <17'/(2 + a) of the complexz plane. An equation simi
lar to Eq. (12), therefore, can be used to prove the constancy 
of the number of zeros of un in l<fo 1<17'/(2 + a) for any com
plex A, and hence the result follows. 

1013 

{ 

z"'/2 + I 

Uo = Z ~ al4 exp - a/2 + 1 
k zf3~a/2 + I 

2 P - a/2 + 1 

+ lower order terms} 

In the proof of Lemma 3.2 infimum should be replaced 
by supremum. 

We are thankful to A. Martin for his comments in this 
connection. 
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